Skip to content
2000
Volume 19, Issue 6
  • ISSN: 1872-2121
  • E-ISSN: 2212-4047

Abstract

Selective laser melting technology has the advantages of rapid manufacture, high precision, and the ability to produce fine structures. Medical implants made using selective laser melting technology have high precision and excellent mechanical properties that meet the needs of patients and make medical implants more promising in the medical field. This paper reviews the progress of research on selective laser melting of medical implants. This paper draws on numerous journals and patents. This paper firstly reviews the classification of medical implants, mainly including hip implants, knee implants, maxillo-craniofacial implants and spinal implants. Secondly, the common porous structure design methods, the effect of porous structure on the mechanical properties of the implant, and the effect of pore structure on the growth properties of porous titanium alloy bone are summarised. Finally, the process of manufacturing titanium alloy implants by selective laser melting technology is described. Medical implants made by selective laser melting have excellent properties and are widely used in the medical field. Compared to traditional mechanical processing methods, selective laser melting technology can better preserve the properties of the raw material, while providing higher precision and faster preparation. However, selective laser melting has a number of drawbacks, including differences in material microstructure, reduced strength and plasticity, inadequate surface treatment, and enhanced safety and reliability. Further scientific research and technological innovation are needed to solve these problems. In the future, as technology continues to innovate and develop, SLM technology will become more mature, resulting in implants that are more natural, suitable for the body and long-lasting. At the same time, as implants are personalised, there will be a huge market demand and development opportunities. In addition, the continuous improvement of regulatory policies is expected to further promote the market development and application of medical implants.

Loading

Article metrics loading...

/content/journals/eng/10.2174/0118722121268952231020111446
2023-10-30
2025-07-13
Loading full text...

Full text loading...

References

  1. CarlaP. Use of scleral ossicles integrated in 3D reticles for the recovery of bone injuries of critical size in the healthcare and veterinary sector.W. O. Patent 20221131352022
    [Google Scholar]
  2. SaadatmaneshH. ZarkoobM. Compositions and methods for treating bone fractures.U. S. Patent 20222654282022
    [Google Scholar]
  3. OlegovichZ. V. AlekseevichA. A. AnatolevichG. A. Composition for the treatment of chronic osteomyelitis.R. U. Patent 2780114C12022
    [Google Scholar]
  4. HIROYUKIT. Prognosis diagnosis method or prognosis diagnosis assisting method for bone tumor.J. P. Patent 20221710112022
    [Google Scholar]
  5. YuD.M. WeiX.H. WuH. LiuY.C. LiX.K. GuoZ. 3D printed medical metal implants.J. Metal World202222244248
    [Google Scholar]
  6. LuC.Y. ZhangL.F. WangP.T. WangX.H. Research progress of 3D printing technology in bone defect repair.J. China Med. Guide20212328690
    [Google Scholar]
  7. WalterP. RudolfJ. JohannesL. JörE. Material feeding device for a stereo lithographyapparatus.E. P. Patent 33300622018
    [Google Scholar]
  8. SHANH.F. FDM 3D Printing of optical lens with high clarity and mechanical strength.U. S. Patent 20222743182022
    [Google Scholar]
  9. DinescuL. Digitally produced label transfer using selective laser sintering (SLS) methods.U. S. Patent 114079242022
    [Google Scholar]
  10. TRAVERSJ. Coloured layered object manufacturing, (LOM), system.G. B. Patent 25022952013
    [Google Scholar]
  11. NaukaK. JangamJ.S.D. ChangS. Selective laser melting (SLM) additive manufacturing.U. S. Patent 114005442022
    [Google Scholar]
  12. EliazN. SvetlizkyD. SchoenungJ. LaverniaE.J. ZhouY. ZhengB. Deposition of aluminum 5xxx alloy using laser engineered net shaping.U. S. Patent 20230334942023
    [Google Scholar]
  13. LinF. ZhouB. YanW. LiH.X. ZhangL. ZhangT. GuoC. Additive manufacturing apparatus utilizing combined electron beam selective melting and electron beam cutting.U. S. Patent 114850432022
    [Google Scholar]
  14. LiF.Z. An overview of the development and application of China’s additive manufacturing industry.J. Ind. Technol. Innov.20174415
    [Google Scholar]
  15. ChenK. HaoJ. W. SongB. GuoX. J. JiX. Y. Exploring the development and application of additive manufacturing technologies.J. World Market Manufac. Technol. Equip.202017166164
    [Google Scholar]
  16. PuY.S. WangB.Q. ZhangL.G. Metal 3D Printing Technology.Surf. Technol.20184737884
    [Google Scholar]
  17. KoutiriI. PessardE. PeyreP. AmlouO. De TerrisT. Influence of SLM process parameters on the surface finish, porosity rate and fatigue behavior of as-built Inconel 625 parts.J. Mater. Process. Technol.201825553654610.1016/j.jmatprotec.2017.12.043
    [Google Scholar]
  18. MaR.L. PengC.Q. WangR.C. CaiZ.Y. Progress in the study of selected area laser melting of aluminium alloys.J. Chinese J. Nonf. Metals2020301227732788
    [Google Scholar]
  19. LiZ.P. XueJ.B. Progress in the study of the effect of 3D printed porous titanium alloy pore structure on osteoinductive properties.J. Chinese J. Orthop. Clin. Basic Res.2019116358363
    [Google Scholar]
  20. XiaZ.Y. SunJ.J. LiJ.W. LiS.S. LongJ. Research progress on porous titanium for medical use.J. Adv. Modern Biomed.2015152753805383
    [Google Scholar]
  21. XiaT.N. ShangG.N. Research progress on the current status of 3D printing technology in orthopaedic applications.J. Chinese J. Prac. Diag. Ther.2020347742744
    [Google Scholar]
  22. JiangJ.G. MaX.F. HuoB. ZhangY.D. YuX.Y. Recent advances on lower limb exoskeleton rehabilitation robot.Recent Pat. Eng.201711319420710.2174/1872212111666170614111623
    [Google Scholar]
  23. ZhenZ. WangJ. XiT.F. LiuB. The state of the art in 3D printed ti-based orthopedic implants.J. Chinese J. Biomed. Eng.2019382240251
    [Google Scholar]
  24. JunZ. YouqiangZ. WeiC. FuC. Research on prediction of contact stress of acetabular lining based on principal component analysis and support vector regression.Biotechnol. Biotechnol. Equip.202135146246810.1080/13102818.2021.1892523
    [Google Scholar]
  25. GuoF.F. RenM.J. XiG.S. YangY.F. Simulation analysis of the contact mechanics of the artificial hip joint.J. Xi’an Eng. Univ.20203429196
    [Google Scholar]
  26. FanH.Q. WangF.Y. HeR. ChenX. YangL. Preparation and preliminary clinical application of 3D printed porous tantalum prosthesis for reconstruction of acetabular bone defect.J. Army Med. Univ.2022441515161522
    [Google Scholar]
  27. PerticariniL. ZanonG. RossiS.M.P. BenazzoF.M. Clinical and radiographic outcomes of a trabecular titanium™ acetabular component in hip arthroplasty: Results at minimum 5 years follow-up.BMC Musculoskelet. Disord.201516137510.1186/s12891‑015‑0822‑926634830
    [Google Scholar]
  28. LinG. J. XuH. G. Bionic artificial femoral head 3D printing study.J. Equip. Manufac. Technol.201929466769
    [Google Scholar]
  29. GolafshanN. WillemsenK. KadumudiF.B. VorndranE. Dolatshahi-PirouzA. WeinansH. van der WalB.C.H. MaldaJ. CastilhoM. 3D‐printed regenerative magnesium phosphate implant ensures stability and restoration of hip dysplasia.Adv. Healthc. Mater.20211021210105110.1002/adhm.20210105134561956
    [Google Scholar]
  30. QuY.F. YuanX. XiaoN. Finite element analysis of the optimised design of a unicompartmental knee joint mobile prosthesisJ. Technology & Markets20233033032
    [Google Scholar]
  31. ZhaoZ. YangY. YanT. TangX. YangR. GuoW. Outcomes of fixed-hinged knee prosthesis for distal femoral osteosarcoma in skeletally immature patients: First results.J. Knee Surg.202336106807810.1055/s‑0041‑172962334187071
    [Google Scholar]
  32. ZhangY. LiuH. Safety of total knee arthroplasty in the treatment of knee osteoarthritis and its effect on postoperative pain and quality of life of patients.Contrast Media Mol. Imaging202120211610.1155/2021/695157835024014
    [Google Scholar]
  33. LuoW. HuangL. LiuH. QuW. ZhaoX. WangC. LiC. YuT. HanQ. WangJ. QinY. Customized knee prosthesis in treatment of giant cell tumors of the proximal tibia: application of 3-dimensional printing technology in surgical design.Med. Sci. Monit.2017231691170010.12659/MSM.90143628388595
    [Google Scholar]
  34. YusukeN. HideyukiK. TomomasaN. MasafumiH. HirokiK. NobutakeO. ToshiyukiO. IchiroS. TakeshiM. ToshifumiW. Mid-term clinical outcomes of a posterior stabilized total knee prosthesis for Japanese patients: A minimum follow-up of 5 years.J. Orthop. Sci.2021
    [Google Scholar]
  35. WangH. HuM. 3D printed titanium and titanium alloys in the repair of jaw defects.J. Chinese J. Geriatric Dentist.2017152117120
    [Google Scholar]
  36. ZhengL.L. ChenD. WangT. WangC. FanY.B. Three-dimensional printed scaffold for complex maxillary defects by accurate reconstruction: A biomechanical study.J. Med. Biomech.202237611011106
    [Google Scholar]
  37. ZhengJ.S. LiuX.H. ChenX.Z. JiangW.B. AbdelrehemA. ZhangS.Y. ChenM.J. YangC. Customized skull base–temporomandibular joint combined prosthesis with 3D-printing fabrication for craniomaxillofacial reconstruction: A preliminary study.Int. J. Oral Maxillofac. Surg.201948111440144710.1016/j.ijom.2019.02.02030905488
    [Google Scholar]
  38. WangY. ZhouX. F. Research front and trend of specific laser additive manufacturing techniques.J. Laser Technol.2021454475484
    [Google Scholar]
  39. SiuT.L. RogersJ.M. LinK. ThompsonR. OwbridgeM. Custom-made titanium 3-dimensional printed interbody cages for treatment of osteoporotic fracture-related spinal deformity.World Neurosurg.20181111510.1016/j.wneu.2017.11.16029223522
    [Google Scholar]
  40. MokawemM. KatzourakiG. HarmanC.L. LeeR. Lumbar interbody fusion rates with 3D-printed lamellar titanium cages using a silicate-substituted calcium phosphate bone graft.J. Clin. Neurosci.20196813413910.1016/j.jocn.2019.07.01131351704
    [Google Scholar]
  41. CostanzoR. FeriniG. BrunassoL. BonosiL. PorzioM. BenignoU.E. MussoS. GerardiR.M. GiammalvaG.R. PaoliniF. PalmiscianoP. UmanaG.E. SturialeC.L. Di BonaventuraR. IacopinoD.G. MaugeriR. The role of 3D-printed custom-made vertebral body implants in the treatment of spinal tumors: A systematic review.Life202212448910.3390/life1204048935454979
    [Google Scholar]
  42. GaoH. ZhangT. XieB. A review of recent patents on metal precision plastic forming technology.Recent Pat. Eng.2023172e12052220466310.2174/1872212116666220512123630
    [Google Scholar]
  43. LiZ. ZhuW. Recent patents on vascular stent material and its preparation.J. Recent Patents Eng.20231747785
    [Google Scholar]
  44. LiZ. WangQ. Recent patents on 3D printing technology in artificial bone printing devices, materials, and related applications.J. Recent Patents Eng.20231752435
    [Google Scholar]
  45. AhmadiS. YavariS. WauthleR. PouranB. SchrootenJ. WeinansH. ZadpoorA. Additively manufactured open-cell porous biomaterials made from six different space-filling unit cells: The mechanical and morphological properties.Materials2015841871189610.3390/ma804187128788037
    [Google Scholar]
  46. LimmahakhunS. OloyedeA. SitthiseripratipK. XiaoY. YanC. Stiffness and strength tailoring of cobalt chromium graded cellular structures for stress-shielding reduction.Mater. Des.201711463364110.1016/j.matdes.2016.11.090
    [Google Scholar]
  47. ChantarapanichN. PuttawibulP. SucharitpwatskulS. JeamwatthanachaiP. InglamS. SitthiseripratipK. Scaffold library for tissue engineering: A geometric evaluation.Comput. Math. Methods Med.2012201211410.1155/2012/40780523056147
    [Google Scholar]
  48. ChenZ. WangZ. ZhouS. ShaoJ. WuX. Novel negative poisson’s ratio lattice structures with enhanced stiffness and energy absorption capacity.Materials2018117109510.3390/ma1107109529954103
    [Google Scholar]
  49. PengW. LiuY. JiangX. DongX. JunJ. BaurD.A. XuJ. PanH. XuX. Bionic mechanical design and 3D printing of novel porous Ti6Al4V implants for biomedical applications.J. Zhejiang Univ. Sci. B201920864765910.1631/jzus.B180062231273962
    [Google Scholar]
  50. WangM.H. DuanM.D. YangZ.W. ZhangZ.Y. WangP. HanZ.Z. TPMS-based mechanical properties study of porous structures.J. Mech. Strength2022442424431
    [Google Scholar]
  51. MelchelsF.P.W. BarradasA.M.C. van BlitterswijkC.A. de BoerJ. FeijenJ. GrijpmaD.W. Effects of the architecture of tissue engineering scaffolds on cell seeding and culturing.Acta Biomater.20106114208421710.1016/j.actbio.2010.06.01220561602
    [Google Scholar]
  52. WangQ.H. XiaG. XuZ.J. LiJ.R. Modelling the microstructures of cancellous bone based on triply periodic minimal surface for tissue engineering.J. Comput.-Aided Design Comput. Graph.2016281119491956
    [Google Scholar]
  53. GaoR.N. LiX. Design and mechanical properties analysis of radially graded porous scaffolds.Jixie Gongcheng Xuebao202157322022610.3901/JME.2021.03.220
    [Google Scholar]
  54. LvJ. JinW. LiuW. QinX. FengY. BaiJ. WuZ. LiJ. Selective laser melting fabrication of porous ti6al4v scaffolds with triply periodic minimal surface architectures: Structural features, cytocompatibility, and osteogenesis.Front. Bioeng. Biotechnol.20221089953110.3389/fbioe.2022.89953135694229
    [Google Scholar]
  55. LiC.H. WuC.H. LinC.L. Design of a patient-specific mandible reconstruction implant with dental prosthesis for metal 3D printing using integrated weighted topology optimization and finite element analysis.J. Mech. Behav. Biomed. Mater.202010510370010.1016/j.jmbbm.2020.10370032279847
    [Google Scholar]
  56. FuJ. J. XuY. ZhouX. M. ShuZ. T. TianQ. H. Topological optimization method for conformal cellular structures on surfaces based on co-simulation.J. Beijing Univ. Aeronaut. Astronau.2023113
    [Google Scholar]
  57. Gonçalves CoelhoP. Rui FernandesP. Carriço RodriguesH. Multiscale modeling of bone tissue with surface and permeability control.J. Biomech.201144232132910.1016/j.jbiomech.2010.10.00721036359
    [Google Scholar]
  58. DiasM.R. GuedesJ.M. FlanaganC.L. HollisterS.J. FernandesP.R. Optimization of scaffold design for bone tissue engineering: A computational and experimental study.Med. Eng. Phys.201436444845710.1016/j.medengphy.2014.02.01024636449
    [Google Scholar]
  59. XieB. GaoH. ZhangT. A Review of the Control System of a 3D Printer.J. Recent Patents on Engineering20231712541
    [Google Scholar]
  60. LuZ. XieB. Recent research on medical stent manufacturing based on 3D printing technology.Recent Pat. Eng.2023176e24112221119710.2174/1872212117666221124114248
    [Google Scholar]
  61. JiangJ. GaoZ. SongS. YuX. ZengY. Current status and future perspectives of the active knee joint rehabilitation device.Recent Pat. Eng.2022164e21122119919110.2174/1872212116666211221100650
    [Google Scholar]
  62. XieB. LiuS. GaoH. ZhangT. Recent patents on mechanical structure of 3D printer.Recent Pat. Eng.2022166e21122119919510.2174/1872212116666211221111143
    [Google Scholar]
  63. WangC.X. LiX. LuoY. Structural design of porous titanium alloy bracket and its compressive strength analysis.J. Shanghai Jiao Tong Univ.2016502165168
    [Google Scholar]
  64. ShiZ.L. LuX.L. HuangC. LiF. SunY.L. Design of gradient pore structure of titanium alloy implant and its mechanical properties.J. Rare Met. Mater. Eng.201948618291834
    [Google Scholar]
  65. ZhaoC.L. JiaS.W. LiJ. ZhangR. GongH. Advances in structural design research based on 3D printed porous stents and implants.Yiyong Shengwu Lixue2019344446452
    [Google Scholar]
  66. ZhangC. ZhangL. LiuL. LvL. GaoL. LiuN. WangX. YeJ. Mechanical behavior of a titanium alloy scaffold mimicking trabecular structure.J. Orthop. Surg. Res.20201514010.1186/s13018‑019‑1489‑y32028970
    [Google Scholar]
  67. ZaharinH. Abdul RaniA. AzamF. GintaT. SallihN. AhmadA. YunusN. ZulkifliT. Effect of unit cell type and pore size on porosity and mechanical behavior of additively manufactured Ti6Al4V scaffolds.Materials20181112240210.3390/ma1112240230487419
    [Google Scholar]
  68. LiJ.C. ZangY.Y. WangW. “Laser melting forming and mechanical properties analysis of TC4 porous parts with selected zones”, J. Rare Met. Mater. Eng.2018472662666
    [Google Scholar]
  69. HedayatiR. Amin YavariS. ZadpoorA.A. Fatigue crack propagation in additively manufactured porous biomaterials.Mater. Sci. Eng. C20177645746310.1016/j.msec.2017.03.09128482550
    [Google Scholar]
  70. ZhangM. YangY. WangD. XiaoZ. SongC. WengC. Effect of heat treatment on the microstructure and mechanical properties of Ti6Al4V gradient structures manufactured by selective laser melting.Mater. Sci. Eng. A201873628829710.1016/j.msea.2018.08.084
    [Google Scholar]
  71. PehlivanE. DžuganJ. FojtJ. SedláčekR. RzepaS. DanielM. Post-processing treatment impact on mechanical properties of slm deposited Ti6Al4V porous structure for biomedical application.Materials20201322516710.3390/ma1322516733207787
    [Google Scholar]
  72. WauthleR. VranckenB. BeynaertsB. JorissenK. SchrootenJ. KruthJ.P. Van HumbeeckJ. Effects of build orientation and heat treatment on the microstructure and mechanical properties of selective laser melted Ti6Al4V lattice structures.Addit. Manuf.20155778410.1016/j.addma.2014.12.008
    [Google Scholar]
  73. Sallica-LevaE. JardiniA.L. FogagnoloJ.B. Microstructure and mechanical behavior of porous Ti6Al4V parts obtained by selective laser melting.J. Mech. Behav. Biomed. Mater.2013269810810.1016/j.jmbbm.2013.05.01123773976
    [Google Scholar]
  74. SingS.L. WiriaF.E. YeongW.Y. Selective laser melting of lattice structures: A statistical approach to manufacturability and mechanical behavior.Robot. Comput.-Integr. Manuf.20184917018010.1016/j.rcim.2017.06.006
    [Google Scholar]
  75. AhmadiS.M. HedayatiR. Ashok Kumar JainR.K. LiY. LeeflangS. ZadpoorA.A. Effects of laser processing parameters on the mechanical properties, topology, and microstructure of additively manufactured porous metallic biomaterials: A vector-based approach.Mater. Des.201713423424310.1016/j.matdes.2017.08.046
    [Google Scholar]
  76. BackerM. Adhesion of silicone rubber to thermoplastics.W. O. Patent 20222123042022
    [Google Scholar]
  77. RokickiR. Method for surface inclusions detection, enhancement of endothelial and osteoblast cells adhesion and proliferation, sterilization of electropolished and magnetoelectropolished nitinol surfaces.U. S. Patent 90174892015
    [Google Scholar]
  78. ZhangJ.L. AlthausS.M. ChenJ.H. Methods and systems for determining bulk density, porosity, and pore size distribution of subsurface formations.U. S. Patent 110227152021
    [Google Scholar]
  79. TamaddonM. SamizadehS. WangL. BlunnG. LiuC. Intrinsic osteoinductivity of porous titanium scaffold for bone tissue engineering.Int. J. Biomater.2017201711110.1155/2017/509306328814954
    [Google Scholar]
  80. XuJ. WengX.J. WangX. HuangJ.Z. ZhangC. MuhammadH. MaX. LiaoQ.D. Potential use of porous titanium-niobium alloy in orthopedic implants: Preparation and experimental study of its biocompatibility in vitro.PLoS One2013811e7928910.1371/journal.pone.007928924260188
    [Google Scholar]
  81. ChengA. HumayunA. CohenD.J. BoyanB.D. SchwartzZ. Additively manufactured 3D porous Ti6Al4V constructs mimic trabecular bone structure and regulate osteoblast proliferation, differentiation and local factor production in a porosity and surface roughness dependent manner.Biofabrication20146404500710.1088/1758‑5082/6/4/04500725287305
    [Google Scholar]
  82. ZhengJ. ChenL. ChenD. ShaoC. YiM. ZhangB. Effects of pore size and porosity of surface-modified porous titanium implants on bone tissue ingrowth.Trans. Nonferrous Met. Soc. China201929122534254510.1016/S1003‑6326(19)65161‑7
    [Google Scholar]
  83. LiuS. LiX.X. YangY. ZhaoK. Protein adhesion and osteoblast differentiation on porous titanium with different porosity and pore size.J. Chin J. Stomatol. Res.201593193199
    [Google Scholar]
  84. LiuL.T. NiuG.Q. ZhouQ.K. ChenH. NieH. WangZ.H. Study on the effect of different porosity of 3D printing porous titanium implants on bone ingrowth.J. Bengbu Medical College201944911531157
    [Google Scholar]
  85. LvJ. JiaZ. LiJ. WangY. YangJ. XiuP. ZhangK. CaiH. LiuZ. Electron beam melting fabrication of porous Ti6Al4V scaffolds: Cytocompatibility and osteogenesis.Adv. Eng. Mater.20151791391139810.1002/adem.201400508
    [Google Scholar]
  86. DengZ.B. ZhouC.C. FanY.J. PengJ.P. ZhuX.D. PeiX. YinG.F. ZhangX.D. Design of porous titanium bone tissue engineering scaffolds and characterisation of pore structure.J. Rare Metal Mater. Eng.201645922872292
    [Google Scholar]
  87. TeixeiraL.N. CrippaG.E. LefebvreL.P. De OliveiraP.T. RosaA.L. BelotiM.M. The influence of pore size on osteoblast phenotype expression in cultures grown on porous titanium.Int. J. Oral Maxillofac. Surg.20124191097110110.1016/j.ijom.2012.02.02022487807
    [Google Scholar]
  88. FukudaA. TakemotoM. SaitoT. FujibayashiS. NeoM. PattanayakD.K. MatsushitaT. SasakiK. NishidaN. KokuboT. NakamuraT. Osteoinduction of porous Ti implants with a channel structure fabricated by selective laser melting.Acta Biomater.2011752327233610.1016/j.actbio.2011.01.03721295166
    [Google Scholar]
  89. TaniguchiN. FujibayashiS. TakemotoM. SasakiK. OtsukiB. NakamuraT. MatsushitaT. KokuboT. MatsudaS. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment.Mater. Sci. Eng. C20165969070110.1016/j.msec.2015.10.06926652423
    [Google Scholar]
  90. LiG. WangL. PanW. YangF. JiangW. WuX. KongX. DaiK. HaoY. In vitro and in vivo study of additive manufactured porous Ti6Al4V scaffolds for repairing bone defects.Sci. Rep.2016613407210.1038/srep3407227667204
    [Google Scholar]
  91. LuB. Experimental animal study of the effect of the pore structure of 3D printed porous titanium scaffolds on the effect of bone ingrowth.M.S. thesis, South China University, Hunan Province, China.2020
    [Google Scholar]
  92. LiuB.D. GuoZ. HaoY.L. LiS.J. WangC.R. YuanC.F. ZhangY.Q. WangP. YangX.W. Effect of pore sizes of porous titanium alloys as bone material on bone formation.J. Prog. Modern Biomed.201212916011604
    [Google Scholar]
  93. WaldersenM.R. Wireless flight sensor system for air and space vehicles.U. S. Patent 109314802021
    [Google Scholar]
  94. HendrikE.B. MarieH.P.J. MarcelD.A. JohannesH.F. JohannesB.W.W. Electric reactive armour.E. P. Patent 31494272022
    [Google Scholar]
  95. CarlJ. Toxicity management for anti-tumor activity of cars.H. K. Patent 40039113A2021
    [Google Scholar]
  96. VilokkinenV. UusimaaP. OrsilaS. Method and system for configuring biomedical laser.U. S. Patent 114909612022
    [Google Scholar]
  97. EelkoB. Robertus GerardusL. StephanJ. Catalytic hydrodeoxygenation of an oxygenate feedstock.E. P. Patent 20326772021
    [Google Scholar]
  98. LimitedA. Nebulisation method and apparatus.G. B. Patent 2022183282023
    [Google Scholar]
  99. XINMINW. Powder production device using plasma rotary electrode method.J. P. Patent 20220644062022
    [Google Scholar]
  100. LiS. YangY. MisraR.D.K. LiuY. YeD. HuC. XiangM. Interfacial/intragranular reinforcement of titanium-matrix composites produced by a novel process involving core-shell structured powder.Carbon202016437839010.1016/j.carbon.2020.04.010
    [Google Scholar]
  101. FangZ.Z. ParamoreJ.D. SunP. ChandranK.S.R. ZhangY. XiaY. CaoF. KoopmanM. FreeM. Powder metallurgy of titanium – past, present, and future.Int. Mater. Rev.201863740745910.1080/09506608.2017.1366003
    [Google Scholar]
  102. BaoqingZ. FaridM.I. ShuoY. CongC. ZhangS. Finite element simulation, analysis and research on the influence of 3D printing parameters on forming precision.Recent Pat. Eng.201913444845410.2174/1872212112666181002101151
    [Google Scholar]
  103. LiW. WangK. FangS. Benchmark test artifacts for selective laser melting - A critical review.Recent Pat. Eng.2022165e29062119436610.2174/1872212115666210629124235
    [Google Scholar]
  104. KrishnaA. Systems and methods for liquidity transfer.U. S. Patent 20202266872020
    [Google Scholar]
  105. YangF. LiY. L. ShenC. X. WangC. G. ChenC. G. HeX. B. GuoZ. M. Research progress of titanium and titanium alloy powder preparation and forming processes.J. Powder Metall.2023414330337
    [Google Scholar]
  106. ZhangX. L. TaoY. JiaJ. QuJ. L. A review of gas atomisation powder making technology.J. Powder Metall. Ind.202232396106
    [Google Scholar]
  107. YeZ.H. Personalised design of Ti6Al4V tibial implants and their laser-selective melting manufacturing process.M.S. thesis, South China University of Technology, Guangdong Province, China.2014
    [Google Scholar]
  108. BalG. KehrenF. Pet imaging using multiple organ specific short CT scans.U. S. Patent 20222961942022
    [Google Scholar]
  109. MuktarianD. Selective loading of interaction data for visualized elements of a computer-aided design (CAD) model.U. S. Patent 20222299442022
    [Google Scholar]
  110. WuZ.S. Building deformation joint waterproofing system with bonding-type built-in water stop structure, and method based thereon.U. S. Patent 114148562022
    [Google Scholar]
  111. RaiR. RidgeJ.R. Methods to compensate for warp in glass articles.U. S. Patent 20193674022019
    [Google Scholar]
  112. FusayoS. KazumasaW. Method for suppressing collapse of three-dimensional structure.W. O. Patent 20222130432022
    [Google Scholar]
  113. RongC.B. LiangF. DegnerW.M. Rapid stress relief annealing of a stator.U. S. Patent 108797772020
    [Google Scholar]
  114. PlauszewskiR. Small-hole EDM electrode guide device.G. B. Patent 25627292022
    [Google Scholar]
  115. MoerbeM. Method for ascertaining the instantaneous roadway roughness in a vehicle.U. S. Patent 114724122022
    [Google Scholar]
  116. KobayashiH. Apparatus for continuous molten metal coating treatment and method for molten metal coating treatment using same.U. S. Patent 111621662021
    [Google Scholar]
  117. DjavanroodiF. Method of modifying surface biocompatibility of a titanium medical implant.U. S. Patent 109616142021
    [Google Scholar]
  118. CuraE. ElgimiabiS. Structural adhesive with improved corrosion resistance.U. S. Patent 113775762022
    [Google Scholar]
/content/journals/eng/10.2174/0118722121268952231020111446
Loading
/content/journals/eng/10.2174/0118722121268952231020111446
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test