Skip to content
2000
image of Revolutionizing Deep Learning: A Comprehensive Exploration and Comparison of Cutting-edge Data Augmentation Techniques

Abstract

As the demand for resilient deep learning models in medical imaging grows, the importance of data augmentation becomes increasingly evident. This study provides a comprehensive comparative analysis of advanced data augmentation techniques applied to a skin melanoma dataset. Method: Through rigorous experimentation and evaluation, we aim to demonstrate the effectiveness of these methods in enhancing model generalization and reducing overfitting. The performance metrics selected, including accuracy, precision, recall, and F1-score, were chosen based on their relevance to assessing model robustness and generalization capability. Results: Our findings offer valuable insights into the strengths and limitations of various advanced data augmentation techniques, aiding researchers and practitioners in making informed choices tailored to their specific applications. Conclusion: Additionally, this study reviews several patents related to data augmentation in deep learning, ensuring that our approach is grounded in current technological advancements.

Loading

Article metrics loading...

/content/journals/eng/10.2174/0118722121339343240910064504
2024-10-09
2024-11-26
Loading full text...

Full text loading...

References

  1. Abdulkareem I.M. Khalid A.A. Omran N.A. Proposed approach for object detection and recognition by deep learning models using data augmentation. Int J Biomed Eng 2024 20 05 31 43 10.3991/ijoe.v20i05.47171
    [Google Scholar]
  2. Mumuni A. Mumuni F. Data augmentation: A comprehensive survey of modern approaches. Array (N. Y.) 2022 16 100258 10.1016/j.array.2022.100258
    [Google Scholar]
  3. Naoumi S. Bazzi A. Bomfin R. Chafii M. Complex neural network based joint AoA and AoD estimation for bistatic ISAC. IEEE J. Sel. Top. Signal Process. 2024 1 15 10.1109/JSTSP.2024.3387299
    [Google Scholar]
  4. Delamou M. Bazzi A. Chafii M. Amhoud E.M. Deep learning-based estimation for multitarget radar detection. IEEE 97th Vehicular Technology Conference (VTC2023-Spring), Florence, Italy, 2023, pp. 1-5. 10.1109/VTC2023‑Spring57618.2023.10200157
    [Google Scholar]
  5. Naoumi S. Bazzi A. Bomfin R. Chafii M. Deep learning-enabled angle estimation in bistatic ISAC systems. IEEE Globecom Workshops, 2023, pp. 854-859. 2023 854 859 10.1109/GCWkshps58843.2023.10464930
    [Google Scholar]
  6. Zhong Z. Zheng L. Kang G. Li S. Yang Y. Random erasing data augmentation Proceedings of the AAAI Conference on Artificial Intelligence, 2020, pp. 13001-13008. 10.1609/aaai.v34i07.7000.
    [Google Scholar]
  7. Yun S. Han D. Oh S.J. Chun S. Choe J. Yoo Y. CutMix: Regularization strategy to train strong classifiers with localizable features. IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea (South), 2019, pp. 6022-6031. 10.1109/ICCV.2019.00612
    [Google Scholar]
  8. Liang D. Yang F. Zhang T. Yang P. Understanding mixup training methods. IEEE Access 2018 6 58774 58783 10.1109/ACCESS.2018.2872698
    [Google Scholar]
  9. Zhang H. Cisse M. Dauphin Y.N. Lopez-Paz D. mixup: Beyond empirical risk minimization arXiv 2017 10.48550/arXiv.1710.09412.
    [Google Scholar]
  10. Pereira E. Carneiro G. Cordeiro F.R. A study on the impact of data augmentation for training convolutional neural networks in the presence of noisy labels. 35th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), Natal, Brazil, 2022, pp. 25-30. 10.1109/SIBGRAPI55357.2022.9991791
    [Google Scholar]
  11. Shorten C. Khoshgoftaar T.M. A survey on image data augmentation for deep learning. J. Big Data 2019 6 1 60 10.1186/s40537‑019‑0197‑0
    [Google Scholar]
  12. Sun X. Wu D. Boulet B. Analyzing the benefits of data augmentation for smart grid anomaly detection and forecasting. 2023 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), 2023, pp.416-422. 10.1109/CCECE58730.2023.10288888
    [Google Scholar]
  13. Vo T.M. Vo T.T. Phan T.T. Nguyen H.T. Tran D.T. Data augmentation techniques evaluation on ultrasound images for breast tumor segmentation tasks. Deep Learning and Other Soft Computing Techniques 2023 153 164 10.1007/978‑3‑031‑29447‑1_14
    [Google Scholar]
  14. Yigit G. Amasyali M.F. Exploring the benefits of data augmentation in math word problem solving. 2023 International Conference on Innovations in Intelligent Systems and Applications (INISTA), 2023, pp.1-6. 10.1109/INISTA59065.2023.10310417
    [Google Scholar]
  15. KÜÇÜK E.N. UĞur A. Effects of data augmentation techniques on classification performance in knee MRIs 5th International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), 2023, pp. 1–6. 10.1109/HORA58378.2023.10155785
    [Google Scholar]
  16. Chica J. Salamea C. Narvaez E. Romero D. Data augmentation techniques applied to improve a Vitiligo database. 7th International Conference on Science, Technology and Innovation for Society, CITIS, 2022, pp.11-20 10.1007/978‑981‑16‑4126‑8_2
    [Google Scholar]
  17. Heise D. Bear H.L. Evaluating the potential and realized impact of data augmentations. IEEE Symposium Series on Computational Intelligence (SSCI), Mexico City, Mexico, 2023, pp. 1112-1119. 10.1109/SSCI52147.2023.10371989
    [Google Scholar]
  18. AbuSalim S. Zakaria N. Mokhtar N. Mostafa S.A. Abdulkadir S.J. Data augmentation on intra-oral images using image manipulation techniques. International Conference on Digital Transformation and Intelligence (ICDI), Kuching, Sarawak, Malaysia, 2022, pp. 117-120. 10.1109/ICDI57181.2022.10007158
    [Google Scholar]
  19. Shlens J. Quoc V. Dogus Cubuk E. Zoph B. Training neural networks using data augmentation policies. US Patent 20240273410 2023
  20. Rıza Hallaç I. Akbaba D. Gökçe G. Adapting object detection models for multi-target detection utilizing radars. ALKU J Sci 2024 6 2 165 173
    [Google Scholar]
  21. A target detection method of automotive millimeter wave radar based on deep learning. 2024
    [Google Scholar]
  22. Ernest Mashanda N. Watson N. Berndt R. Abdul Gaffar M.Y. Deep learning and quantization for accurate and efficient multi-target radar inference of moving targets. Int J Elect Comput Eng (IJECE) 2024 14 3 3187 10.11591/ijece.v14i3.pp3187‑3196
    [Google Scholar]
  23. Deng K. Zhou J. Zhou Z. Multitarget detection for single-base co-prime MIMO radar. Fifteenth International Conference on Signal Processing Systems (ICSPS 2023), 2024. 10.1117/12.3023181
    [Google Scholar]
  24. A. Zaimbashi, and M.M. Nayebi, Multitarget detection in analog TV-based passive radar systems. Multistatic Passive Radar Target Detection: A detection theory framework, 2023. http://dx.doi.org/10.1049/SBRA561E_ch 2024
    [Google Scholar]
  25. Liu Y. Al-Nahhal I. Dobre O.A. Wang F. Deep-learning-based channel estimation for IRS-assisted ISAC system. IEEE Global Communications Conference, Rio de Janeiro, Brazil, 2022, pp. 4220-4225. 10.1109/GLOBECOM48099.2022.10001672
    [Google Scholar]
  26. Leyva L. Castanheira D. Silva A. Gameiro A. Two-stage estimation algorithm based on interleaved OFDM for a cooperative bistatic ISAC scenario. IEEE 95th Vehicular Technology Conference: (VTC2022-Spring), Helsinki, Finland, 2022, pp. 1-6. 10.1109/VTC2022‑Spring54318.2022.9860521
    [Google Scholar]
  27. Alam A.M. Ayna C.O. Biswas S. Rogers J.T. Ball J.E. Gurbuz A.C. Deep learning-based direction-of-arrival estimation with covariance reconstruction. IEEE Radar Conference (RadarConf24), Denver, CO, USA, 2024, pp. 1-6. 10.1109/RadarConf2458775.2024.10548988
    [Google Scholar]
  28. Qi Q. Chen X. Huang C. Zhong C. Yuen C. Zhang Z. DL-based joint waveform and beamforming design for integrated sensing and communication. IEEE Globecom Workshops (GC Wkshps), Kuala Lumpur, Malaysia, 2023, pp. 110-116. 10.1109/GCWkshps58843.2023.10464912
    [Google Scholar]
  29. Wang Z. Wong V.W.S. Deep learning for ISAC-enabled end-to-end predictive beamforming in vehicular networks. IEEE International Conference on Communications, Rome, Italy, 2023, pp. 5713-5718 10.1109/ICC45041.2023.10279351
    [Google Scholar]
  30. Wang J. Ding W. Cui B. Shao J. Weng D. Chen W. Deep learning-driven automatic estimation of smartphone installation angles for vehicle navigation. IEEE/ION Position, Location and Navigation Symposium (PLANS), 2023, pp.137-142. 10.1109/PLANS53410.2023.10140107
    [Google Scholar]
  31. SIIM-ISIC Melanoma Classification. 2020 Available from: https://www.kaggle.com/competitions/siim-isic-melanoma-classification
/content/journals/eng/10.2174/0118722121339343240910064504
Loading
/content/journals/eng/10.2174/0118722121339343240910064504
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: small dataset ; mixup ; random erasing ; cutmix ; accuracy ; Augmentation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test