Skip to content
2000
Volume 25, Issue 6
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

Background

Obesity is becoming a global pandemic with pandemic proportions. According to the WHO estimates, there were over 1.9 billion overweight individuals and over 650 million obese adults in the globe in 2016. In recent years, scientists have encountered difficulties in choosing acceptable animal models, leading to a multitude of contradicting aspects and incorrect outcomes. This review comprehensively evaluates different screening models of obesity and obesity-associated comorbidities to reveal the advantages and disadvantages/limitations of each model while also mentioning the time duration each model requires to induce obesity.

Methods

For this review, the authors have gone through a vast number of article sources from different scientific databases, such as Google Scholar, Web of Science, Medline, and PubMed.

Results

models used to represent a variety of obesity-inducing processes, such as diet-induced, drug-induced, surgical, chemical, stress-induced, and genetic models, are discussed. Animal cell models are examined with an emphasis on their use in understanding the molecular causes of obesity, for which we discussed in depth the important cell lines, including 3T3-L1, OP9, 3T3-F442A, and C3H10T1/2. Screening models of obesity-associated co-morbidities like diabetes, asthma, cardiovascular disorders, cancer, and polycystic ovarian syndrome (PCOS) were discussed, which provided light on the complex interactions between obesity and numerous health problems.

Conclusion

Mimicking obesity in an animal model reflects multifactorial aspects is a matter of challenge. Future studies could address the ethical issues surrounding the use of animals in obesity research as well as investigate newly developed models, such as non-mammalian models. In conclusion, improving our knowledge and management of obesity and related health problems will require ongoing assessment and improvement of study models.

Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303312932240801073903
2024-08-12
2025-05-24
Loading full text...

Full text loading...

References

  1. BarbhuiyaP.A. SenS. PathakM.P. Ameliorative role of bioactive phytoconstituents targeting obesity associated NAFLD by modulation of inflammation and lipogenesis pathways: A comprehensive review.Phytochem. Rev.2023202309912-w10.1007/s11101‑023‑09912‑w
    [Google Scholar]
  2. TremmelM. GerdthamU.G. NilssonP. SahaS. Economic burden of obesity: A systematic literature review.Int. J. Environ. Res. Public Health201714443510.3390/ijerph1404043528422077
    [Google Scholar]
  3. MohanV. PradeepaR. AnjanaR.M. JoshiS.R. BhansaliA. DeepaM. JoshiP.P. DhandaniaV.K. MadhuS.V. RaoP.V. GeethaL. SubashiniR. UnnikrishnanR. ShuklaD.K. KaurT. DasA. Icmr-Indiab Prevalence of generalized & abdominal obesity in urban & rural India- the ICMR - INDIAB Study (Phase-I) (ICMR - INDIAB-3).Indian J. Med. Res.2015142213915010.4103/0971‑5916.16423426354211
    [Google Scholar]
  4. VermaA. SinghG. AgrawalR. TripathiN. Overweight and obesity, the clock ticking in India? A secondary analysis of trends of prevalence, patterns, and predictors from 2005 to 2020 using the National Family Health Survey.Int. J. Noncommun. Dis.2023813110.4103/jncd.jncd_58_22
    [Google Scholar]
  5. PathakM.P. PatowaryP. ChattopadhyayP. BarbhuiyanP.A. IslamJ. GogoiJ. WankharW. Obesity-associated Airway Hyperresponsiveness: Mechanisms Underlying Inflammatory Markers and possible pharmacological interventions.Endocr. Metab. Immune Disord. Drug Targets20242491053106810.2174/011871530325644023102807204937957906
    [Google Scholar]
  6. MulitaF. LampropoulosC. KehagiasD. VerrasG.I. TchabashviliL. KaplanisC. LiolisE. IliopoulosF. PerdikarisI. KehagiasI. Long-term nutritional deficiencies following sleeve gastrectomy: A 6-year single-centre retrospective study.Przegl. Menopauz.202120417017610.5114/pm.2021.11095435069068
    [Google Scholar]
  7. WilsonR.B. LathigaraD. KaushalD. Systematic review and meta-analysis of the impact of bariatric surgery on future cancer risk.Int. J. Mol. Sci.2023247619210.3390/ijms2407619237047163
    [Google Scholar]
  8. PeirsonL. Fitzpatrick-LewisD. CiliskaD. Usman AliM. RainaP. SherifaliD. Strategies for weight maintenance in adult populations treated for overweight and obesity: A systematic review and meta-analysis.CMAJ Open201531E47E5410.9778/cmajo.2014005025844369
    [Google Scholar]
  9. SumithranP. PrendergastL.A. DelbridgeE. PurcellK. ShulkesA. KriketosA. ProiettoJ. Long-term persistence of hormonal adaptations to weight loss.N. Engl. J. Med.2011365171597160410.1056/NEJMoa110581622029981
    [Google Scholar]
  10. PajueloD. QuesadaH. DíazS. Fernández-IglesiasA. Arola-ArnalA. BladéC. SalvadóJ. ArolaL. Chronic dietary supplementation of proanthocyanidins corrects the mitochondrial dysfunction of brown adipose tissue caused by diet-induced obesity in Wistar rats.Br. J. Nutr.2012107217017810.1017/S000711451100272821733324
    [Google Scholar]
  11. El-ShehawiA.M. AlkafafyM. El-ShazlyS. SayedS. FaroukS. AlotaibiS. MadkourD.A. KhalifaH.K. AhmedM.M. Moringa oleifera leaves ethanolic extract ameliorates high fat diet-induced obesity in rats.J. King Saud Univ. Sci.202133610155210.1016/j.jksus.2021.101552
    [Google Scholar]
  12. P.H. Wilding J. Causes of obesity.Pract. Diabetes Int.20011828829210.1002/pdi.277
    [Google Scholar]
  13. OmerT. The causes of obesity: An in-depth review.Advan. Obesity, Weight Manag. & Contr.2020104909410.15406/aowmc.2020.10.00312
    [Google Scholar]
  14. WataraiT. KobayashiM. TakataY. SasaokaT. IwasakiM. ShigetaY. Alteration of insulin-receptor kinase activity by high-fat feeding.Diabetes198837101397140410.2337/diab.37.10.13972843408
    [Google Scholar]
  15. MaegawaH. KobayashiM. IshibashiO. TakataY. ShigetaY. Effect of diet change on insulin action: Difference between muscles and adipocytes.Am. J. Physiol. Endocrinol. Metab.19862515E616E62310.1152/ajpendo.1986.251.5.E6163535536
    [Google Scholar]
  16. PedersenO. KahnC.R. FlierJ.S. KahnB.B. High fat feeding causes insulin resistance and a marked decrease in the expression of glucose transporters (Glut 4) in fat cells of rats.Endocrinology1991129277177710.1210/endo‑129‑2‑7711855475
    [Google Scholar]
  17. de Moura e DiasM. dos ReisS.A. da ConceiçãoL.L. SediyamaC.M.N.O. PereiraS.S. de OliveiraL.L. Gouveia PeluzioM.C. MartinezJ.A. MilagroF.I. Diet-induced obesity in animal models: Points to consider and influence on metabolic markers.Diabetol. Metab. Syndr.20211313210.1186/s13098‑021‑00647‑233736684
    [Google Scholar]
  18. BrayG.A. Complications of Obesity.Ann. Intern. Med.19851036_Part_21052106210.7326/0003‑4819‑103‑6‑10524062125
    [Google Scholar]
  19. AlgoblanA. AlalfiM. KhanM. Mechanism linking diabetes mellitus and obesity.Diabetes Metab. Syndr. Obes.2014758759110.2147/DMSO.S6740025506234
    [Google Scholar]
  20. SarmaS. SockalingamS. DashS. Obesity as a multisystem disease: Trends in obesity rates and obesity-related complications.Diabetes Obes. Metab.202123S1Suppl. 131610.1111/dom.1429033621415
    [Google Scholar]
  21. DeClercqV. TaylorC. ZahradkaP. Adipose tissue: The link between obesity and cardiovascular disease.Cardiovasc. Hematol. Disord. Drug Targets20088322823710.2174/18715290878584908018781935
    [Google Scholar]
  22. WozniakS.E. GeeL.L. WachtelM.S. FrezzaE.E. Adipose tissue: The new endocrine organ? A review article.Dig. Dis. Sci.20095491847185610.1007/s10620‑008‑0585‑319052866
    [Google Scholar]
  23. LagoF. DieguezC. Gómez-ReinoJ. GualilloO. Adipokines as emerging mediators of immune response and inflammation.Nat. Clin. Pract. Rheumatol.200731271672410.1038/ncprheum067418037931
    [Google Scholar]
  24. LagoF. GómezR. Gómez-ReinoJ.J. DieguezC. GualilloO. Adipokines as novel modulators of lipid metabolism.Trends Biochem. Sci.2009341050051010.1016/j.tibs.2009.06.00819729309
    [Google Scholar]
  25. NaraN. NakayamaY. OkamotoS. TamuraH. KiyonoM. MuraokaM. TanakaK. TayaC. ShitaraH. IshiiR. YonekawaH. MinokoshiY. HaraT. Disruption of CXC motif chemokine ligand-14 in mice ameliorates obesity-induced insulin resistance.J. Biol. Chem.200728242307943080310.1074/jbc.M70041220017724031
    [Google Scholar]
  26. HuberJ. KieferF.W. ZeydaM. LudvikB. SilberhumerG.R. PragerG. ZlabingerG.J. StulnigT.M. CC chemokine and CC chemokine receptor profiles in visceral and subcutaneous adipose tissue are altered in human obesity.J. Clin. Endocrinol. Metab.20089383215322110.1210/jc.2007‑263018492752
    [Google Scholar]
  27. DuffautC. Zakaroff-GirardA. BourlierV. DecaunesP. MaumusM. ChiotassoP. SengenèsC. LafontanM. GalitzkyJ. BouloumiéA. Interplay between human adipocytes and T lymphocytes in obesity: CCL20 as an adipochemokine and T lymphocytes as lipogenic modulators.Arterioscler. Thromb. Vasc. Biol.200929101608161410.1161/ATVBAHA.109.19258319644053
    [Google Scholar]
  28. BarbhuiyaP.A. ArmanS. PaulH. SenS. DeyB.K. PathakM.P. An updated review on the early detection and drug development targeting breast cancer.Curr. Womens Health Rev.2024204e13072321868510.2174/1573404820666230713110902
    [Google Scholar]
  29. WardleJ. CookeL. The impact of obesity on psychological well-being.Best Pract. Res. Clin. Endocrinol. Metab.200519342144010.1016/j.beem.2005.04.00616150384
    [Google Scholar]
  30. FruhS.M. Obesity.J. Am. Assoc. Nurse Pract.201729S1S3S1410.1002/2327‑6924.1251029024553
    [Google Scholar]
  31. MatiasA.M. EstevamW.M. CoelhoP.M. HaeseD. KobiJ.B.B.S. Lima-LeopoldoA.P. LeopoldoA.S. Differential effects of high sugar, high lard or a combination of both on nutritional, hormonal and cardiovascular metabolic profiles of rodents.Nutrients2018108107110.3390/nu1008107130103515
    [Google Scholar]
  32. HigaT.S. SpinolaA.V. Fonseca-AlanizM.H. EvangelistaF.S.A. Comparison between cafeteria and high-fat diets in the induction of metabolic dysfunction in mice.Int. J. Physiol. Pathophysiol. Pharmacol.201461475424665358
    [Google Scholar]
  33. GhibaudiL. CookJ. FarleyC. van HeekM. HwaJ.J. Fat intake affects adiposity, comorbidity factors, and energy metabolism of sprague-dawley rats.Obes. Res.200210995696310.1038/oby.2002.13012226145
    [Google Scholar]
  34. WangB. ChandrasekeraP. PippinJ. Leptin- and leptin receptor-deficient rodent models: Relevance for human type 2 diabetes.Curr. Diabetes Rev.201410213114510.2174/157339981066614050812101224809394
    [Google Scholar]
  35. ClearyM.P. ZiskJ.F. Anti-obesity effect of two different levels of dehydroepiandrosterone in lean and obese middle-aged female Zucker rats.Int. J. Obes.19861031932042944850
    [Google Scholar]
  36. RothwellN.J. StockM.J. The cafeteria diet as a tool for studies of thermogenesis.J. Nutr.1988118892592810.1093/jn/118.8.9253042931
    [Google Scholar]
  37. BarrettP. MercerJ.G. MorganP.J. Preclinical models for obesity research.Dis. Model. Mech.20169111245125510.1242/dmm.02644327821603
    [Google Scholar]
  38. OngZ.Y. WanasuriaA.F. LinM.Z.P. HiscockJ. MuhlhauslerB.S. Chronic intake of a cafeteria diet and subsequent abstinence. Sex-specific effects on gene expression in the mesolimbic reward system.Appetite20136518919910.1016/j.appet.2013.01.01423402719
    [Google Scholar]
  39. OngZ.Y. MuhlhauslerB.S. Maternal “junk-food” feeding of rat dams alters food choices and development of the mesolimbic reward pathway in the offspring.FASEB J.20112572167217910.1096/fj.10‑17839221427213
    [Google Scholar]
  40. RothwellN.J. SavilleM.E. StockM.J. Effects of feeding a “cafeteria” diet on energy balance and diet-induced thermogenesis in four strains of rat.J. Nutr.198211281515152410.1093/jn/112.8.15157097362
    [Google Scholar]
  41. WillettW.C. LeibelR.L. Dietary fat is not a major determinant of body fat.Am. J. Med.20021139Suppl. 9B475910.1016/S0002‑9343(01)00992‑512566139
    [Google Scholar]
  42. OliveiraL.S.C. SantosD.A. Barbosa-da-SilvaS. Mandarim-de-LacerdaC.A. AguilaM.B. The inflammatory profile and liver damage of a sucrose-rich diet in mice.J. Nutr. Biochem.201425219320010.1016/j.jnutbio.2013.10.00624445044
    [Google Scholar]
  43. RoopchandD.E. CarmodyR.N. KuhnP. MoskalK. Rojas-SilvaP. TurnbaughP.J. RaskinI. Dietary polyphenols promote growth of the gut bacterium Akkermansia muciniphila and attenuate high-fat diet–induced metabolic syndrome.Diabetes20156482847285810.2337/db14‑191625845659
    [Google Scholar]
  44. BuettnerR. SchölmerichJ. BollheimerL.C. High-fat diets: Modeling the metabolic disorders of human obesity in rodents.Obesity (Silver Spring)200715479880810.1038/oby.2007.60817426312
    [Google Scholar]
  45. SamuelsL.T. ReineckeR.M. BallH.A. Effect of diet on glucose tolerance and liver and muscle glycogen of hypophysectomized and normal rats.Endocrinology1942311424510.1210/endo‑31‑1‑42
    [Google Scholar]
  46. SamuelsL.T. GilmoreR.C. ReineckeR.M. The effect of previous diet on the ability of animals to do work during subsequent fasting.J. Nutr.194836563965110.1093/jn/36.5.63918892942
    [Google Scholar]
  47. BudohoskiL. Panczenko-KresowskaB. LangfortJ. ZernickaE. DubaniewiczA. ZiemlańskiS. ChallissR.A. NewsholmeE.A. Effects of saturated and polyunsaturated fat enriched diet on the skeletal muscle insulin sensitivity in young rats.J. Physiol. Pharmacol.19934443913988123886
    [Google Scholar]
  48. HarrisR.B.S. KorH. Insulin insensitivity is rapidly reversed in rats by reducing dietary fat from 40 to 30% of energy.J. Nutr.199212291811182210.1093/jn/122.9.18111512630
    [Google Scholar]
  49. WongS.K. ChinK.Y. SuhaimiF.H. FairusA. Ima-NirwanaS. Animal models of metabolic syndrome: A review.Nutr. Metab. (Lond.)20161316510.1186/s12986‑016‑0123‑927708685
    [Google Scholar]
  50. GarauletM. Gómez-AbellánP. Timing of food intake and obesity: A novel association.Physiol. Behav.2014134445010.1016/j.physbeh.2014.01.00124467926
    [Google Scholar]
  51. ArbleD.M. BassJ. LaposkyA.D. VitaternaM.H. TurekF.W. Circadian timing of food intake contributes to weight gain.Obesity (Silver Spring)200917112100210210.1038/oby.2009.26419730426
    [Google Scholar]
  52. KentishS.J. HatzinikolasG. LiH. FrisbyC.L. WittertG.A. PageA.J. Time-restricted feeding prevents ablation of diurnal rhythms in gastric vagal afferent mechanosensitivity observed in high-fat diet-induced obese mice.J. Neurosci.201838225088509510.1523/JNEUROSCI.0052‑18.201829760179
    [Google Scholar]
  53. TurtonR. ChamiR. TreasureJ. Emotional eating, binge eating and animal models of binge-type eating disorders.Curr. Obes. Rep.20176221722810.1007/s13679‑017‑0265‑828434108
    [Google Scholar]
  54. BakeT. MurphyM. MorganD.G.A. MercerJ.G. Large, binge-type meals of high fat diet change feeding behaviour and entrain food anticipatory activity in mice.Appetite201477100627310.1016/j.appet.2014.02.02024631639
    [Google Scholar]
  55. GuzeS.B. Diagnostic and statistical manual of mental disorders.Am J Psychiatry1995152100122810.1176/ajp.152.8.1228
    [Google Scholar]
  56. BakeT. DuncanJ.S. MorganD.G.A. MercerJ.G. Arcuate nucleus homeostatic systems are not altered immediately prior to the scheduled consumption of large, binge-type meals of palatable solid or liquid diet in rats and Mice.J. Neuroendocrinol.201325435737110.1111/jne.1200823194408
    [Google Scholar]
  57. AswarU. PatilR. BodhankarS. Review on the induction of obesity in laboratory animals.Diabesity20195410.15562/diabesity.2019.58
    [Google Scholar]
  58. BiranJ. TahorM. WircerE. LevkowitzG. Role of developmental factors in hypothalamic function.Front. Neuroanat.201594710.3389/fnana.2015.0004725954163
    [Google Scholar]
  59. ChangG.Q. GaysinskayaV. KaratayevO. LeibowitzS.F. Maternal high-fat diet and fetal programming: Increased proliferation of hypothalamic peptide-producing neurons that increase risk for overeating and obesity.J. Neurosci.20082846121071211910.1523/JNEUROSCI.2642‑08.200819005075
    [Google Scholar]
  60. Minet-RinguetJ. EvenP.C. LacroixM. ToméD. de BeaurepaireR. A model for antipsychotic-induced obesity in the male rat.Psychopharmacology (Berl.)2006187444745410.1007/s00213‑006‑0433‑016783538
    [Google Scholar]
  61. ParasuramanS. WenL.E. Animal Model for Obesity-An Overview.Syst Rev Pharm20166191210.5530/srp.2015.1.3
    [Google Scholar]
  62. Gaur TA. PalG.K. AnanthnarayananP.H. PalP. IjomoneO.M. Role of Ventromedial hypothalamus in high fat diet induced obesity in male rats: Association with lipid profile, thyroid profile and insulin resistance.Ann. Neurosci.201421310410710.5214/ans.0972.7531.21030625206074
    [Google Scholar]
  63. LeibowitzS.F. HammerN.J. ChangK. Hypothalamic paraventricular nucleus lesions produce overeating and obesity in the rat.Physiol. Behav.19812761031104010.1016/0031‑9384(81)90366‑87335803
    [Google Scholar]
  64. Von DiemenV. TrindadeE.N. TrindadeM.R.M. Experimental model to induce obesity in rats.Acta Cir. Bras.200621642542910.1590/S0102‑8650200600060001317160257
    [Google Scholar]
  65. LordenJ.F. CaudleA. Behavioral and endocrinological effects of single injections of monosodium glutamate in the mouse.Neurobehav. Toxicol. Teratol.1986855095193785512
    [Google Scholar]
  66. AsarianL. GearyN. Cyclic estradiol treatment normalizes body weight and restores physiological patterns of spontaneous feeding and sexual receptivity in ovariectomized rats.Horm. Behav.200242446147110.1006/hbeh.2002.183512488112
    [Google Scholar]
  67. BrayG.A. YorkD.A. Hypothalamic and genetic obesity in experimental animals: An autonomic and endocrine hypothesis.Physiol. Rev.197959371980910.1152/physrev.1979.59.3.719379887
    [Google Scholar]
  68. El-KafouryB. MohamedF. BahgatN. El SamadA.A. ShawkyM. Abdel-HadyE.A. Failure of subcutaneous lipectomy to combat metabolic dysregulations in ovariectomy-induced obesity in young female rats.Hormones (Athens)202221342143610.1007/s42000‑022‑00371‑035486321
    [Google Scholar]
  69. AsarianL. GearyN. Modulation of appetite by gonadal steroid hormones.Philos. Trans. R. Soc. Lond. B Biol. Sci.200636114711251126310.1098/rstb.2006.186016815802
    [Google Scholar]
  70. AsarianL. GearyN. Estradiol enhances cholecystokinin-dependent lipid-induced satiation and activates estrogen receptor-alpha-expressing cells in the nucleus Tractus solitarius of ovariectomized rats.Endocrinology2007148125656566610.1210/en.2007‑034117823256
    [Google Scholar]
  71. LutzT.A. WoodsS.C. Overview of animal models of obesity.Curr. Protocols Pharmacol.20125816110.1002/0471141755.ph0561s5822948848
    [Google Scholar]
  72. NemeroffC.B. LiptonM.A. KizerJ.S. Models of neuroendocrine regulation: Use of monosodium glutamate as an investigational tool.Dev. Neurosci.19781210210910.1159/00011256139735
    [Google Scholar]
  73. BergenH.T. MizunoT.M. TaylorJ. MobbsC.V. Hyperphagia and weight gain after gold-thioglucose: Relation to hypothalamic neuropeptide Y and proopiomelanocortin.Endocrinology1998139114483448810.1210/endo.139.11.63249794456
    [Google Scholar]
  74. YoungJ.K. Hypothalamic lesions increase neuronal immunoreactivity for neuropeptide Y.Brain Res. Bull.1992293-437538010.1016/0361‑9230(92)90071‑51393610
    [Google Scholar]
  75. YoungJ.K. McKenzieJ.C. BradyL.S. HerkenhamM. Hypothalamic lesions increase levels of neuropeptide Y mRNA in the arcuate nucleus of mice.Neurosci. Lett.19941651-2131710.1016/0304‑3940(94)90698‑X8015714
    [Google Scholar]
  76. LiA.J. DinhT.T. RitterS. Hyperphagia and obesity produced by arcuate injection of NPY–saporin do not require upregulation of lateral hypothalamic orexigenic peptide genes.Peptides200829101732173910.1016/j.peptides.2008.05.02618577407
    [Google Scholar]
  77. BouretS.G. Development of Hypothalamic Circuits That Control Food Intake and Energy Balance.Appetite Food Intake Cent. Control.2nd ed HarrisR.B.S. Boca Raton, FLCRC Press/Taylor & Francis201710.1201/9781315120171‑7
    [Google Scholar]
  78. FosterM.T. SongC.K. BartnessT.J. Hypothalamic paraventricular nucleus lesion involvement in the sympathetic control of lipid mobilization.Obesity (Silver Spring)201018468268910.1038/oby.2009.34519851310
    [Google Scholar]
  79. SimsJ.S. LordenJ.F. Effect of paraventricular nucleus lesions on body weight, food intake and insulin levels.Behav. Brain Res.198622326528110.1016/0166‑4328(86)90071‑93098259
    [Google Scholar]
  80. TokunagaK. MatsuzawaY. FujiokaS. KobatakeT. KenoY. OdakaH. MatsuoT. TaruiS. PVN-lesioned obese rats maintain ambulatory activity and its circadian rhythm.Brain Res. Bull.199126339339610.1016/0361‑9230(91)90012‑92049605
    [Google Scholar]
  81. PattersonZ.R. AbizaidA. Stress induced obesity: Lessons from rodent models of stress.Front. Neurosci.2013713010.3389/fnins.2013.0013023898237
    [Google Scholar]
  82. ZhuP. ZhangZ.H. HuangX.F. ShiY.C. KhandekarN. YangH.Q. LiangS.Y. SongZ.Y. LinS. Cold exposure promotes obesity and impairs glucose homeostasis in mice subjected to a high-fat diet.Mol. Med. Rep.20181843923393110.3892/mmr.2018.938230106124
    [Google Scholar]
  83. DallmanM.F. PecoraroN.C. la FleurS.E. Chronic stress and comfort foods: Self-medication and abdominal obesity.Brain Behav. Immun.200519427528010.1016/j.bbi.2004.11.00415944067
    [Google Scholar]
  84. DepkeM. FuschG. DomanskaG. GeffersR. VölkerU. SchuettC. KiankC. Hypermetabolic syndrome as a consequence of repeated psychological stress in mice.Endocrinology200814962714272310.1210/en.2008‑003818325986
    [Google Scholar]
  85. NieuwenhuizenA.G. RuttersF. The hypothalamic-pituitary-adrenal-axis in the regulation of energy balance.Physiol. Behav.200894216917710.1016/j.physbeh.2007.12.01118275977
    [Google Scholar]
  86. KalshettyP. AswarU. BodhankarS. SinnathambiA. MohanV. ThakurdesaiP. Antidepressant effects of standardized extract of Centella asiatica L in olfactory bulbectomy model.Biomed. Aging Pathol.201222485310.1016/j.biomag.2012.03.005
    [Google Scholar]
  87. MayerJ. BatesM.W. DickieM.M. Hereditary diabetes in genetically obese mice.Science1951113294874674710.1126/science.113.2948.74614854871
    [Google Scholar]
  88. da Silva XavierG. HodsonD.J. Mouse models of peripheral metabolic disease.Best Pract. Res. Clin. Endocrinol. Metab.201832329931510.1016/j.beem.2018.03.00929779583
    [Google Scholar]
  89. ColemanD.L. HummelK.P. The influence of genetic background on the expression of the obese (ob) gene in the mouse.Diabetologia19739428729310.1007/BF012218564588246
    [Google Scholar]
  90. HamzaS.M. SharmaN. SungM.M. ZordokyB.N. KantorP.F. DyckJ.R.B. Heart Failure.AmsterdamElsevier201497199410.1016/B978‑0‑12‑386456‑7.03304‑9
    [Google Scholar]
  91. KoteishA. DiehlA.M. Animal models of steatosis.Semin. Liver Dis.200121108910410.1055/s‑2001‑1293211296700
    [Google Scholar]
  92. TrayhurnP. JonesP.M. McGuckinM.M. GoodbodyA.E. Effects of overfeeding on energy balance and brown fat thermogenesis in obese (ob/ob) mice.Nature1982295584732332510.1038/295323a07057896
    [Google Scholar]
  93. SpeakmanJ. HamblyC. MitchellS. KrólE. The contribution of animal models to the study of obesity.Lab. Anim.200842441343210.1258/la.2007.00606718782824
    [Google Scholar]
  94. ChuaS.C.Jr ChungW.K. Wu-PengX.S. ZhangY. LiuS.M. TartagliaL. LeibelR.L. Phenotypes of mouse diabetes and rat fatty due to mutations in the OB (leptin) receptor.Science1996271525199499610.1126/science.271.5251.9948584938
    [Google Scholar]
  95. ColemanD.L. Obese and diabetes: Two mutant genes causing diabetes-obesity syndromes in mice.Diabetologia197814314114810.1007/BF00429772350680
    [Google Scholar]
  96. HalaasJ.L. GajiwalaK.S. MaffeiM. CohenS.L. ChaitB.T. RabinowitzD. LalloneR.L. BurleyS.K. FriedmanJ.M. Weight-reducing effects of the plasma protein encoded by the obese gene.Science1995269522354354610.1126/science.76247777624777
    [Google Scholar]
  97. BultmanS.J. MichaudE.J. WoychikR.P. Molecular characterization of the mouse agouti locus.Cell19927171195120410.1016/S0092‑8674(05)80067‑41473152
    [Google Scholar]
  98. CarrollL. VoiseyJ. Van DaalA. Mouse models of obesity.Clin. Dermatol.200422434534910.1016/j.clindermatol.2004.01.00415475237
    [Google Scholar]
  99. KanasakiK. KoyaD. Biology of obesity: Lessons from animal models of obesity.J. Biomed. Biotechnol.2011201111110.1155/2011/19763621274264
    [Google Scholar]
  100. DerkachK.V. ZakharovaI.O. RomanovaI.V. ZorinaI.I. MikhrinaA.L. ShpakovA.O. Metabolic parameters and functional state of hypothalamic signaling systems in AY/a mice with genetic predisposition to obesity and the effect of metformin.Dokl. Biochem. Biophys.2017477137738110.1134/S160767291706009629297124
    [Google Scholar]
  101. KlebigM.L. WilkinsonJ.E. GeislerJ.G. WoychikR.P. Ectopic expression of the agouti gene in transgenic mice causes obesity, features of type II diabetes, and yellow fur.Proc. Natl. Acad. Sci. USA199592114728473210.1073/pnas.92.11.47287761391
    [Google Scholar]
  102. KhotskinN.V. PlyusninaA.V. KulikovaE.A. BazhenovaE.Y. FursenkoD.V. SorokinI.E. KolotyginI. MormedeP. TereninaE.E. ShevelevO.B. KulikovA.V. On association of the lethal yellow (A) mutation in the agouti gene with the alterations in mouse brain and behavior.Behav. Brain Res.201935944645610.1016/j.bbr.2018.11.01330447239
    [Google Scholar]
  103. MyersM.G.Jr. Leptin receptor signaling and the regulation of mammalian physiology.Recent Prog. Horm. Res.200459128730410.1210/rp.59.1.28714749507
    [Google Scholar]
  104. BellB.B. RahmouniK. Leptin as a mediator of obesity-induced hypertension.Curr. Obes. Rep.20165439740410.1007/s13679‑016‑0231‑x27665107
    [Google Scholar]
  105. SpeakmanJ. HamblyC. MitchellS. KrólE. Animal models of obesity.Obes. Rev.20078s1Suppl. 1556110.1111/j.1467‑789X.2007.00319.x17316303
    [Google Scholar]
  106. SuzukiW. IizukaS. TabuchiM. FunoS. YanagisawaT. KimuraM. SatoT. EndoT. KawamuraH. A new mouse model of spontaneous diabetes derived from ddY strain.Exp. Anim.199948318118910.1538/expanim.48.18110480023
    [Google Scholar]
  107. HirayamaI. YiZ. IzumiS. AraiI. SuzukiW. NagamachiY. KuwanoH. TakeuchiT. IzumiT. Genetic analysis of obese diabetes in the TSOD mouse.Diabetes19994851183119110.2337/diabetes.48.5.118310331427
    [Google Scholar]
  108. TsuneyamaK. NishitsujiK. MatsumotoM. KobayashiT. MorimotoY. TsunematsuT. OgawaH. Animal models for analyzing metabolic syndrome-associated liver diseases.Pathol. Int.2017671153954610.1111/pin.1260029027308
    [Google Scholar]
  109. NakamuraM. YamadaK. Studies on a diabetic (KK) strain of the mouse.Diabetologia19673221222110.1007/BF012221984907141
    [Google Scholar]
  110. IkedaH. KK mouse.Diabetes Res. Clin. Pract.199424Suppl.S313S31610.1016/0168‑8227(94)90268‑27859626
    [Google Scholar]
  111. IgelM. TaylorB.A. PhillipsS.J. BeckerW. HerbergL. JoostH.G. Hyperleptinemia and leptin receptor variant Asp600Asn in the obese, hyperinsulinemic KK mouse strain.J. Mol. Endocrinol.199821333734510.1677/jme.0.02103379845674
    [Google Scholar]
  112. ShikeT. HiroseS. KobayashiM. FunabikiK. ShiraiT. TominoY. Susceptibility and negative epistatic loci contributing to type 2 diabetes and related phenotypes in a KK/Ta mouse model.Diabetes20015081943194810.2337/diabetes.50.8.194311473059
    [Google Scholar]
  113. OkazakiM. SaitoY. UdakaY. MaruyamaM. MurakamiH. OtaS. KikuchiT. OguchiK. Diabetic nephropathy in KK and KK-Ay mice.Exp. Anim.200251219119610.1538/expanim.51.19112012732
    [Google Scholar]
  114. PhillipsM.S. LiuQ. HammondH.A. DuganV. HeyP.J. CaskeyC.T. HessJ.F. Leptin receptor missense mutation in the fatty Zucker rat.Nat. Genet.1996131181910.1038/ng0596‑188673096
    [Google Scholar]
  115. VasselliJ.R. Patterns of hyperphagia in the Zucker obese rat: A role for fat cell size and number?Brain Res. Bull.198514663364110.1016/0361‑9230(85)90113‑33861209
    [Google Scholar]
  116. Aleixandre de ArtiñanoA. Miguel CastroM. Experimental rat models to study the metabolic syndrome.Br. J. Nutr.200910291246125310.1017/S000711450999072919631025
    [Google Scholar]
  117. BrayG.A. GreenwayF.L. Current and potential drugs for treatment of obesity.Endocr. Rev.199920680587510.1210/edrv.20.6.038310605627
    [Google Scholar]
  118. WhiteBD MartinRJ vidence for a central mechanism of obesity in the Zucker rat: Role of neuropeptide Y and leptin.Proc. Soc. Exp. Biol. Med.199721432223210.3181/00379727‑214‑44090
    [Google Scholar]
  119. ClarkJB PalmerCJ ShawWN. The diabetic Zucker fatty rat.Proc. Soc. Exp. Biol. Med.19831731687510.3181/00379727‑173‑41611
    [Google Scholar]
  120. BrayG.A. The Zucker-fatty rat: A review.Fed. Proc.1977362148153320051
    [Google Scholar]
  121. YamakawaT. TanakaS. TamuraK. IsodaF. UkawaK. YamakuraY. TakanashiY. KiuchiY. UmemuraS. IshiiM. SekiharaH. Wistar fatty rat is obese and spontaneously hypertensive.Hypertension199525114615010.1161/01.HYP.25.1.1467843747
    [Google Scholar]
  122. IkedaH. ShinoA. MatsuoT. IwatsukaH. SuzuokiZ. A new genetically obese-hyperglycemic rat (Wistar fatty).Diabetes198130121045105010.2337/diab.30.12.10457030830
    [Google Scholar]
  123. KawanoK. HirashimaT. MoriS. SaitohY. KurosumiM. NatoriT. Spontaneous long-term hyperglycemic rat with diabetic complications. Otsuka Long-Evans Tokushima Fatty (OLETF) strain.Diabetes199241111422142810.2337/diab.41.11.14221397718
    [Google Scholar]
  124. PanchalS.K. BrownL. Rodent models for metabolic syndrome research.J. Biomed. Biotechnol.2011201111410.1155/2011/35198221253582
    [Google Scholar]
  125. KawanoK. HirashimaT. MoriS. NatoriT. OLETF (Otsuka Long-Evans Tokushima Fatty) rat: A new NIDDM rat strain.Diabetes Res. Clin. Pract.199424Suppl.S317S32010.1016/0168‑8227(94)90269‑07859627
    [Google Scholar]
  126. YorekM.A. Alternatives to the Streptozotocin-Diabetic Rodent. Int. Rev. Neurobiol.AmsterdamElsevier20168911210.1016/bs.irn.2016.03.002
    [Google Scholar]
  127. WilliamsL. SekiY. VuguinP.M. CharronM.J. Animal models of in utero exposure to a high fat diet: A review.Biochim. Biophys. Acta Mol. Basis Dis.20141842350751910.1016/j.bbadis.2013.07.00623872578
    [Google Scholar]
  128. LevinB.E. TriscariJ. SullivanA.C. The effect of diet and chronic obesity on brain catecholamine turnover in the rat.Pharmacol. Biochem. Behav.198624229930410.1016/0091‑3057(86)90354‑03952118
    [Google Scholar]
  129. LevinB.E. Dunn-MeynellA.A. BalkanB. KeeseyR.E. Selective breeding for diet-induced obesity and resistance in Sprague-Dawley rats.Am. J. Physiol. Regul. Integr. Comp. Physiol.19972732R725R73010.1152/ajpregu.1997.273.2.R7259277561
    [Google Scholar]
  130. LevinB.E. Dunn-MeynellA.A. Defense of body weight depends on dietary composition and palatability in rats with diet-induced obesity.Am. J. Physiol. Regul. Integr. Comp. Physiol.20022821R46R5410.1152/ajpregu.2002.282.1.R4611742822
    [Google Scholar]
  131. ShawM.A. RasmussenK.M. MyersT.R. Consumption of a high fat diet impairs reproductive performance in Sprague-Dawley rats.J. Nutr.19971271646910.1093/jn/127.1.649040546
    [Google Scholar]
  132. IchimuraM. MasuzumiM. KawaseM. SakakiM. TamaruS. NagataY. TanakaK. SurugaK. TsuneyamaK. MatsudaS. OmagariK. A diet-induced Sprague–Dawley rat model of nonalcoholic steatohepatitis-related cirrhosis.J. Nutr. Biochem.201740626910.1016/j.jnutbio.2016.10.00727863346
    [Google Scholar]
  133. GurungS. AgbagaM.P. MyersD.A. Cognitive differences between Sprague-Dawley rats selectively bred for sensitivity or resistance to diet induced obesity.Behav. Brain Res.201631112213010.1016/j.bbr.2016.05.01827173431
    [Google Scholar]
  134. PischonT. BoeingH. HoffmannK. BergmannM. SchulzeM.B. OvervadK. van der SchouwY.T. SpencerE. MoonsK.G.M. TjønnelandA. HalkjaerJ. JensenM.K. SteggerJ. Clavel-ChapelonF. Boutron-RuaultM.C. ChajesV. LinseisenJ. KaaksR. TrichopoulouA. TrichopoulosD. BamiaC. SieriS. PalliD. TuminoR. VineisP. PanicoS. PeetersP.H.M. MayA.M. Bueno-de-MesquitaH.B. van DuijnhovenF.J.B. HallmansG. WeinehallL. ManjerJ. HedbladB. LundE. AgudoA. ArriolaL. BarricarteA. NavarroC. MartinezC. QuirósJ.R. KeyT. BinghamS. KhawK.T. BoffettaP. JenabM. FerrariP. RiboliE. General and abdominal adiposity and risk of death in Europe.N. Engl. J. Med.2008359202105212010.1056/NEJMoa080189119005195
    [Google Scholar]
  135. PouK.M. MassaroJ.M. HoffmannU. VasanR.S. Maurovich-HorvatP. LarsonM.G. KeaneyJ.F.Jr MeigsJ.B. LipinskaI. KathiresanS. MurabitoJ.M. O’DonnellC.J. BenjaminE.J. FoxC.S. Visceral and subcutaneous adipose tissue volumes are cross-sectionally related to markers of inflammation and oxidative stress: The Framingham Heart Study.Circulation2007116111234124110.1161/CIRCULATIONAHA.107.71050917709633
    [Google Scholar]
  136. CristanchoA.G. LazarM.A. Forming functional fat: A growing understanding of adipocyte differentiation.Nat. Rev. Mol. Cell Biol.2011121172273410.1038/nrm319821952300
    [Google Scholar]
  137. TilgH. MoschenA.R. Adipocytokines: Mediators linking adipose tissue, inflammation and immunity.Nat. Rev. Immunol.200661077278310.1038/nri193716998510
    [Google Scholar]
  138. SparksJ.D. CianciJ. JokinenJ. ChenL.S. SparksC.E. Interleukin-6 mediates hepatic hypersecretion of apolipoprotein B.Am. J. Physiol. Gastrointest. Liver Physiol.20102994G980G98910.1152/ajpgi.00080.201020651008
    [Google Scholar]
  139. AliA.T. HochfeldW.E. MyburghR. PepperM.S. Adipocyte and adipogenesis.Eur. J. Cell Biol.2013926-722923610.1016/j.ejcb.2013.06.00123876739
    [Google Scholar]
  140. GregoireF.M. SmasC.M. SulH.S. Understanding adipocyte differentiation.Physiol. Rev.199878378380910.1152/physrev.1998.78.3.7839674695
    [Google Scholar]
  141. ArmaniA. MammiC. MarzollaV. CalanchiniM. AntelmiA. RosanoG.M.C. FabbriA. CaprioM. Cellular models for understanding adipogenesis, adipose dysfunction, and obesity.J. Cell. Biochem.2010110356457210.1002/jcb.2259820512917
    [Google Scholar]
  142. GreenH. MeuthM. An established pre-adipose cell line and its differentiation in culture.Cell19743212713310.1016/0092‑8674(74)90116‑04426090
    [Google Scholar]
  143. GreenH. KehindeO. Spontaneous heritable changes leading to increased adipose conversion in 3T3 cells.Cell19767110511310.1016/0092‑8674(76)90260‑9949738
    [Google Scholar]
  144. DufauJ. ShenJ.X. CouchetM. De Castro BarbosaT. MejhertN. MassierL. GrisetiE. MouiselE. AmriE.Z. LauschkeV.M. RydénM. LanginD. In vitro and ex vivo models of adipocytes.Am. J. Physiol. Cell Physiol.20213205C822C84110.1152/ajpcell.00519.202033439778
    [Google Scholar]
  145. StudentA.K. HsuR.Y. LaneM.D. Induction of fatty acid synthetase synthesis in differentiating 3T3-L1 preadipocytes.J. Biol. Chem.1980255104745475010.1016/S0021‑9258(19)85559‑X7372608
    [Google Scholar]
  146. WolinsN.E. QuaynorB.K. SkinnerJ.R. TzekovA. ParkC. ChoiK. BickelP.E. OP9 mouse stromal cells rapidly differentiate into adipocytes: Characterization of a useful new model of adipogenesis.J. Lipid Res.200647245046010.1194/jlr.D500037‑JLR20016319419
    [Google Scholar]
  147. LaneJ.M. DoyleJ.R. FortinJ.P. KopinA.S. OrdovásJ.M. Development of an OP9 derived cell line as a robust model to rapidly study adipocyte differentiation.PLoS One2014911e11212310.1371/journal.pone.011212325409310
    [Google Scholar]
  148. XiaoL. AoshimaH. SaitohY. MiwaN. Highly hydroxylated fullerene localizes at the cytoskeleton and inhibits oxidative stress in adipocytes and a subcutaneous adipose-tissue equivalent.Free Radic. Biol. Med.20115171376138910.1016/j.freeradbiomed.2011.05.02621684329
    [Google Scholar]
  149. Hernández-MosqueiraC. Velez-delValleC. Kuri-HarcuchW. Tissue alkaline phosphatase is involved in lipid metabolism and gene expression and secretion of adipokines in adipocytes.Biochim. Biophys. Acta, Gen. Subj.20151850122485249610.1016/j.bbagen.2015.09.01426391843
    [Google Scholar]
  150. Ruiz-OjedaF. RupérezA. Gomez-LlorenteC. GilA. AguileraC. Cell models and their application for studying adipogenic differentiation in relation to obesity: A review.Int. J. Mol. Sci.2016177104010.3390/ijms1707104027376273
    [Google Scholar]
  151. ReznikoffC.A. BrankowD.W. HeidelbergerC. Establishment and characterization of a cloned line of C3H mouse embryo cells sensitive to postconfluence inhibition of division.Cancer Res.19733312323132384357355
    [Google Scholar]
  152. LeeN. KimI. ParkS. HanD. HaS. KwonM. KimJ. ByunS.H. OhW. JeonH.B. KweonD.H. ChoJ.Y. YoonK. Creatine inhibits adipogenesis by downregulating insulin-induced activation of the phosphatidylinositol 3-kinase signaling pathway.Stem Cells Dev.201524898399410.1089/scd.2014.013025428599
    [Google Scholar]
  153. BegM. ChauhanP. VarshneyS. ShankarK. RajanS. SainiD. SrivastavaM.N. YadavP.P. GaikwadA.N. A withanolide coagulin-L inhibits adipogenesis modulating Wnt/β-catenin pathway and cell cycle in mitotic clonal expansion.Phytomedicine201421440641410.1016/j.phymed.2013.10.00924252344
    [Google Scholar]
  154. TangQ.Q. OttoT.C. LaneM.D. Commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage.Proc. Natl. Acad. Sci. USA2004101269607961110.1073/pnas.040310010115210946
    [Google Scholar]
  155. BiemannR. FischerB. BlüherM. Navarrete SantosA. Tributyltin affects adipogenic cell fate commitment in mesenchymal stem cells by a PPARγ independent mechanism.Chem. Biol. Interact.20142141910.1016/j.cbi.2014.01.02124513447
    [Google Scholar]
  156. SuleimanJ. MohamedM. BakarA. A systematic review on different models of inducing obesity in animals: Advantages and limitations.J. Adv. Vet. Anim. Res.20207110311410.5455/javar.2020.g39932219116
    [Google Scholar]
  157. GhanemiA. YoshiokaM. St-AmandJ. Obese animals as models for numerous diseases: Advantages and applications.Medicina (Kaunas)202157539910.3390/medicina5705039933919006
    [Google Scholar]
  158. GhanemiA. YoshiokaM. St-AmandJ. In vitro mimicking of obesity-induced biochemical environment to study obesity impacts on cells and tissues.Diseases20221047610.3390/diseases1004007636278576
    [Google Scholar]
  159. BrayG.A. YorkD.A. FislerJ.S. Experimental obesity: A homeostatic failure due to defective nutrient stimulation of the sympathetic nervous system.Vitam. Horm.198945112510.1016/S0083‑6729(08)60393‑32688303
    [Google Scholar]
  160. BrayG.A. LovejoyJ.C. SmithS.R. DeLanyJ.P. LefevreM. HwangD. RyanD.H. YorkD.A. The influence of different fats and fatty acids on obesity, insulin resistance and inflammation.J. Nutr.200213292488249110.1093/jn/132.9.248812221198
    [Google Scholar]
  161. WestD.B. YorkB. Dietary fat, genetic predisposition, and obesity: Lessons from animal models.Am. J. Clin. Nutr.1998673Suppl.505S512S10.1093/ajcn/67.3.505S9497161
    [Google Scholar]
  162. ReesD.A. AlcoladoJ.C. Animal models of diabetes mellitus.Diabet. Med.200522435937010.1111/j.1464‑5491.2005.01499.x15787657
    [Google Scholar]
  163. HerbergL. ColemanD.L. Laboratory animals exhibiting obesity and diabetes syndromes.Metabolism1977261599910.1016/0026‑0495(77)90128‑7834144
    [Google Scholar]
  164. NilssonC. RaunK. YanF. LarsenM.O. Tang-ChristensenM. Laboratory animals as surrogate models of human obesity.Acta Pharmacol. Sin.201233217318110.1038/aps.2011.20322301857
    [Google Scholar]
  165. SurwitR.S. KuhnC.M. CochraneC. McCubbinJ.A. FeinglosM.N. Diet-induced type II diabetes in C57BL/6J mice.Diabetes19883791163116710.2337/diab.37.9.11633044882
    [Google Scholar]
  166. WinzellM.S. AhrénB. The high-fat diet-fed mouse: A model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes.Diabetes200453Suppl. 3S215S21910.2337/diabetes.53.suppl_3.S21515561913
    [Google Scholar]
  167. LeiterE.H. StrobelM. O’NeillA. SchultzD. SchileA. ReifsnyderP.C. Comparison of two new mouse models of polygenic type 2 diabetes at the jackson laboratory, NONcNZO10Lt/J and TALLYHO/JngJ.J. Diabetes Res.201320131710.1155/2013/16532723671854
    [Google Scholar]
  168. CummingsB.P. DigitaleE.K. StanhopeK.L. GrahamJ.L. BaskinD.G. ReedB.J. SweetI.R. GriffenS.C. HavelP.J. Development and characterization of a novel rat model of type 2 diabetes mellitus: The UC Davis type 2 diabetes mellitus UCD-T2DM rat.Am. J. Physiol. Regul. Integr. Comp. Physiol.20082956R1782R179310.1152/ajpregu.90635.200818832086
    [Google Scholar]
  169. PetersonR.G. ShawW.N. NeelM.A. LittleL.A. EichbergJ. Zucker diabetic fatty rat as a model for non-insulin-dependent diabetes mellitus.ILAR J.1990323161910.1093/ilar.32.3.16
    [Google Scholar]
  170. DeedsM.C. AndersonJ.M. ArmstrongA.S. GastineauD.A. HiddingaH.J. JahangirA. EberhardtN.L. KudvaY.C. Single dose streptozotocin-induced diabetes: Considerations for study design in islet transplantation models.Lab. Anim.201145313114010.1258/la.2010.01009021478271
    [Google Scholar]
  171. ChoY.R. KimH.J. ParkS.Y. KoH.J. HongE.G. HigashimoriT. ZhangZ. JungD.Y. OlaM.S. LaNoueK.F. LeiterE.H. KimJ.K. Hyperglycemia, maturity-onset obesity, and insulin resistance in NONcNZO10/LtJ males, a new mouse model of type 2 diabetes.Am. J. Physiol. Endocrinol. Metab.20072931E327E33610.1152/ajpendo.00376.200617616608
    [Google Scholar]
  172. HirataT. YoshitomiT. InoueM. IigoY. MatsumotoK. KubotaK. ShinagawaA. Pathological and gene expression analysis of a polygenic diabetes model, NONcNZO10/LtJ mice.Gene2017629525810.1016/j.gene.2017.07.07528760554
    [Google Scholar]
  173. KingA.J.F. The use of animal models in diabetes research.Br. J. Pharmacol.2012166387789410.1111/j.1476‑5381.2012.01911.x22352879
    [Google Scholar]
  174. KimJ.H. StewartT.P. ZhangW. KimH.Y. NishinaP.M. NaggertJ.K. Type 2 diabetes mouse model TallyHo carries an obesity gene on chromosome 6 that exaggerates dietary obesity.Physiol. Genomics200522217118110.1152/physiolgenomics.00197.200415870394
    [Google Scholar]
  175. AllanM.F. EisenE.J. PompD. The M16 mouse: An outbred animal model of early onset polygenic obesity and diabesity.Obes. Res.20041291397140710.1038/oby.2004.17615483204
    [Google Scholar]
  176. FordE. The epidemiology of obesity and asthma.J. Allergy Clin. Immunol.2005115589790910.1016/j.jaci.2004.11.05015867841
    [Google Scholar]
  177. ShoreS.A. Obesity and asthma: Lessons from animal models.J. Appl. Physiol.2007102251652810.1152/japplphysiol.00847.200617053103
    [Google Scholar]
  178. WilliamsA.S. ChenL. KasaharaD.I. SiH. WurmbrandA.P. ShoreS.A. Obesity and airway responsiveness: Role of TNFR2.Pulm. Pharmacol. Ther.201326444445410.1016/j.pupt.2012.05.00122584291
    [Google Scholar]
  179. WilliamsA.S. MathewsJ.A. KasaharaD.I. ChenL. WurmbrandA.P. SiH. ShoreS.A. Augmented pulmonary responses to acute ozone exposure in obese mice: Roles of TNFR2 and IL-13.Environ. Health Perspect.2013121555155710.1289/ehp.120588023434795
    [Google Scholar]
  180. ZhuM. WilliamsA.S. ChenL. WurmbrandA.P. WilliamsE.S. ShoreS.A. Role of TNFR1 in the innate airway hyperresponsiveness of obese mice.J. Appl. Physiol.201211391476148510.1152/japplphysiol.00588.201222984249
    [Google Scholar]
  181. ChoH.Y. ZhangL.Y. KleebergerS.R. Ozone-induced lung inflammation and hyperreactivity are mediated via tumor necrosis factor-α receptors.Am. J. Physiol. Lung Cell. Mol. Physiol.20012803L537L54610.1152/ajplung.2001.280.3.L53711159038
    [Google Scholar]
  182. ShoreS.A. SchwartzmanI.N. Le BlancB. Krishna MurthyG.G. DoerschukC.M. Tumor necrosis factor receptor 2 contributes to ozone-induced airway hyperresponsiveness in mice.Am. J. Respir. Crit. Care Med.2001164460260710.1164/ajrccm.164.4.200101611520723
    [Google Scholar]
  183. WilliamsA.S. MathewsJ.A. KasaharaD.I. WurmbrandA.P. ChenL. ShoreS.A. Innate and ozone-induced airway hyperresponsiveness in obese mice: Role of TNF-α.Am. J. Physiol. Lung Cell. Mol. Physiol.201530811L1168L117710.1152/ajplung.00393.201425840999
    [Google Scholar]
  184. Rivera-SanchezY.M. JohnstonR.A. SchwartzmanI.N. ValoneJ. SilvermanE.S. FredbergJ.J. ShoreS.A. Differential effects of ozone on airway and tissue mechanics in obese mice.J. Appl. Physiol.20049662200220610.1152/japplphysiol.00960.200314966019
    [Google Scholar]
  185. ShoreS.A. Rivera-SanchezY.M. SchwartzmanI.N. JohnstonR.A. Responses to ozone are increased in obese mice.J. Appl. Physiol.200395393894510.1152/japplphysiol.00336.200312794034
    [Google Scholar]
  186. JohnstonR.A. ThemanT.A. ShoreS.A. Augmented responses to ozone in obese carboxypeptidase E-deficient mice.Am. J. Physiol. Regul. Integr. Comp. Physiol.20062901R126R13310.1152/ajpregu.00306.200516002559
    [Google Scholar]
  187. LuF.L. JohnstonR.A. FlyntL. ThemanT.A. TerryR.D. SchwartzmanI.N. LeeA. ShoreS.A. Increased pulmonary responses to acute ozone exposure in obese db / db mice.Am. J. Physiol. Lung Cell. Mol. Physiol.20062905L856L86510.1152/ajplung.00386.200516373670
    [Google Scholar]
  188. LaposkyA.D. SheltonJ. BassJ. DugovicC. PerrinoN. TurekF.W. Altered sleep regulation in leptin-deficient mice.Am. J. Physiol. Regul. Integr. Comp. Physiol.20062904R894R90310.1152/ajpregu.00304.200516293682
    [Google Scholar]
  189. HoustisN. RosenE.D. LanderE.S. Reactive oxygen species have a causal role in multiple forms of insulin resistance.Nature2006440708694494810.1038/nature0463416612386
    [Google Scholar]
  190. SchererP.E. Adipose Tissue.Diabetes20065561537154510.2337/db06‑026316731815
    [Google Scholar]
  191. KirkhamP. RahmanI. Oxidative stress in asthma and COPD: Antioxidants as a therapeutic strategy.Pharmacol. Ther.2006111247649410.1016/j.pharmthera.2005.10.01516458359
    [Google Scholar]
  192. ReavenG.M. Role of insulin resistance in human disease (syndrome X): An expanded definition.Annu. Rev. Med.199344112113110.1146/annurev.me.44.020193.0010058476236
    [Google Scholar]
  193. LandsbergL. Insulin and hypertension: Lessons from obesity.N. Engl. J. Med.1987317637837910.1056/NEJM1987080631706093299098
    [Google Scholar]
  194. Van VlietB.N. HallJ.E. MizelleH.L. MontaniJ.P. SmithM.J.Jr Reduced parasympathetic control of heart rate in obese dogs.Am. J. Physiol. Heart Circ. Physiol.19952692H629H63710.1152/ajpheart.1995.269.2.H6297653627
    [Google Scholar]
  195. VerwaerdeP. SénardJ.M. GalinierM. RougéP. MassabuauP. GalitzkyJ. BerlanM. LafontanM. MontastrucJ.L. Changes in short-term variability of blood pressure and heart rate during the development of obesity-associated hypertension in high-fat fed dogs.J. Hypertens.19991781135114310.1097/00004872‑199917080‑0001310466469
    [Google Scholar]
  196. AroneL.J. MackintoshR. RosenbaumM. LeibelR.L. HirschJ. Autonomic nervous system activity in weight gain and weight loss.Am. J. Physiol. Regul. Integr. Comp. Physiol.19952691R222R22510.1152/ajpregu.1995.269.1.R2227631897
    [Google Scholar]
  197. HallJ.E. do CarmoJ.M. da SilvaA.A. WangZ. HallM.E. Obesity-induced hypertension.Circ. Res.20151166991100610.1161/CIRCRESAHA.116.30569725767285
    [Google Scholar]
  198. HallJ. Mechanisms of abnormal renal sodium handling in obesity hypertension.Am. J. Hypertens.1997101249S55S10.1016/S0895‑7061(97)00075‑79160781
    [Google Scholar]
  199. HallJ. BrandsM.W. HenegarJ.R. Mechanisms of hypertension and kidney disease in obesity.Ann. N. Y. Acad. Sci.199989219110710.1111/j.1749‑6632.1999.tb07788.x10842655
    [Google Scholar]
  200. IshibashiS. BrownM.S. GoldsteinJ.L. GerardR.D. HammerR.E. HerzJ. Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery.J. Clin. Invest.199392288389310.1172/JCI1166638349823
    [Google Scholar]
  201. Powell-BraxtonL. VéniantM. LatvalaR.D. HiranoK.I. WonW.B. RossJ. DybdalN. ZlotC.H. YoungS.G. DavidsonN.O. A mouse model of human familial hypercholesterolemia: Markedly elevated low density lipoprotein cholesterol levels and severe atherosclerosis on a low-fat chow diet.Nat. Med.19984893493810.1038/nm0898‑9349701246
    [Google Scholar]
  202. VéniantM.M. ZlotC.H. WalzemR.L. PierottiV. DriscollR. DichekD. HerzJ. YoungS.G. Lipoprotein clearance mechanisms in LDL receptor-deficient “Apo-B48-only” and “Apo-B100-only” mice.J. Clin. Invest.199810281559156810.1172/JCI41649788969
    [Google Scholar]
  203. SananD.A. NewlandD.L. TaoR. MarcovinaS. WangJ. MooserV. HammerR.E. HobbsH.H. Low density lipoprotein receptor-negative mice expressing human apolipoprotein B-100 develop complex atherosclerotic lesions on a chow diet: No accentuation by apolipoprotein(a).Proc. Natl. Acad. Sci. USA19989584544454910.1073/pnas.95.8.45449539774
    [Google Scholar]
  204. HastyA.H. ShimanoH. OsugaJ. NamatameI. TakahashiA. YahagiN. PerreyS. IizukaY. TamuraY. Amemiya-KudoM. YoshikawaT. OkazakiH. OhashiK. HaradaK. MatsuzakaT. SoneH. GotodaT. NagaiR. IshibashiS. YamadaN. Severe hypercholesterolemia, hypertriglyceridemia, and atherosclerosis in mice lacking both leptin and the low density lipoprotein receptor.J. Biol. Chem.200127640374023740810.1074/jbc.M01017620011445560
    [Google Scholar]
  205. AlpertM.A. LavieC.J. AgrawalH. KumarA. KumarS.A. Cardiac effects of obesity.J. Cardiopulm. Rehabil. Prev.201636111110.1097/HCR.000000000000014726629864
    [Google Scholar]
  206. LavieC.J. McAuleyP.A. ChurchT.S. MilaniR.V. BlairS.N. Obesity and cardiovascular diseases: Implications regarding fitness, fatness, and severity in the obesity paradox.J. Am. Coll. Cardiol.201463141345135410.1016/j.jacc.2014.01.02224530666
    [Google Scholar]
  207. AuneD. SenA. PrasadM. NoratT. JanszkyI. TonstadS. RomundstadP. VattenL.J. BMI and all cause mortality: Systematic review and non-linear dose-response meta-analysis of 230 cohort studies with 3.74 million deaths among 30.3 million participants.BMJ2016353i215610.1136/bmj.i215627146380
    [Google Scholar]
  208. PetrelliF. CortelliniA. IndiniA. TomaselloG. GhidiniM. NigroO. SalatiM. DottoriniL. IaculliA. VarricchioA. RampullaV. BarniS. CabidduM. BossiA. GhidiniA. ZaniboniA. Association of obesity with survival outcomes in patients with cancer.JAMA Netw. Open202143e21352010.1001/jamanetworkopen.2021.352033779745
    [Google Scholar]
  209. LengyelE. MakowskiL. DiGiovanniJ. KoloninM.G. Cancer as a matter of fat: The crosstalk between adipose tissue and tumors.Trends Cancer20184537438410.1016/j.trecan.2018.03.00429709261
    [Google Scholar]
  210. LiuX.Z. PedersenL. HalbergN. Cellular mechanisms linking cancers to obesity.Cell Stress202155557210.15698/cst2021.05.24833987528
    [Google Scholar]
  211. AnnettS. MooreG. RobsonT. Obesity and cancer metastasis: Molecular and translational perspectives.Cancers (Basel)20201212379810.3390/cancers1212379833339340
    [Google Scholar]
  212. RogersC.J. PrabhuK.S. Vijay-KumarM. The microbiome and obesity-an established risk for certain types of cancer.Cancer J.201420317618010.1097/PPO.000000000000004924855004
    [Google Scholar]
  213. ChangH.H. MoroA. TakakuraK. SuH.Y. MoA. NakanishiM. WaldronR.T. FrenchS.W. DawsonD.W. HinesO.J. LiG. GoV.L.W. Sinnett-SmithJ. PandolS.J. LugeaA. GukovskayaA.S. DuffM.O. RosenbergD.W. RozengurtE. EiblG. Incidence of pancreatic cancer is dramatically increased by a high fat, high calorie diet in KrasG12D mice.PLoS One2017129e018445510.1371/journal.pone.018445528886117
    [Google Scholar]
  214. TuominenI. Al-RabadiL. StavrakisD. KaragiannidesI. PothoulakisC. BugniJ.M. Diet-induced obesity promotes colon tumor development in azoxymethane-treated mice.PLoS One201384e6093910.1371/journal.pone.006093923560112
    [Google Scholar]
  215. ParkS-Y. KimJ-S. SeoY-R. SungM-K. Effects of diet-induced obesity on colitis-associated colon tumor formation in A/J mice.Int. J. Obes.201236227328010.1038/ijo.2011.8321544082
    [Google Scholar]
  216. HaoJ. ZhangY. YanX. YanF. SunY. ZengJ. WaigelS. YinY. FraigM.M. EgilmezN.K. SuttlesJ. KongM. LiuS. ClearyM.P. SauterE. LiB. Circulating adipose fatty acid binding protein is a new link underlying obesity-associated breast/mammary tumor development.Cell Metab.2018285689705.e510.1016/j.cmet.2018.07.00630100196
    [Google Scholar]
  217. HotamisligilG.S. BernlohrD.A. Metabolic functions of FABPs—mechanisms and therapeutic implications.Nat. Rev. Endocrinol.2015111059260510.1038/nrendo.2015.12226260145
    [Google Scholar]
  218. ParkJ. MorleyT.S. KimM. CleggD.J. SchererP.E. Obesity and cancer—mechanisms underlying tumour progression and recurrence.Nat. Rev. Endocrinol.201410845546510.1038/nrendo.2014.9424935119
    [Google Scholar]
  219. FriedenreichC.M. Ryder-BurbidgeC. McNeilJ. Physical activity, obesity and sedentary behavior in cancer etiology: Epidemiologic evidence and biologic mechanisms.Mol. Oncol.202115379080010.1002/1878‑0261.1277232741068
    [Google Scholar]
  220. ShahidR.K. AhmedS. LeD. YadavS. Diabetes and cancer: Risk, challenges, management and outcomes.Cancers (Basel)20211322573510.3390/cancers1322573534830886
    [Google Scholar]
  221. IyengarN.M. GucalpA. DannenbergA.J. HudisC.A. Obesity and cancer mechanisms: Tumor microenvironment and inflammation.J. Clin. Oncol.201634354270427610.1200/JCO.2016.67.428327903155
    [Google Scholar]
  222. BarberT.M. HansonP. WeickertM.O. FranksS. Obesity and polycystic ovary syndrome: Implications for pathogenesis and novel management strategies.Clin. Med. Insights Reprod. Health20191310.1177/117955811987404231523137
    [Google Scholar]
  223. RosenfieldR.L. EhrmannD.A. The pathogenesis of polycystic ovary syndrome (PCOS): The hypothesis of PCOS as functional ovarian hyperandrogenism revisited.Endocr. Rev.201637546752010.1210/er.2015‑110427459230
    [Google Scholar]
  224. RyuY. KimS.W. KimY.Y. KuS.Y. Animal models for Human Polycystic Ovary Syndrome (PCOS) focused on the use of indirect hormonal perturbations: A review of the literature.Int. J. Mol. Sci.20192011272010.3390/ijms2011272031163591
    [Google Scholar]
  225. OsukaS. NakanishiN. MuraseT. NakamuraT. GotoM. IwaseA. KikkawaF. Animal models of polycystic ovary syndrome: A review of hormone-induced rodent models focused on hypothalamus-pituitary-ovary axis and neuropeptides.Reprod. Med. Biol.201918215116010.1002/rmb2.1226230996678
    [Google Scholar]
  226. KimE.J. JangM. ChoiJ.H. ParkK.S. ChoI.H. An improved dehydroepiandrosterone-induced rat model of Polycystic Ovary Syndrome (PCOS): Post-pubertal Improve PCOS’s Features.Front. Endocrinol. (Lausanne)2018973510.3389/fendo.2018.0073530564195
    [Google Scholar]
  227. WangZ FengM AweO MaY ShenM XueP Gonadotrope androgen receptor mediates pituitary responsiveness to hormones and androgen-induced subfertility.JCI Insight2019517e12781710.1172/jci.insight.127817
    [Google Scholar]
  228. XuJ. DunJ. YangJ. ZhangJ. LinQ. HuangM. JiF. HuangL. YouX. LinY. Letrozole rat model mimics human polycystic ovarian syndrome and changes in insulin signal pathways.Med. Sci. Monit.202026e92307310.12659/MSM.92307332638705
    [Google Scholar]
  229. KafaliH. IriadamM. OzardalıI. DemirN. Letrozole-induced polycystic ovaries in the rat: A new model for cystic ovarian disease.Arch. Med. Res.200435210310810.1016/j.arcmed.2003.10.00515010188
    [Google Scholar]
  230. StamlerR. StamlerJ. RiedlingerW.F. AlgeraG. RobertsR.H. Weight and blood pressure. Findings in hypertension screening of 1 million Americans.JAMA1978240151607161010.1001/jama.1978.03290150053024691146
    [Google Scholar]
  231. GrassiG. SeravalleG. CattaneoBM. BollaGB. LanfranchiA. ColomboM. Sympathetic activation in obese normotensive subjects.Hypertension1995254 Pt 1560310.1161/01.HYP.25.4.560
    [Google Scholar]
  232. LandsbergL. KriegerD.R. Obesity, metabolism, and the sympathetic nervous system.Am. J. Hypertens.198923_Pt_2125S132S10.1093/ajh/2.3.125S2647103
    [Google Scholar]
  233. LedwozywA. MichalakJ. StepieńA. KadziołkaA. The relationship between plasma triglycerides, cholesterol, total lipids and lipid peroxidation products during human atherosclerosis.Clin. Chim. Acta1986155327528310.1016/0009‑8981(86)90247‑03708856
    [Google Scholar]
  234. GrassiG SeravalleG Dell’OroR TurriC BollaGB ManciaG Adrenergic and reflex abnormalities in obesity-related hypertension.Hypertension20003645384210.1161/01.HYP.36.4.538
    [Google Scholar]
  235. SeravalleG. GrassiG. Sympathetic nervous system, hypertension, obesity and metabolic syndrome.High Blood Press. Cardiovasc. Prev.201623317517910.1007/s40292‑016‑0137‑426942609
    [Google Scholar]
  236. LedouxS. QueguinerI. MsikaS. CalderariS. RufatP. GascJ.M. CorvolP. LargerE. Angiogenesis associated with visceral and subcutaneous adipose tissue in severe human obesity.Diabetes200857123247325710.2337/db07‑181218835936
    [Google Scholar]
  237. KimF. PhamM. MaloneyE. RizzoN.O. MortonG.J. WisseB.E. KirkE.A. ChaitA. SchwartzM.W. Vascular inflammation, insulin resistance, and reduced nitric oxide production precede the onset of peripheral insulin resistance.Arterioscler. Thromb. Vasc. Biol.200828111982198810.1161/ATVBAHA.108.16972218772497
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303312932240801073903
Loading
/content/journals/emiddt/10.2174/0118715303312932240801073903
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): animal model; cell line; health problems; HFD model; Obesity; screening models
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test