Skip to content
2000
image of Latest Developments in Welding of Common Dissimilar Metals: A Literature Review

Abstract

In the domain of industrial building and production technology, the welding of dissimilar materials finds a wide range of applications. Unique properties of different materials are utilized to produce addition and cost effectiveness of the product for intended applications. For determining the feasibility of welding of dissimilar metals together to create a strong joint, a number of factors need to be taken into account. This paper discusses critical factors and conditions for welding of dissimilar metals and touches upon the practical challenges arising from different physical and chemical properties of the metals. It presents the latest and pertinent literature dealing with the details about the current fusion and non-fusion processes employed for welding common dissimilar metal combinations. The results suggest that research and development in the field of dissimilar metal welding is still needed, especially in light of the growing need for customized materials in contemporary engineering and industrial applications.

© 2024 The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/eng/10.2174/0118722121310074240927143045
2024-10-18
2024-11-26
Loading full text...

Full text loading...

/deliver/fulltext/eng/10.2174/0118722121310074240927143045/BMS-ENG-2024-79.html?itemId=/content/journals/eng/10.2174/0118722121310074240927143045&mimeType=html&fmt=ahah

References

  1. Liu Y.Q. Yu D. Zhang Y. Zhou J.P. Sun D.Q. Li H.M. Research advances on weldability of Mg alloy and other metals worldwide in recent 20 years. J. Mater. Res. Technol. 2023 25 3458 3481 10.1016/j.jmrt.2023.06.184
    [Google Scholar]
  2. Olszewska K. Technological aspects of welding of titanium, copper, and steels of various carbon contents. Welding International 2013 27 4 255 258 10.1080/09507116.2011.600032
    [Google Scholar]
  3. Abdul Karim M. Park Y.D. A review on welding of dissimilar metals in car body manufacturing. Journal of Welding and Joining 2020 38 1 8 23 10.5781/JWJ.2020.38.1.1
    [Google Scholar]
  4. Meshram S.D. Mohandas T. Reddy G.M. Friction welding of dissimilar pure metals. J. Mater. Process. Technol. 2007 184 1-3 330 337 10.1016/j.jmatprotec.2006.11.123
    [Google Scholar]
  5. Hatakeyama Method Of Welding Dissimilar Metal Materals and Welded Body Of Dissmlar Metal Materal US Patent 8,308,051 B2, Nov. 13, 2012. 2012
    [Google Scholar]
  6. Universidade de Vigo IGOTEC S.L. Method for welding dissimilar metal materials by means of laser EP 4 019 182 A1
  7. LEE Jinsoo KIM Taesu Method for welding dissimilar metals, dissimilar metallic busbar manufactured using same, and secondary battery comprising same EP 3 020 500 B1
  8. Kah P. Shrestha M. Martikainen J. Trends in joining dissimilar metals by welding. Appl. Mech. Mater. 2013 440 269 276 10.4028/www.scientific.net/AMM.440.269
    [Google Scholar]
  9. Sun J. Yan Q. Gao W. Huang J. Investigation of laser welding on butt joints of Al/steel dissimilar materials. Mater. Des. 2015 83 120 128 10.1016/j.matdes.2015.05.069
    [Google Scholar]
  10. Wang P. Chen X. Pan Q. Madigan B. Long J. Laser welding dissimilar materials of aluminum to steel: An overview. Int. J. Adv. Manuf. Technol. 2016 87 9-12 3081 3090 10.1007/s00170‑016‑8725‑y
    [Google Scholar]
  11. Wang J. Wang H.P. Lu F. Carlson B.E. Sigler D.R. Analysis of Al-steel resistance spot welding process by developing a fully coupled multi-physics simulation model. Int. J. Heat Mass Transf. 2015 89 1061 1072 10.1016/j.ijheatmasstransfer.2015.05.086
    [Google Scholar]
  12. Chen C. Kong L. Wang M. Haselhuhn A.S. Sigler D.R. Wang H-P. Carlson B.E. The robustness of Al-steel resistance spot welding process. J. Manuf. Process. 2019 43 300 310 10.1016/j.jmapro.2019.02.030
    [Google Scholar]
  13. Wan Z. Wang H.-P. Chen N. Wang M. Carlson B. E. Characterization of intermetallic compound at the interfaces of Al-steel resistance spot welds 2017 242 12 23 10.1016/j.jmatprotec.2016.11.017
    [Google Scholar]
  14. Hussein S.A. Tahir A.S.M. Hadzley A.B. Characteristics of aluminum-to-steel joint made by friction stir welding: A review. Mater. Today Commun. 2015 5 32 49 10.1016/j.mtcomm.2015.09.004
    [Google Scholar]
  15. Guo S. Effect of beam offset on the characteristics of copper/304 stainless steel electron beam welding 128 205 212 10.1016/j.vacuum.2016.03.034
    [Google Scholar]
  16. Chen S. Huang J. Xia J. Zhao X. Lin S. Influence of processing parameters on the characteristics of stainless steel/copper laser welding. J. Mater. Process. Technol. 2015 222 43 51 10.1016/j.jmatprotec.2015.03.003
    [Google Scholar]
  17. Velu M. Bhat S. Metallurgical and mechanical examinations of steel–copper joints arc welded using bronze and nickel-base superalloy filler materials. Mater. Des. 2013 47 793 809 10.1016/j.matdes.2012.12.073
    [Google Scholar]
  18. Zhang H. Jiao K.X. Zhang J.L. Liu J. Microstructure and mechanical properties investigations of copper-steel composite fabricated by explosive welding. Mater. Sci. Eng. A 2018 731 278 287 10.1016/j.msea.2018.06.051
    [Google Scholar]
  19. Kore S.D. Date P.P. Kulkarni S.V. Kumar S. Rani D. Kulkarni M.R. Desai S.V. Rajawat R.K. Nagesh K.V. Chakravarty D.P. Application of electromagnetic impact technique for welding copper-to-stainless steel sheets. Int. J. Adv. Manuf. Technol. 2011 54 9-12 949 955 10.1007/s00170‑010‑2981‑z
    [Google Scholar]
  20. Gladkovsky S.V. Kuteneva S.V. Sergeev S.N. Microstructure and mechanical properties of sandwich copper/steel composites produced by explosive welding. Mater. Charact. 2019 154 294 303 10.1016/j.matchar.2019.06.008
    [Google Scholar]
  21. Zhang H. Jiao K.X. Zhang J.L. Liu J. Experimental and numerical investigations of interface characteristics of copper/steel composite prepared by explosive welding. Mater. Des. 2018 154 140 152 10.1016/j.matdes.2018.05.027
    [Google Scholar]
  22. Chen S. Zhang M. Huang J. Cui C. Zhang H. Zhao X. Microstructures and mechanical property of laser butt welding of titanium alloy to stainless steel. Mater. Des. 2014 53 504 511 10.1016/j.matdes.2013.07.044
    [Google Scholar]
  23. Wang T. Zhang B. Feng J. Influences of different filler metals on electron beam welding of titanium alloy to stainless steel. Trans. Nonferrous Met. Soc. China 2014 24 1 108 114 10.1016/S1003‑6326(14)63034‑X
    [Google Scholar]
  24. Lazurenko D.V. Bataev I.A. Mali V.I. Lozhkina E.A. Esikov M.A. Bataev V.A. Structural transformations occurring upon explosive welding of alloy steel and high-strength titanium. Phys. Met. Metallogr. 2018 119 5 469 476 10.1134/S0031918X18050095
    [Google Scholar]
  25. Chu Q. Zhang M. Li J. Yan C. Experimental and numerical investigation of microstructure and mechanical behavior of titanium/steel interfaces prepared by explosive welding. Mater. Sci. Eng. A 2017 689 323 331 10.1016/j.msea.2017.02.075
    [Google Scholar]
  26. Cheepu Muralimohan Ashfaq M. Muthupandi V. A new approach for using interlayer and analysis of the friction welding of titanium to stainless steel 70 10 2591 2600 10.1007/s12666‑017‑1114‑x
    [Google Scholar]
  27. Li L. Tan C. Chen Y. Guo W. Song F. Comparative study on microstructure and mechanical properties of laser welded–brazed Mg/mild steel and Mg/stainless steel joints. Mater. Des. 2013 43 59 65 10.1016/j.matdes.2012.06.057
    [Google Scholar]
  28. Casalino G. Guglielmi P. Lorusso V.D. Mortello M. Peyre P. Sorgente D. Laser offset welding of AZ31B magnesium alloy to 316 stainless steel. J. Mater. Process. Technol. 2017 242 49 59 10.1016/j.jmatprotec.2016.11.020
    [Google Scholar]
  29. Liu L. Xiao L. Feng J.C. Tian Y.H. Zhou S.Q. Zhou Y. The mechanisms of resistance spot welding of magnesium to steel. Metall. Mater. Trans., A Phys. Metall. Mater. Sci. 2010 41 10 2651 2661 10.1007/s11661‑010‑0333‑0
    [Google Scholar]
  30. Jana S. Hovanski Y. Grant G. J. Friction stir lap welding of magnesium alloy to steel: A preliminary investigation 41 12 3173 3182 10.1007/s11661‑010‑0399‑8
    [Google Scholar]
  31. Xie Y. Huang J. Su J. Luo Y. Du H. Fan D. Effect of nickel interlayer on laser welding of copper/titanium dissimilar metal joint. J. Mater. Res. Technol. 2023 27 4416 4429 10.1016/j.jmrt.2023.10.204
    [Google Scholar]
  32. Zhao Y. Wang W. Yan K. Liu C. Zou J. Microstructure and properties of Cu/Ti laser welded joints. J. Mater. Process. Technol. 2018 257 244 249 10.1016/j.jmatprotec.2018.03.001
    [Google Scholar]
  33. Aydın K. Kaya Y. Kahraman N. Experimental study of diffusion welding/bonding of titanium to copper. Mater. Des. 2012 37 356 368 10.1016/j.matdes.2012.01.026
    [Google Scholar]
  34. Cao R. Feng Z. Chen J.H. Microstructures and properties of titanium–copper lap welded joints by cold metal transfer technology. Mater. Des. 2014 53 192 201 10.1016/j.matdes.2013.06.030
    [Google Scholar]
  35. Wang J. Li X. Yan H. Wang X. Wang Y. Research on titanium-copper explosive welding interface with different welding parameters. Int. J. Adv. Manuf. Technol. 2022 122 9-10 3595 3606 10.1007/s00170‑022‑10102‑9
    [Google Scholar]
/content/journals/eng/10.2174/0118722121310074240927143045
Loading
/content/journals/eng/10.2174/0118722121310074240927143045
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: dissimilar metals ; fusion welding ; Laser welding ; heat ; alloy ; friction
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test