Skip to content
2000
Volume 19, Issue 6
  • ISSN: 1872-2121
  • E-ISSN: 2212-4047

Abstract

Background

Bearings are a kind of precision mechanical basic parts that are widely used in aerospace, automobile, home appliances and industrial fields. At the same time, bearings are also one of the most important wear parts in mechanical equipment. The research and analysis of bearing life are of great significance as they directly affect the efficiency and safety of the equipment.

Objective

By analyzing and discussing the patents on bearing life testing devices, some valuable conclusions have been drawn, and the development direction of bearing life research and bearing testing devices is speculated.

Methods

Various bearing life testing devices, such as life testing machines, performance testing machines and simulation testing machines, are observed, and the influence of bearing life testing devices on bearing quality assessment and product development is analyzed. The patents about the bearing life testing device are investigated in conjunction with the bearing life data signal acquisition method.

Results

The analysis of bearing life detection devices in bearing fatigue life and performance failure in the bearing failure detection collection method primarily uses vibration detection method, while bearing life detection devices primarily focus on structural innovation and detection method innovation to improve the accuracy of bearing detection.

Conclusion

The development of the bearing detection device and the advancement of test software, multi-species, small batch, high precision, multiple control, group control, simulation of working conditions, and special development work in tandem to address technical issues and improve bearing detection device functionality.

Loading

Article metrics loading...

/content/journals/eng/10.2174/0118722121262457230927092639
2023-10-30
2025-07-04
Loading full text...

Full text loading...

References

  1. ZhouJ.L. ZhuL.J. ChenX.Y. ZhangP.Z. LiuX.J. Design of strengthening contact fatigue life testing machine for three points contact pure rolling bearing balls.Zhongguo Jixie Gongcheng200471012
    [Google Scholar]
  2. WangY.K. WangD.C. KangX.M. Summary of rolling bearing fatigue life testing machineProceedings of the First Pearl River Science and Technology Association Forum, Guangdong, China, 2011, pp.98-103.
    [Google Scholar]
  3. HuZ.Q. LiW. YangY.L. QiX.W. LiuC.X. Review on development of aerospace joint bearing life testing machine.Bearing.2015115763
    [Google Scholar]
  4. LiX.L. ZhangY.P. ZhangY.L. CaoM.L. LiJ.P. Development trend of bearing fatigue life test technology.Bearing2005242-43+38
    [Google Scholar]
  5. ZhangW. ZhangJ.H. QingY.J. FuL.Y. Design of a measurement and control system for bearing testing machines based on lab view.Auto. App.200884346
    [Google Scholar]
  6. GuoL. RenX.Z. ShanF.B. Development of bearing test technology in China.Bearing.2020124245
    [Google Scholar]
  7. LiX.L. YinJ.J. XieY.Z. LiuH.Y. ZhangY.H. ZhangX.X. Current status and development of fatigue life and reliability enhancement testing technology for rolling bearings.Modern Parts.200726671
    [Google Scholar]
  8. LiX.L. LiJ.Q. ZhangY.P. Current situation and development of rapid life test of rolling bearing.Bearing.2006124447
    [Google Scholar]
  9. LiX.L. LiuX.C. LiG. Technological innovation of bearing enterprises.Bearing Industry.20074811
    [Google Scholar]
  10. LiX.L. YinJ.J. XieY.Z. LiuH.Y. ZhangY.H. ZhaoX.X. WuB.J. ChenB.S. Status and development of fatigue life and reliability strengthening test technology for rolling bearings.Modern Parts and Components.200726671
    [Google Scholar]
  11. LiX.L. LiJ.Q. ZhangY.P. ChengD.S. ZhangY.L. CaoM.L. LiJ.P. Fatigue life-strengthening test of ABLT series bearing is imperative.Modern Parts and Components.200644245
    [Google Scholar]
  12. LiX.L. ZhangY.L. CaoM.L. Research on fatigue life and reliability strengthening test system of rolling bearing.Test Technology and Testing Machine.200321920
    [Google Scholar]
  13. LiX.L. ZhangY.L. CaoM.L. ZhangY.L. Practice of monitoring and diagnosis technology for life and reliability testing of rolling bearings.Equip. Manag.Mainten.201414750
    [Google Scholar]
  14. LiuS.Y. Bearing testing machine and test technology.Bearing.201185559
    [Google Scholar]
  15. OcakH. Fault detection, diagnosis and prognosis of rolling element bearings: Frequency domain methods and hidden Markov modelingM.S. thesis, Case Western Reserve University, U.S.A.2004
    [Google Scholar]
  16. ZhangY.L. LiX.L. The automatic monitoring system of fatigue life strengthening testing machine for rolling bearing.Bearing.1999113941
    [Google Scholar]
  17. LiX.L. Material progress and life extension technology of rolling bearing.Bearing.19951129
    [Google Scholar]
  18. ISO 281-2010, Rolling bearings dynamic load ratings and rating life for universally loaded bearings [S].Available from: https://www.iso.org/obp/ui/#iso:std:iso:281:ed-2:v1:en
  19. ZhangX.H. KangJ.S. LiuZ.J. LiZ.Y. Bearing fault diagnosis and prediction method.Bearing.201114852
    [Google Scholar]
  20. HanJ.W. KimJ.G. MoonS.G. ShinI.K. ChoS.J. ShinM.S. ChungW.J. SonG-H. ParkY.J. Failure life prediction of hub bearing in composite tooling.Appl. Sci.20201014470710.3390/app10144707
    [Google Scholar]
  21. PanY.N. ChenJ. LiX.L. Bearing performance degradation assessment based on lifting wavelet packet decomposition and fuzzy c-means.Mech. Syst. Signal Process.200942559566
    [Google Scholar]
  22. QianY. YanR. GaoR.X. A multi-time scale approach to remaining useful life prediction in rolling bearing.Mech. Syst. Signal Process.20178354956710.1016/j.ymssp.2016.06.031
    [Google Scholar]
  23. ZhangJ. FangB. HongJ. ZhuY. Effect of preload on ball-raceway contact state and fatigue life of angular contact ball bearing.Tribol. Int.201711436537210.1016/j.triboint.2017.04.029
    [Google Scholar]
  24. LiF. HuW. MengQ. ZhanZ. ShenF. A new damage-mechanics-based model for rolling contact fatigue analysis of cylindrical roller bearing.Tribol. Int.201812010511410.1016/j.triboint.2017.12.001
    [Google Scholar]
  25. KlausenA. FolgerR.W. KjellG.R. Accelerated bearing lifetime test rig development for low-speed data acquisition Modeling..Identif. Cont. A Norweg. Res. Bull.201738143156
    [Google Scholar]
  26. GabelliA. Morales-EspejelG.E. A model for hybrid bearing life with surface and subsurface survival.Wear2019422-42322323410.1016/j.wear.2019.01.050
    [Google Scholar]
  27. KimY. KimH. MoonJ. KimJ. JungS. A study on the estimation of bearing life of electric motor using ISO 281 and accelerated life test.2017 2nd International Conference on System Reliability and Safety (ICSRS), Milan, Italy, 2017, pp.223-226.10.1109/ICSRS.2017.8272825
    [Google Scholar]
  28. WangY.Y. GuoL. LiuW.S. HouJ. Centralized measurement and control system of bearing detection device based on NI PXIe.Bearing.201894952
    [Google Scholar]
  29. HuX.Z. LiN. Anomaly detection and remaining useful lifetime estimation based on degradation state for bearingsChinese Control Conference (CCC), Liao Ning, China, 2020, pp.793-798.10.23919/CCC50068.2020.9188410
    [Google Scholar]
  30. YuJ. Adaptive hidden markov model-based online learning framework for bearing faulty detection and performance degradation monitoring.Mech. Syst. Signal Process.20178314916210.1016/j.ymssp.2016.06.004
    [Google Scholar]
  31. YaoX. HuangT. LiuS. Research on fault feature identifying and acceleration law of space ball bearing based on temperature and rotational speed.2019 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (QR2MSE), Zhangjiajie, China, 2019, pp.350-355.10.1109/QR2MSE46217.2019.9021238
    [Google Scholar]
  32. LiX.L. ZhangY.L. LuS.J. LiJ.P. Current status and development of rolling bearing life testing machines and their testing techniques.Test. Technol. Test. Mach.2007316
    [Google Scholar]
  33. WangH.L. Railway bearing testing machine.Harbin Bearing.202021820
    [Google Scholar]
  34. HuangW. SunL.L. DingJ.F. Statics analysis and structural optimization design of cantilever beam of wind power spindle bearing tester.Electromech. Inform.2019249697
    [Google Scholar]
  35. GaoJ. ShenJ. Establishment of bearing residual life model and life budget.J. Beij.Inst. Petrol. Chem. Technol.201211012
    [Google Scholar]
  36. LinX.L. LiJ.Q. ZhangY.P. The Fatigue life strengthening test of ABLT series bearings is imperative.Modern Parts.200644245
    [Google Scholar]
  37. XueY. ShenN. DouD.Y. Fault diagnosis of rolling bearings based on one-dimensional convolutional neural networks.Bearing.202144854
    [Google Scholar]
  38. ZhangW. TangJ. Test method for life and reliability of rolling bearings.Bearing.2010115558
    [Google Scholar]
  39. ZhangF.S. LiuT.T. LiuJ.T. CuiF.K. Research on bearing life prediction based on three parameters of Weibull distribution.Adv. Mat. Res.201013616216610.4028/www.scientific.net/AMR.136.162
    [Google Scholar]
  40. YuA.D. Fatigue life prediction and reliability analysis of aircraft engine main bearingM.S. thesis, University of Electronic Science and Technology of ChinaChengdu, China2022
    [Google Scholar]
  41. LiS.H. WenZ.H. Research on the application of comprehensive online monitor-ing technology in bearing fault diagnosis.Measurem. Cont. Technol.2022414090
    [Google Scholar]
  42. CenJ. XuB.J. ZhangQ.H. ZhuY.J. Application of immune detector in bearing fault diagnosis based on evidence theory.Bearing2009842-45+49
    [Google Scholar]
  43. LiH.F. ZhangQ.H. Research on a transmission-bearing fault diagnosis based on the adaptive immune detector.Mechan. Elect. Eng.20133013501353
    [Google Scholar]
  44. HeB. HeT.T. ChenY.L. LiK. Fault diagnosis and residual life prediction analysis of high-speed locomotive bearing.Electronic World.20217104106
    [Google Scholar]
  45. ChenC. LiB. GuoJ. LiuZ. QiB. HuaC. Bearing life prediction method based on the improved FIDES reliability model.Reliab. Eng. Syst. Saf.202222710874610.1016/j.ress.2022.108746
    [Google Scholar]
  46. CaesarendraW. TjahjowidodoT. KosasihB. TieuA.K. CaoH.R. Integrated condition monitoring and prognosis method for incipient defect detection and remaining life prediction of low-speed slew bearings.Machines2017521110.3390/machines5020011
    [Google Scholar]
  47. ZangL.H. LiZ.G. SunJ.Y. FengW.L. YangT.L. ZhangX. WangH.Q. Multiple sets of bearing life running test equipment.Sci. Technol.Innov. Appl.2019212930
    [Google Scholar]
  48. YanM.M. XieL.Y. MuhammadI. YangX.Y. LiuY.Y. An effective method for remaining useful life estimation of bearings with elbow point detection and adaptive regression models.ISA Trans.202134799099
    [Google Scholar]
  49. Morales-EspejelG.E. GabelliA. A model for rolling bearing life with surface and subsurface survival: Surface thermal effects.Wear2020460-46120344610.1016/j.wear.2020.203446
    [Google Scholar]
  50. FingerleA. HochreinJ. OttoM. StahlK. Theoretical study on the influence of planet gear rim thickness and bearing clearance on calculated bearing life.J. Mech. Des.20193142
    [Google Scholar]
  51. YuY. ZhaoW. Study on water-lubricated graphite sliding bearing performance test.Adv. Mat. Res.2013655-65763663910.4028/www.scientific.net/AMR.655‑657.636
    [Google Scholar]
  52. ZhouJ.L. WuG.Q. ZhangW.W. GuL.L. ChengH.Z. CaoY.P. LiuS.S. XuX.Q. ZhangX.D. QianS.Q. MaoJ.F. LiX. WangX.P. Bearing life testing machine.CN Patent 107014615A2017
    [Google Scholar]
  53. HuD.Y. A variable-load bearing service life testing device.CN Patent 204373911U2014
    [Google Scholar]
  54. ZhangZ.M. GaoP. FuG.Q. LiuG.D. An antifriction bearing life testing machine.CN Patent 207007512U2017
    [Google Scholar]
  55. ZhangT.X. CuiJ. Rolling bearing service life test bench with multi-dimensional excitation load.CN Patent 112098089A2020
    [Google Scholar]
  56. LiW.G. LiZ. WangC.B. LiuS.Q. LiuZ.Y. HuangW.B. LiuX. A radial loading device of the multifunctional bearing testing machine.CN Patent 209727461U2019
    [Google Scholar]
  57. XuF. A bearing life test equipment.CN Patent 111855205A2020
    [Google Scholar]
  58. WangW. FengX. LiuC.R. YanY.L. A service life testing machine of rocker arm bearing.CN Patent 109682599A2019
    [Google Scholar]
  59. SunY.S. YinF.G. FengS.Y. WuZ.L. CangS.L.F.Y. SunL.X. An improved bearing life testing machine tool.CN Patent 111649942A2020
    [Google Scholar]
  60. TaguchiI. YoshidaM. A radial rolling-bearing testing device.EP Patent 2982956B12017
    [Google Scholar]
  61. WuH.Y. JianX.S. ChenQ. ZhuZ.N. A bearing life acceleration test device.CN Patent 111397900A2020
    [Google Scholar]
  62. KoikeT. FukushimaY. ShibuyaY. A bearing device.WO Patent 2020090520A12020
    [Google Scholar]
  63. YuanH.L. An engine rocker bearing life testing machine.CN Patent 114739668A2022
    [Google Scholar]
  64. MaW.Q. A rolling bearing sealing performance detection device.CN Patent 210108636U2020
    [Google Scholar]
  65. RongG.X. A bearing sealing performance detection deviceCN Patent 210221493U2020
    [Google Scholar]
  66. GaoP.F. JiaR.F. ZhangS.Y. GouM.M. A bearing vibration detection device.CN Patent 209198086U2019
    [Google Scholar]
  67. WuY.H. BaoZ.G. GaoL.F. SunJ. WeiH. ZhaoX.X. ShanZ. TianJ.X. GuoJ.C. An ultralow-temperature vacuum sealing structure and a full-ceramic rolling bearing performance testing device.CN Patent 111896258A2020
    [Google Scholar]
  68. JiangW. SunY.Y. TangX.X. ZhangQ.L. JiangJ.G. JiangW. A precision bearing life test device.CN Patent 216594164U2022
    [Google Scholar]
  69. FangG. A bearing vibration detector adopting a photovoltaic panelCN Patent 209296136U2019
    [Google Scholar]
  70. ZhouY. ZhengY.M. XiaoY. WangT.X.X. TangY. PengS. HuangY.X. TangB. A horizontal high-speed testing device for the spiral seal of horizontal cone bit bearing.US Patent 20180348082A12018
    [Google Scholar]
  71. ChenL. L. LiZ. N. A ball bearing lubricating grease low-temperature torque testing machine.CN211954516U2020
    [Google Scholar]
  72. OkumuraH. CaoY. SuzukiK. A bearing device.JP Patent 2020051467A2020
    [Google Scholar]
  73. YukawaK. NishibataS. A bearing state monitoring method and a bearing state monitoring device.WO Patent 2019221251A12019
    [Google Scholar]
  74. ZhuJ.C. QianH.W. Diesel engine main bearing lubrication wear condition monitoring device and method.CN Patent 111473750A2020
    [Google Scholar]
  75. GuptaL.A. PeroulisD. Wireless temperature sensor for condition monitoring of bearings operating through thick metal plates.IEEE Sens. J.20131362292229810.1109/JSEN.2013.2251970
    [Google Scholar]
  76. LiZ. Failure research of tip-pad sliding bearingM.S. thesis, Shandong University, Jinan, China2015
    [Google Scholar]
  77. LiuR.C. ZuoH.F. Research on injection electrostatic monitoring method of rolling bearing fault under variable working conditions.Chin. J. Scient. Inst.20143523482355
    [Google Scholar]
  78. HaseA. MishinaH. WadaM. Fundamental study on early detection of seizure in journal bearing by using acoustic emission technique.Wear2016346-34713213910.1016/j.wear.2015.11.012
    [Google Scholar]
/content/journals/eng/10.2174/0118722121262457230927092639
Loading
/content/journals/eng/10.2174/0118722121262457230927092639
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test