Skip to content
2000
Volume 25, Issue 6
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

It is widely recognized that a strong correlation exists between metabolic diseases and chronic kidney disease (CKD). Based on bibliometric statistics, the overall number of Mendelian randomization (MR) analysis in relation to metabolic diseases and CKD has increased since 2005. In recent years, this topic has emerged as a significant area of research interest. In clinical studies, RCTs are often limited due to the intricate causal interplay between metabolic diseases and CKD, which makes it difficult to ascertain the precise etiology of these conditions definitively. In MR studies, genetic variation is incorporated as an instrumental variable (IV). They elucidate the possible causal relationships between associated risk factors and disease risks by including individual innate genetic markers. It is widely believed that MR avoids confounding and can reverse effects to the greatest extent possible. As an increasingly popular technology in the medical field, MR studies have become a popular technology in causal relationships investigation, particularly in epidemiological etiology studies. At present, MR has been widely used for the investigation of medical etiologies, drug development, and decision-making in public health. The article aims to offer insights into the causal relationship between metabolic diseases and CKD, as well as strategies for prevention and treatment, through a summary of MR-related research on these conditions.

Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303288685240808073238
2024-08-20
2025-05-29
Loading full text...

Full text loading...

References

  1. WebsterA.C. NaglerE.V. MortonR.L. MassonP. Chronic kidney disease.Lancet2017389100751238125210.1016/S0140‑6736(16)32064‑527887750
    [Google Scholar]
  2. BikbovB. PurcellC.A. LeveyA.S. SmithM. AbdoliA. AbebeM. AdebayoO.M. AfaridehM. AgarwalS.K. Agudelo-BoteroM. AhmadianE. Al-AlyZ. AlipourV. Almasi-HashianiA. Al-RaddadiR.M. Alvis-GuzmanN. AminiS. AndreiT. AndreiC.L. AndualemZ. AnjomshoaM. ArablooJ. AshagreA.F. AsmelashD. AtaroZ. AtoutM.M.W. AyanoreM.A. BadawiA. BakhtiariA. BallewS.H. BalouchiA. BanachM. BarqueraS. BasuS. BayihM.T. BediN. BelloA.K. BensenorI.M. BijaniA. BoloorA. BorzìA.M. CámeraL.A. CarreroJ.J. CarvalhoF. CastroF. Catalá-LópezF. ChangA.R. ChinK.L. ChungS.C. CirilloM. CousinE. DandonaL. DandonaR. DaryaniA. Das GuptaR. DemekeF.M. DemozG.T. DestaD.M. DoH.P. DuncanB.B. EftekhariA. EsteghamatiA. FatimaS.S. FernandesJ.C. FernandesE. FischerF. FreitasM. GadM.M. GebremeskelG.G. GebresillassieB.M. GetaB. GhafourifardM. GhajarA. GhithN. GillP.S. GinawiI.A. GuptaR. Hafezi-NejadN. Haj-MirzaianA. Haj-MirzaianA. HariyaniN. HasanM. HasankhaniM. HasanzadehA. HassenH.Y. HayS.I. HeidariB. HerteliuC. HoangC.L. HosseiniM. HostiucM. IrvaniS.S.N. IslamS.M.S. Jafari BalalamiN. JamesS.L. JassalS.K. JhaV. JonasJ.B. JoukarF. JozwiakJ.J. KabirA. KahsayA. KasaeianA. KassaT.D. KassayeH.G. KhaderY.S. KhalilovR. KhanE.A. KhanM.S. KhangY.H. KisaA. KovesdyC.P. Kuate DefoB. KumarG.A. LarssonA.O. LimL.L. LopezA.D. LotufoP.A. MajeedA. MalekzadehR. MärzW. MasakaA. MeheretuH.A.A. MiazgowskiT. MiricaA. MirrakhimovE.M. MithraP. MoazenB. MohammadD.K. MohammadpourhodkiR. MohammedS. MokdadA.H. MoralesL. Moreno VelasquezI. MousaviS.M. MukhopadhyayS. NachegaJ.B. NadkarniG.N. NansseuJ.R. NatarajanG. NazariJ. NealB. NegoiR.I. NguyenC.T. NikbakhshR. NoubiapJ.J. NowakC. OlagunjuA.T. OrtizA. OwolabiM.O. PalladinoR. PathakM. PoustchiH. PrakashS. PrasadN. RafieiA. RajuS.B. RamezanzadehK. RawafS. RawafD.L. RawalL. ReinerR.C.Jr RezapourA. RibeiroD.C. RoeverL. RothenbacherD. RwegereraG.M. SaadatagahS. SafariS. SahleB.W. SalemH. SanabriaJ. SantosI.S. SarveazadA. SawhneyM. SchaeffnerE. SchmidtM.I. SchutteA.E. SepanlouS.G. ShaikhM.A. SharafiZ. SharifM. SharifiA. SilvaD.A.S. SinghJ.A. SinghN.P. SisayM.M.M. SoheiliA. SutradharI. TeklehaimanotB.F. TesfayB. TeshomeG.F. ThakurJ.S. TonelliM. TranK.B. TranB.X. Tran NgocC. UllahI. ValdezP.R. VarugheseS. VosT. VuL.G. WaheedY. WerdeckerA. WoldeH.F. WondmienehA.B. Wulf HansonS. YamadaT. YeshawY. YonemotoN. YusefzadehH. ZaidiZ. ZakiL. ZamanS.B. ZamoraN. ZarghiA. ZewdieK.A. ÄrnlövJ. CoreshJ. PericoN. RemuzziG. MurrayC.J.L. VosT. GBD chronic kidney disease collaboration.Global, regional, and national burden of chronic kidney disease, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017.Lancet20203951022570973310.1016/S0140‑6736(20)30045‑332061315
    [Google Scholar]
  3. Kalantar-ZadehK. JafarT.H. NitschD. NeuenB.L. PerkovicV. Chronic kidney disease.Lancet20213981030278680210.1016/S0140‑6736(21)00519‑534175022
    [Google Scholar]
  4. XieY. BoweB. MokdadA.H. XianH. YanY. LiT. MaddukuriG. TsaiC.Y. FloydT. Al-AlyZ. Analysis of the global burden of disease study highlights the global, regional, and national trends of chronic kidney disease epidemiology from 1990 to 2016.Kidney Int.201894356758110.1016/j.kint.2018.04.01130078514
    [Google Scholar]
  5. ForemanK.J. MarquezN. DolgertA. FukutakiK. FullmanN. McGaugheyM. PletcherM.A. SmithA.E. TangK. YuanC.W. BrownJ.C. FriedmanJ. HeJ. HeutonK.R. HolmbergM. PatelD.J. ReidyP. CarterA. CercyK. ChapinA. Douwes-SchultzD. FrankT. GoettschF. LiuP.Y. NandakumarV. ReitsmaM.B. ReuterV. SadatN. SorensenR.J.D. SrinivasanV. UpdikeR.L. YorkH. LopezA.D. LozanoR. LimS.S. MokdadA.H. VollsetS.E. MurrayC.J.L. Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: Reference and alternative scenarios for 2016–40 for 195 countries and territories.Lancet2018392101592052209010.1016/S0140‑6736(18)31694‑530340847
    [Google Scholar]
  6. ChangY. RyuS. ChoiY. ZhangY. Y. ChoJ. KwonM. J. HyunY. Y. LeeK. B. KimH. JungH. S. YunK. E. AhnJ. RampalS. ZhaoD. SuhB. S. ChungE. C. ShinH. Pastor-BarriusoR. GuallarE. Metabolically healthy obesity and development of chronic kidney disease a cohort study.Ann. Int. Med.2016164530510.7326/M15‑1323
    [Google Scholar]
  7. ParkS. LeeS. KimY. LeeY. KangM.W. HanK. LeeH. LeeJ.P. JooK.W. LimC.S. KimY.S. KimD.K. Reduced risk for chronic kidney disease after recovery from metabolic syndrome: A nationwide population-based study.Kidney Res. Clin. Pract.202039218019110.23876/j.krcp.20.01632344501
    [Google Scholar]
  8. LinL. TanW. PanX. TianE. WuZ. YangJ. Metabolic syndrome-related kidney injury: A review and update.Front. Endocrinol20221390400110.3389/fendo.2022.90400135813613
    [Google Scholar]
  9. EckelR.H. GrundyS.M. ZimmetP.Z. The metabolic syndrome.Lancet200536594681415142810.1016/S0140‑6736(05)66378‑715836891
    [Google Scholar]
  10. AmbroselliD. MasciulliF. RomanoE. CatanzaroG. BesharatZ.M. MassariM.C. FerrettiE. MigliaccioS. IzzoL. RitieniA. GrossoM. FormichiC. DottaF. FrigerioF. BarbieraE. GiustiA.M. IngallinaC. ManninaL. New advances in metabolic syndrome, from prevention to treatment: The role of diet and food.Nutrients202315364010.3390/nu1503064036771347
    [Google Scholar]
  11. LiX. LiX. LinH. FuX. LinW. LiM. ZengX. GaoQ. Metabolic syndrome and stroke: A meta-analysis of prospective cohort studies.J. Clin. Neurosci.201740343810.1016/j.jocn.2017.01.01828268148
    [Google Scholar]
  12. TirandiA. CarboneF. MontecuccoF. LiberaleL. The role of metabolic syndrome in sudden cardiac death risk: Recent evidence and future directions.Eur. J. Clin. Invest.2022522e1369310.1111/eci.1369334714544
    [Google Scholar]
  13. LiX. ZhaiY. ZhaoJ. HeH. LiY. LiuY. FengA. LiL. HuangT. XuA. LyuJ. Impact of metabolic syndrome and it’s components on prognosis in patients with cardiovascular diseases: A meta-analysis.Front. Cardiovasc. Med.2021870414510.3389/fcvm.2021.70414534336959
    [Google Scholar]
  14. WuM. ShuY. WangL. SongL. ChenS. LiuY. BiJ. LiD. YangY. HuY. WangY. WuS. TianY. Metabolic syndrome severity score and the progression of CKD.Eur. J. Clin. Invest.2022521e1364610.1111/eci.1364634197633
    [Google Scholar]
  15. SaklayenM.G. The global epidemic of the metabolic syndrome.Curr. Hypertens. Rep.20182021210.1007/s11906‑018‑0812‑z29480368
    [Google Scholar]
  16. Sánchez-MartínezV. Romero-RubioD. Abad-PérezM.J. Descalzo-CabadesM.A. Alonso-GutiérrezS. Salazar-FraileJ. MontagudV. FácilaL. Metabolic syndrome and cardiovascular risk in people treated with long-acting injectable antipsychotics.Endocr. Metab. Immune Disord. Drug Targets201818437938710.2174/187153031766617112015120129165095
    [Google Scholar]
  17. JonesD.S. PodolskyS.H. The history and fate of the gold standard.Lancet201538599771502150310.1016/S0140‑6736(15)60742‑525933270
    [Google Scholar]
  18. CuschieriS. The consort statement.Saudi J. Anaesth.2019135Suppl. 12710.4103/sja.SJA_559_1830930716
    [Google Scholar]
  19. BothwellL.E. GreeneJ.A. PodolskyS.H. JonesD.S. Assessing the gold standard — lessons from the history of RCTs.N. Engl. J. Med.2016374222175218110.1056/NEJMms160459327248626
    [Google Scholar]
  20. CollinsR. BowmanL. LandrayM. PetoR. The magic of randomization versus the myth of real-world evidence.N. Engl. J. Med.2020382767467810.1056/NEJMsb190164232053307
    [Google Scholar]
  21. SkrivankovaV.W. RichmondR.C. WoolfB.A.R. DaviesN.M. SwansonS.A. VanderWeeleT.J. TimpsonN.J. HigginsJ.P.T. DimouN. LangenbergC. LoderE.W. GolubR.M. EggerM. Davey SmithG. RichardsJ.B. Strengthening the reporting of observational studies in epidemiology using mendelian randomisation (STROBE-MR): Explanation and elaboration.BMJ2021375n223310.1136/bmj.n223334702754
    [Google Scholar]
  22. GroverS. Del GrecoM.F. SteinC.M. ZieglerA. Mendelian Randomization.In Statistical Human Genetics: Methods and Protocols2nd Ed, Elston, R. C.2017166658162810.1007/978‑1‑4939‑7274‑6_2928980266
    [Google Scholar]
  23. FerenceB.A. HolmesM.V. SmithG.D. Using mendelian randomization to improve the design of randomized trials.Cold Spring Harb. Perspect. Med.2021117a04098010.1101/cshperspect.a04098033431510
    [Google Scholar]
  24. BoefA.G.C. DekkersO.M. le CessieS. Mendelian randomization studies: A review of the approaches used and the quality of reporting.Int. J. Epidemiol.201544249651110.1093/ije/dyv07125953784
    [Google Scholar]
  25. Davey SmithG. HemaniG. Mendelian randomization: Genetic anchors for causal inference in epidemiological studies.Hum. Mol. Genet.201423R1R89R9810.1093/hmg/ddu32825064373
    [Google Scholar]
  26. KhasawnehL.Q. Al-MahayriZ.N. AliB.R. Mendelian randomization in pharmacogenomics: The unforeseen potentials.Biomed. Pharmacother.202215011295210.1016/j.biopha.2022.11295235429744
    [Google Scholar]
  27. KatanM. Apolipoprotein E isoforms, serum cholesterol, and cancer.Lancet1986327847950750810.1016/S0140‑6736(86)92972‑72869248
    [Google Scholar]
  28. Davey SmithG. EbrahimS. ‘Mendelian randomization’: Can genetic epidemiology contribute to understanding environmental determinants of disease?Int. J. Epidemiol.200332112210.1093/ije/dyg07012689998
    [Google Scholar]
  29. SmithG.D. EbrahimS. Mendelian randomization: Prospects, potentials, and limitations.Int. J. Epidemiol.2004331304210.1093/ije/dyh13215075143
    [Google Scholar]
  30. Davey SmithG. HolmesM.V. DaviesN.M. EbrahimS. Mendel’s laws, Mendelian randomization and causal inference in observational data: Substantive and nomenclatural issues.Eur. J. Epidemiol.20203529911110.1007/s10654‑020‑00622‑732207040
    [Google Scholar]
  31. HemaniG. TillingK. Davey SmithG. Orienting the causal relationship between imprecisely measured traits using GWAS summary data.PLoS Genet.20171311e100708110.1371/journal.pgen.100708129149188
    [Google Scholar]
  32. EmdinC.A. KheraA.V. KathiresanS. Mendelian randomization.JAMA2017318191925192610.1001/jama.2017.1721929164242
    [Google Scholar]
  33. SandersonE. GlymourM.M. HolmesM.V. KangH. MorrisonJ. MunafòM.R. PalmerT. SchoolingC.M. WallaceC. ZhaoQ. Davey SmithG. Mendelian randomization.Nature Reviews Methods Primers202221610.1038/s43586‑021‑00092‑537325194
    [Google Scholar]
  34. ZhengJ. BairdD. BorgesM.C. BowdenJ. HemaniG. HaycockP. EvansD.M. SmithG.D. Recent developments in mendelian randomization studies.Curr. Epidemiol. Rep.20174433034510.1007/s40471‑017‑0128‑629226067
    [Google Scholar]
  35. BurgessS. ScottR.A. TimpsonN.J. Davey SmithG. ThompsonS.G. Epic-InteractC. EPIC- InterAct Consortium.Using published data in Mendelian randomization: A blueprint for efficient identification of causal risk factors.Eur. J. Epidemiol.201530754355210.1007/s10654‑015‑0011‑z25773750
    [Google Scholar]
  36. SpillerW. SlichterD. BowdenJ. Davey SmithG. Detecting and correcting for bias in Mendelian randomization analyses using Gene-by-Environment interactions.Int. J. Epidemiol.201848370271210.1093/ije/dyy20430462199
    [Google Scholar]
  37. ChoY. ShinS.Y. WonS. ReltonC.L. Davey SmithG. ShinM.J. Alcohol intake and cardiovascular risk factors: A Mendelian randomisation study.Sci. Rep.2015511842210.1038/srep1842226687910
    [Google Scholar]
  38. BurgessS. ThompsonS.G. Multivariable mendelian randomization: the use of pleiotropic genetic variants to estimate causal effects.Am. J. Epidemiol.2015181425126010.1093/aje/kwu28325632051
    [Google Scholar]
  39. BurgessS. DudbridgeF. ThompsonS.G. Re: “Multivariable mendelian randomization: The use of pleiotropic genetic variants to estimate causal effects”.Am. J. Epidemiol.2015181429029110.1093/aje/kwv01725660081
    [Google Scholar]
  40. SandersonE. Multivariable mendelian randomization and mediation.Cold Spring Harb. Perspect. Med.2021112a03898410.1101/cshperspect.a03898432341063
    [Google Scholar]
  41. BennM. NordestgaardB.G. From genome-wide association studies to Mendelian randomization: Novel opportunities for understanding cardiovascular disease causality, pathogenesis, prevention, and treatment.Cardiovasc. Res.201811491192120810.1093/cvr/cvy04529471399
    [Google Scholar]
  42. RosoffD.B. Davey SmithG. MehtaN. ClarkeT.K. LohoffF.W. Evaluating the relationship between alcohol consumption, tobacco use, and cardiovascular disease: A multivariable Mendelian randomization study.PLoS Med.20201712e100341010.1371/journal.pmed.100341033275596
    [Google Scholar]
  43. LarssonS.C. MichaëlssonK. BurgessS. Mendelian randomization in the bone field.Bone2019126515810.1016/j.bone.2018.10.01130321669
    [Google Scholar]
  44. HartwigF.P. BorgesM.C. HortaB.L. BowdenJ. Davey SmithG. Inflammatory biomarkers and risk of schizophrenia.JAMA Psychiatry201774121226123310.1001/jamapsychiatry.2017.319129094161
    [Google Scholar]
  45. VaucherJ. KeatingB.J. LasserreA.M. GanW. LyallD.M. WardJ. SmithD.J. PellJ.P. SattarN. ParéG. HolmesM.V. Cannabis use and risk of schizophrenia: A Mendelian randomization study.Mol. Psychiatry20182351287129210.1038/mp.2016.25228115737
    [Google Scholar]
  46. PonsfordM.J. GkatzionisA. WalkerV.M. GrantA.J. WoottonR.E. MooreL.S.P. FatumoS. MasonA.M. ZuberV. WillerC. RasheedH. BrumptonB. HveemK. Kristian DamåsJ. DaviesN. Olav ÅsvoldB. SolligårdE. JonesS. BurgessS. RogneT. GillD. Cardiometabolic traits, sepsis, and severe COVID-19.Circulation2020142181791179310.1161/CIRCULATIONAHA.120.05075332966752
    [Google Scholar]
  47. RichmondR.C. AndersonE.L. DashtiH.S. JonesS.E. LaneJ.M. StrandL.B. BrumptonB. RutterM.K. WoodA.R. StraifK. ReltonC.L. MunafòM. FraylingT.M. MartinR.M. SaxenaR. WeedonM.N. LawlorD.A. SmithG.D. Investigating causal relations between sleep traits and risk of breast cancer in women: Mendelian randomisation study.BMJ2019365l232710.1136/bmj.l232731243001
    [Google Scholar]
  48. HsuC. YangW. ParikhR.V. AndersonA.H. ChenT.K. CohenD.L. HeJ. MohantyM.J. LashJ.P. MillsK.T. MuiruA.N. ParsaA. SaundersM.R. ShafiT. TownsendR.R. WaikarS.S. WangJ. WolfM. TanT.C. FeldmanH.I. GoA.S. InvestigatorsC.S. CRIC study investigators.Race, genetic ancestry, and estimating kidney function in CKD.N. Engl. J. Med.2021385191750176010.1056/NEJMoa210375334554660
    [Google Scholar]
  49. ZhouH. ZhangY. LiuJ. YangY. FangW. HongS. ChenG. ZhaoS. ZhangZ. ShenJ. XianW. HuangY. ZhaoH. ZhangL. Education and lung cancer: A mendelian randomization study.Int. J. Epidemiol.201948374375010.1093/ije/dyz12131219597
    [Google Scholar]
  50. WarrierV. KwongA.S.F. LuoM. DalvieS. CroftJ. SallisH.M. BaldwinJ. MunafòM.R. NievergeltC.M. GrantA.J. BurgessS. MooreT.M. BarzilayR. McIntoshA. van IJzendoornM.H. CecilC.A.M. Gene–environment correlations and causal effects of childhood maltreatment on physical and mental health: A genetically informed approach.Lancet Psychiatry20218537338610.1016/S2215‑0366(20)30569‑133740410
    [Google Scholar]
  51. ChongM. SjaardaJ. PigeyreM. Mohammadi-ShemiraniP. LaliR. ShoamaneshA. GersteinH.C. ParéG. Novel drug targets for ischemic stroke identified through mendelian randomization analysis of the blood proteome.Circulation20191401081983010.1161/CIRCULATIONAHA.119.04018031208196
    [Google Scholar]
  52. StormC.S. KiaD.A. AlmramhiM.M. Bandres-CigaS. FinanC. NoyceA.J. KaiyrzhanovR. MiddlehurstB. TanM. HouldenH. MorrisH.R. Plun-FavreauH. HolmansP. HardyJ. TrabzuniD. QuinnJ. BubbV. MokK.Y. KinghornK.J. LewisP. SchreglmannS.R. LoveringR. R’BiboL. ManzoniC. RizigM. RytenM. GuelfiS. Escott-PriceV. ChelbanV. FoltynieT. WilliamsN. MorrisonK.E. ClarkeC. HarveyK. JacobsB.M. BriceA. DanjouF. LesageS. CorvolJ-C. MartinezM. SchulteC. BrockmannK. Simón-SánchezJ. HeutinkP. RizzuP. SharmaM. GasserT. SchneiderS.A. CooksonM.R. BlauwendraatC. CraigD.W. BillingsleyK. MakariousM.B. NarendraD.P. FaghriF. GibbsJ.R. HernandezD.G. Van Keuren-JensenK. ShulmanJ.M. IwakiH. LeonardH.L. NallsM.A. RobakL. BrasJ. GuerreiroR. LubbeS. TroycocoT. FinkbeinerS. MencacciN.E. LunguC. SingletonA.B. ScholzS.W. ReedX. UittiR.J. RossO.A. GrennF.P. MooreA. AlcalayR.N. WszolekZ.K. Gan-OrZ. RouleauG.A. KrohnL. MuftiK. van HiltenJ.J. MarinusJ. Adarmes-GómezA.D. AguilarM. AlvarezI. AlvarezV. BarreroF.J. YarzaJ.A.B. Bernal-BernalI. BlazquezM. Bonilla-ToribioM. BotíaJ.A. BoungiornoM.T. Buiza-RuedaD. CámaraA. CarrilloF. Carrión-ClaroM. CerdanD. ClarimónJ. ComptaY. Diez-FairenM. Dols-IcardoO. DuarteJ. DuranR. Escamilla-SevillaF. EzquerraM. FelizC. FernándezM. Fernández-SantiagoR. GarciaC. García-RuizP. Gómez-GarreP. HerediaM.J.G. Gonzalez-AramburuI. PagolaA.G. HoenickaJ. InfanteJ. JesúsS. Jimenez-EscrigA. KulisevskyJ. Labrador-EspinosaM.A. Lopez-SendonJ.L. de Munain ArreguiA.L. MaciasD. TorresI.M. MarínJ. MartiM.J. Martínez-CastrilloJ.C. Méndez-del-BarrioC. GonzálezM.M. MataM. MínguezA. MirP. RezolaE.M. MuñozE. PagonabarragaJ. PastorP. ErrazquinF.P. Periñán-TocinoT. Ruiz-MartínezJ. RuzC. RodriguezA.S. SierraM. Suarez-SanmartinE. TaberneroC. TartariJ.P. Tejera-ParradoC. TolosaE. ValldeoriolaF. Vargas-GonzálezL. VelaL. VivesF. ZimprichA. PihlstromL. ToftM. TabaP. KoksS. Hassin-BaerS. MajamaaK. SiitonenA. TienariP. OkubadejoN.U. OjoO.O. ShashkinC. ZharkinbekovaN. AkhmetzhanovV. KaishybayevaG. KarimovaA. KhaibullinT. LynchT.L. HingoraniA.D. WoodN.W. International Parkinson’s disease genomics consortium (IPDGC). Finding genetically-supported drug targets for Parkinson’s disease using Mendelian randomization of the druggable genome.Nat. Commun.2021121734210.1038/s41467‑021‑26280‑134930919
    [Google Scholar]
  53. BatraG. Ghukasyan LakicT. LindbäckJ. HeldC. WhiteH.D. StewartR.A.H. KoenigW. CannonC.P. BudajA. HagströmE. SiegbahnA. WallentinL. Bustamante LabartaM. CartasegnaL.R. ChekherdemianS. CuelloJ.L. ElíasP. GiordanoJ. HirschsonA. HominalM.A. IbañezJ.O. JureH.O. LitvakM. MacinS.M. MacKinnonI.J. MaffeiL.E. MontañaO.R. PradoA.D. SalaJ.M. GorositoV.F.P.I. SanchezR.A. BriegerD. ChewD. CrossD. De LoozeF.J. FarshidA. HallS. KrumH. LaneG.K. Oqueli FloresE. SticklandJ.F.P.I. PurnellP.W. SztoG.Y.F. ThompsonP.L. WaitesJ. WilliamM. BeauloyeC. BolandJ. CharlierF. De RaedtH.J.L.P. DensJ.A.Y. DujardinK. FriartA. ScheenA. SchröderE. SinnaeveP.R. VerheyeS.L.R.A. VranckxP. AbrantesJ.A.M. AlbuquerqueD.C.D. ArditoW.R. BaracioliL.M. BertolamiM.C. BodaneseL.C. Dos Santos FilhoR.D. MaiaL.N. ManentiE.R.F. MarinoR.L. Ogawa Indio do BrasilC.K. PaivaM.S.O. Rabelo Alves JuniorÁ. RassiS. ReisG. RossiP.R.F. SaraivaJ.F.K. BenovH. ChompalovaB. DenchevS. GoudevA. GrigorovaV. MihovA. MinchevaV. PetrovaS. StanevaA. RaevD.F.P.I. TishevaS. AronsonR. BedardJ. BhargavaR.K. BortsD. ConstanceC. CussonJ. DaviesR.F. DucasJ. FergusonM.E.R. GoldenbergR.M. GrondinF. GyenesG. HalperinF. KornderJ. KouzS. LainesseA.Y. LeaderR. LeiterL.A. LonnE.M. MilotA. PearceM.E. PliammL. PowellC.N. RoseB.F. RupkaD.W. SiegaA.J.D. KlinkeP.W.F.P.I. St-AmourE. TalbotP. TardifJ-C. TishlerS.J. TitleL. WongG.C. BullerC.E.F.P.I. Acevedo BlancoM.A. Albornoz AlarconF.J. EscobarE. Florenzano UrzuaF. Pedemonte VillablancaO.A. Prieto DominguezJ.C. Sanhueza CardemilP. Varleta OlivaresP.E. ChenH. ChenJ. DongY. GeJ. HeB. HuoY. LiW. LiX. LiaoY. WeiM. YanX. YeP. YuanZ. ZhangY. ZhuJ. CermakO. DedekV. FrancekL. GrunfeldovaH. HubacJ. FrancP.F.P.I. KellnerovaI. KlimsaZ. KroupaJ. KucharL. LinhartA. MalechaJ. PovolnyJ. VelimskyT. VolfR. JirkaV.F.P.I. BangL. GrandeP.F.P.I. FrostL. HustedS.E. LaursenR.V. NielsenT.F.P.I. HedmanA. MudaP. PlankenU. BarnayC. BautersC. BayetG. BonnetJ. BruckertE. CottinY. CourregesJ-P. DanchinN. DecoulxE. DemarcqJ-M. Dubois-RandeJ-L. ElbazM. KhalifeK. KrempfM. MaupasE. OvizeM. RoulJ.G. SchieleF. BassandJ-P.F.P.I. StegG. VaisseB. AignerU.M. BavendiekU. FischerD.F.P.I. BenedixG. BoenekeH. BottJ. BradoB. BuhrM. ButterC. FischerS. FoersterA. GradM.O. GrosskopfJ. HanefeldM. HoeltzS. FrickH-M.F.P.I. IlliesG. JungT.W.G.E. KademannB. KahrmannG. BourratA.F.P.I. HoracekT.F.P.I. ReuschR.F.P.I. KlausmannG. KleinC. KrauseK.H. KuestersD. MellwigK-P. MenkeT. MuellerS. NeumannG. NischikR. PreuscheA. ProhaskaM. RegnerS.F. ReinW. RummelR. SamerH. SchaeferT. SchenkenbergerI. SchmidtE. SchoenN. SchreckenbergA. SchulzeU. WunderlichJ.F.P.I. SohnH-Y. KlaussV.F.P.I. ToursarkissianN. VoigtJ-G. WeberD. WinkelmannB.R.D. ZuechnerD. AlexopoulosD. Anastasiou-NanaM. KremastinosD.F.P.I. ElisafM. GelerisP. KallikazarosI. KranidisA. ManolisA. MantasI. OlympiosC. TziakasD. VoudrisV. LamY.Y.H. YipW.K.G.F.P.I. SiuC.W.D. BenczúrB. HornyikA. LászlóZ. PappA. PappA. PlésZ. PirosA.F.P.I. SzakálI. TúriT. SeregM.F.P.I. VértesA. AbrahamS. BankerD.N. ChandwaniP. GuptaR. HiremathJ. JayadevS. JosephS. MenonJ.F.P.I. KeshavamurthC. SrinivasA.F.P.I. ParikhK. PothineniR.B. SatheS.P. SawhneyJ.P. SethiS. ChandraP.K.F.P.I. VarmaS. ArdissinoD. BobbioM. BongoA.S. CipolloneF. MezzettiA.F.P.I. ColivicchiF. SantiniM.F.P.I. EspositoG. ChiarielloM.F.P.I. MarzilliM. MerliniP. MorettiL. OlivariZ. PatriziG. ValgimigliM. AmemiyaH. AndoK. IwabuchiM.F.P.I. EndoM. NagashimaH.F.P.I. KametaniR. KoikeA. KuramochiT. NakamuraY. OkuK. OkutsuM. SueyoshiA. TakahashiW. SasakiY.F.P.I. TanabeJ. TanakaH. KashimaK.F.P.I. TanakaY. TakeshitaS.F.P.I. TeranishiJ. BetsuyakuT.F.P.I. YamamotoT. YamazakiS. YanoS. YoshidaK. ChaeJ-K. ChaeS-C. ChoM-C. ChoiD-H. ChoiD-J. HongT-J. JeonH-K. JeongM.H. KimH-S. KimH-J. RyuK-H.F.P.I. KimW-S. KimK-S.F.P.I. LeeS-H. LimD-S. ParkS-W. SeungK-B. Cervantes-EscárcegaJ-L. Hernández-SantamaríaI. Sánchez-DíazC.J. Uribe-RiosM-A. Alvarado-RuizR.F.P.I. De WinterR.J. DijkgraafR. JansenR.M.G. KnufmanN.M.J. FrederiksJ.F.P.I. KuijperA.F.M. PostJ.C. MichelsH.R.F.P.I. Roeters van LennepH.W.O. LiemA.H.F.P.I. SmitsP.C. SwartH.P. Van BovenA.J. Van DaeleM.E.R.M. Van der ZwaanC. Von BirgelenC. WestendorpI.C.D. DavidsonL. DevlinG.P. ElliottJ.M. HamerA.W. HarrisonN.A. RankinR.J.F.P.I. HartH.H. HillsM.J. O’MeeghanT.J. ScottD.S. TischJ.G. WilliamsM.J.A. ChenV.H.T.F.P.I. BergeC. IstadH. PedersenT.R. SirnesP.A. HanifB. IshaqR. KayaniA.M. QureshiM.B.A. SiddiqueS. YaqubZ. DoigR. BrittoF.F.P.I. YanacP. HornaM.F.P.I. ValdiviaJ.F.P.I. ZubiateM.C. AbelardoN.S. AbolaM.T.B. AñonuevoJ.C. AtilanoA.A. ChengF.C. Gaspar-TrinidadE.Y. SisonJ.A. SulitD.J.V. SyR.G. UyN.L. ChmielinskiA. CzepielA. GuzniczakE.M. SiminiakT.F.P.I. KaniaG. KincelK. KopaczewskiJ. KubicaJ. LysekR. MiekusP. MlodziankowskiA. NaporaP. ProchaczekF. RuscikaT. TarchalskiJ. TraczW. WrzosekB. BasarabG.V. BenedekI. CintezaM. CristeaM.I. DimulescuD.R. DragusinD. GaborI. GinghinaC.D. MacarieC.E. SinescuC. Tatu-ChitoiuG. VinereanuD. AndryushinaN.A. BaumS.R.F.P.I. ArkhipovM.V. BarbarashO.L. BolduevaS. BoyarkinM.V. DemkoA.P. FreydlinM.S. GolitsynS.P. GordeevI. GratsianskyN. KarpovY.A. KobalavaZ. KonstantinovV. KuimovA.D. KukharchukV.V. PanovA. RudaM.Y. SayganovS.A. SimanenkovV. SmolenskayaO.G. TsybaL.P. VishnevskyA.Y. YakhontovaP.K. YakushinS.S. ZateyshchikovD.A. GasparL. HranaiM. KoklesM. PellaD. BadatA. Sliwa-HahnleK.F.P.I. BlignautS. BurgessL. DalbyA. DawoodS.Y. GrayT. HorakA.R. MabinT. MangaP. MoodleyR.M.B.C.B. PretoriusM.M. HoughF.S.F.P.I. RoodtA. SaaimanJ. TheronH.D. Alonso KarleziR. Mata LópezP.F.P.I. Aranda GranadosP. Berrazueta FernándezJ.R. Carnevali RuizD. Castro CondeA. Cruz FernándezJ.M. De Teresa GalvánE. De Teresa ParreñoL. Díaz BuschmannI. Domínguez EscribanoJ.R. Garcia PuigJ. Gil ExtremeraB. Gómez CerezoJ. MacayaC.M. Mostaza PrietoJ.M. Muñoz AguileraR. Pérez MuñozC. Querejeta IraolaR. Romero HinojosaJ.A. Ruilope UriosteL.M. Sabán RuizJ. Sobrino MartínezJ. Suárez SuárezE.C. Lozano Martínez-LuengasI.F.P.I. Al-KhaliliF. BandhS. BennermoM. DellborgM. HerlitzJ. JohansonP.F.P.I. HjelmaeusL. LandergrenK. LinderfalkC. LindholmC-J. LindmarkK. MooeT. NilssonJ. WodlinP. HoY-L. HouC. HsiaC-H. LinS-J. TsaiL-M. WangK-Y. ChotinaiwattarakulC. KuanprasertS. SansanayudhN. SritaraP. SuithichaiyakulT. AndriyevskaS. BasylevychA.Y. DenesiukV.I. KononenkoL.G. KorzhO.M. KovalenkoV.M. KraizI.G. LishnevskaV.Y. LutayM.I. ParkhomenkoO.M. RudenkoL.V. TelyatnikovaZ.Y. TseluykoV.Y. VatutinM.T. VizirV.A. BakhaiA. BijralH.S. StewartE.F.P.I. DargieH. BarlowM.G.F.P.I. DutkaD.P. FindlayI.N. FisherM. GorogD.A. JacquesA.M. BeetonI.F.P.I. LogieB. PepperJ.R. FlatherM.D.F.P.I. PurcellI.F. ScullionW. ThompsonJ.F.F.P.I. SeniorR. SimpsonD.A. ThackrayS.D.R. AlamgirM.F.F.P.I. WildingJ.P.H. WongY. AhmedA.M. AntonishenM.C. AtassiK. AzocarJ. BallE.M. BallantyneC.M. BaysH.E. BeavinsJ.E. BenjaminS.A. BensonM.R. BergerP.B. BuckleyJ.W.F.P.I. BetzW.R. BiedermanR.W.W. BisherE.W.III BittnerV.A. BretonC.F. ButtaciS. ChanglaniM.F.P.I. PattersonJ.B.F.P.I. ByrdL.J. CanadayD.B. CashionW.R.Jr ChandnaH. ChangA.R. ChinJ. ClaybrookH.P. MartinF.A.F.P.I. CohenK.R. ColanD.R. CoodleyG.O. CorsonM.A. KnoppR.H.F.P.I. ParamsothyP.F.P.I. CottieroR.A. DandonaP. DavidsonM.H. KamaradtK.T.F.P.I. DavuluriA.K. DesaiV.S. GarsonG.D.F.P.I. EastC. EbrahimiR. EllisonH.S. EricksonB.R. FernandesV.L. FloresA.R. FolkerthS.D. FosterR.E. GaonaR.E.Sr GardnerT.J. GeorgeW.H. GesslerC.J.J.R. GillS.K. GoA.S. GoldbergA.C. GoldschmidtM.E. GormanT.A. BrautigamD.F.F.P.I. GuytonJ.R. HaffeyT. HenryS.D. HermanyP.R. HoekstraJ.A. HudsonM. IteldB.J. JackD.B. JohnsonF.P.Jr JoswigB.C. KaissarA.J. KarnsA.D. KarnsR.M.F.P.I. KasterS.R. KerznerB. KhanM.S. AhmedI.S.F.P.I. KievalJ. KimE. KlaffL.J. KleinE.J. KorenM.J. KosinskiE.J. KrumianR. PortnoyE.B.F.P.I. KuvinJ.T. LangerM.M. LettsD.P. LipetzR.S. LongW.J. ThomasI.F.P.I. Lopes-VirellaM. LubinB.C. MartinR.A. MasriB. MatthewsG. CorbelliJ.C.F.P.I. McCullumK. MeholickA.W. MitchellJ.R. ModaresF. MohlerE. MorcosC.N. MurdockD.K. NarayanP. OberoiM.S. O’ConnorT. SchneckerR.J.F.P.I. O’DonnellP.J. OngS.T. ParangP. PasquiniJ.A. PatelR.J. PatlolaR. PennyW. PepineC.J. PierceC.H. SteinE.A.F.P.I. PopeilL.R. PrattS.E. PriceR.W. RaikhelM. RaviR.C. ChoD.F.P.I. RhyneJ.M. RichardsM.K. RiveraE. RobinsonJ.G. RothE.M. RubensteinC.J. SandovalJ.D. SangrigoliR.A. SchrammE.L. SchwartzbardA. SerferG.T. ShahD.H. ShalekM.S. ShanesJ.G. SharmaM.S. BrettonE.M.F.P.I. SheikhZ. SklaverN.L. SolanoM.D.P. GoldbergR.B.F.P.I. SrivastavaN.K. StaniloaeC.S. StaubJ.S. StillabowerM.E. SureshD.P. SzulawskiI. ThompsonP. PolkD.M.F.P.I. TinkelJ.L. PandyaU.H.F.P.I. TothP.T. TraboulssiM. TuohyE.R.IV UusinarkausK.T. VijayN.K. VoyceS. WainwrightW. RHancockH.F.P.I. WalderJ.S. WangT.Y-P. WatkinsS.P. WeissR.J. WhitneyE.J. WickemeyerW.J. WillisJ.G. WilsonD.F. AbramsC.F.P.I. WisemanA. WolfsonE. WrightD. ZawadaE.T.Jr VermaS.F.P.I. STABILITY Investigators Interleukin 6 and Cardiovascular Outcomes in Patients With Chronic Kidney Disease and Chronic Coronary Syndrome.JAMA Cardiol.20216121440144510.1001/jamacardio.2021.307934431970
    [Google Scholar]
  54. DaviesN.M. von Hinke Kessler ScholderS. FarbmacherH. BurgessS. WindmeijerF. SmithG.D. The many weak instruments problem and Mendelian randomization.Stat. Med.201534345446810.1002/sim.635825382280
    [Google Scholar]
  55. BowdenJ. Del Greco MF. MinelliC. Davey SmithG. SheehanN. ThompsonJ. A framework for the investigation of pleiotropy in two-sample summary data Mendelian randomization.Stat. Med.201736111783180210.1002/sim.722128114746
    [Google Scholar]
  56. VanderWeeleT.J. Tchetgen TchetgenE.J. CornelisM. KraftP. Methodological challenges in Mendelian randomization.Epidemiology201425342743510.1097/EDE.000000000000008124681576
    [Google Scholar]
  57. SmitR.A.J. TrompetS. DekkersO.M. JukemaJ.W. le CessieS. Survival bias in Mendelian randomization studies.Epidemiology201930681381610.1097/EDE.000000000000107231373921
    [Google Scholar]
  58. HaycockP.C. BurgessS. WadeK.H. BowdenJ. ReltonC. Davey SmithG. Best (but oft-forgotten) practices: The design, analysis, and interpretation of Mendelian randomization studies.Am. J. Clin. Nutr.2016103496597810.3945/ajcn.115.11821626961927
    [Google Scholar]
  59. AndersonA. H. YangW. TownsendR. R. PanQ. ChertowG. M. KusekJ. W. CharlestonJ. HeJ. KallemR. LashJ. P. MillerE. R. RahmanM. SteigerwaltS. WeirM. WrightJ. T. FeldmanH. I. Chronic renal insufficiency, C., time-updated systolic blood pressure and the progression of chronic kidney disease a cohort study.Ann. Inter. Med.2015162425810.7326/M14‑048825686166
    [Google Scholar]
  60. YuZ. RebholzC.M. WongE. ChenY. MatsushitaK. CoreshJ. GramsM.E. Association between hypertension and kidney function decline: The atherosclerosis risk in communities (ARIC) study.Am. J. Kidney Dis.201974331031910.1053/j.ajkd.2019.02.01531031087
    [Google Scholar]
  61. JudsonG.L. RubinskyA.D. ShlipakM.G. KatzR. KramerH. JacobsD.R.Jr OddenM.C. PeraltaC.A. Longitudinal blood pressure changes and kidney function decline in persons without chronic kidney disease: Findings from the MESA study.Am. J. Hypertens.201831560060810.1093/ajh/hpx17729036269
    [Google Scholar]
  62. XieX. AtkinsE. LvJ. BennettA. NealB. NinomiyaT. WoodwardM. MacMahonS. TurnbullF. HillisG.S. ChalmersJ. MantJ. SalamA. RahimiK. PerkovicV. RodgersA. Effects of intensive blood pressure lowering on cardiovascular and renal outcomes: Updated systematic review and meta-analysis.Lancet20163871001743544310.1016/S0140‑6736(15)00805‑326559744
    [Google Scholar]
  63. LiuH.M. HuQ. ZhangQ. SuG.Y. XiaoH.M. LiB.Y. ShenW.D. QiuX. LvW.Q. DengH.W. Causal effects of genetically predicted cardiovascular risk factors on chronic kidney disease: A two-sample mendelian randomization study.Front. Genet.20191041510.3389/fgene.2019.0041531130989
    [Google Scholar]
  64. GazianoL. SunL. ArnoldM. BellS. ChoK. KaptogeS. K. SongR. J. BurgessS. PosnerD. C. MosconiK. CohenC. R. MasonA. M. BoltonT. R. TaoR. AllaraE. SchubertP. ChenL. StaleyJ. R. StaplinN. AltayS. AmianoP. ArndtP. V. ÄrnlövJ. BarrE. L. M. BjörkelundC. BoerJ. M. A. BrennerH. CasigliaE. ChiodiniP. CooperJ. A. CoreshJ. CushmanM. DanknerR. DavidsonK. W. de JonghR. T. DonfrancescoC. EngströmG. FreislingH. de la CámaraA. G. GudnasonV. HankeyG. J. HanssonP. HeathA. K. HoornE. J. ImanoH. JassalS. K. KaaksR. KatzkeV. KauhanenJ. KiechlS. KoenigW. KronmalR. A. KyroC. LawlorD. A. LjungbergB. MacDonaldC. MasalaG. MeisingerC. MelanderO. IribasC. M. NinomiyaT. NitschD. NordestgaardB. G. Mild-to-moderate kidney dysfunction and cardiovascular disease: Observational and mendelian randomization analyses. Circulation2022146201507151710.1161/CIRCULATIONAHA.12206070036314129
    [Google Scholar]
  65. YuZ. CoreshJ. QiG. GramsM. BoerwinkleE. SniederH. TeumerA. PattaroC. KöttgenA. ChatterjeeN. TinA. A bidirectional mendelian randomization study supports causal effects of kidney function on blood pressure.Kidney Int.202098370871610.1016/j.kint.2020.04.04432454124
    [Google Scholar]
  66. ZhengJ. ZhangY. RasheedH. WalkerV. SugawaraY. LiJ. LengY. ElsworthB. WoottonR.E. FangS. YangQ. BurgessS. HaycockP.C. BorgesM.C. ChoY. CarnegieR. HowellA. RobinsonJ. ThomasL.F. BrumptonB.M. HveemK. HallanS. FranceschiniN. MorrisA.P. KöttgenA. PattaroC. WuttkeM. YamamotoM. KashiharaN. AkiyamaM. KanaiM. MatsudaK. KamataniY. OkadaY. WaltersR. MillwoodI.Y. ChenZ. Davey SmithG. BarbourS. YuC. ÅsvoldB.O. ZhangH. GauntT.R. Trans-ethnic mendelian-randomization study reveals causal relationships between cardiometabolic factors and chronic kidney disease.Int. J. Epidemiol.20225061995201010.1093/ije/dyab20334999880
    [Google Scholar]
  67. LanktreeM.B. ThériaultS. WalshM. ParéG. HDL cholesterol, LDL cholesterol, and triglycerides as risk factors for CKD: A mendelian randomization study.Am. J. Kidney Dis.201871216617210.1053/j.ajkd.2017.06.01128754456
    [Google Scholar]
  68. YanaiH. AdachiH. HakoshimaM. KatsuyamaH. Molecular biological and clinical understanding of the pathophysiology and treatments of hyperuricemia and its association with metabolic syndrome, cardiovascular diseases and chronic kidney disease.Int. J. Mol. Sci.20212217922110.3390/ijms2217922134502127
    [Google Scholar]
  69. TestaA. MallamaciF. SpotoB. PisanoA. SanguedolceM.C. TripepiG. LeonardisD. ZoccaliC. Association of a polymorphism in a gene encoding a urate transporter with CKD progression.Clin. J. Am. Soc. Nephrol.2014961059106510.2215/CJN.1104101324742479
    [Google Scholar]
  70. SonodaH. TakaseH. DohiY. KimuraG. Uric acid levels predict future development of chronic kidney disease.Am. J. Nephrol.201133435235710.1159/00032684821430373
    [Google Scholar]
  71. WaheedY. YangF. SunD. Role of asymptomatic hyperuricemia in the progression of chronic kidney disease and cardiovascular disease.Korean J. Intern. Med20213661281129310.3904/kjim.2020.34033045808
    [Google Scholar]
  72. ZhouZ.W. CuiL.L. HanL. WangC. SongZ.J. ShenJ.W. LiZ.Q. ChenJ.H. WenZ.J. WangX.M. ShiY.Y. LiC.G. Polymorphisms in GCKR, SLC17A1 and SLC22A12 were associated with phenotype gout in Han Chinese males: A case–control study.BMC Med. Genet.20151616610.1186/s12881‑015‑0208‑826290326
    [Google Scholar]
  73. VorugantiV.S. LastonS. HaackK. MehtaN.R. ColeS.A. ButteN.F. ComuzzieA.G. Serum uric acid concentrations and SLC2A9 genetic variation in hispanic children: The viva la familia study.Am. J. Clin. Nutr.2015101472573210.3945/ajcn.114.09536425833971
    [Google Scholar]
  74. GurungR.L. YiamunaaM. LiuJ.J. DorajooR. WangJ. WangL. LiuS. ChanC. AngK. ShaoY.M. SubramaniamT. TangW.E. Fang SumC. LiuJ.J. LimS.C. Genetic risk score for plasma uric acid levels is associated with early rapid kidney function decline in type 2 diabetes.J. Clin. Endocrinol. Metab.20221077e2792e280010.1210/clinem/dgac19235363857
    [Google Scholar]
  75. KuwabaraM. BjornstadP. HisatomeI. NiwaK. Roncal-JimenezC.A. Andres-HernandoA. JensenT. MilagresT. SatoY. GarciaG. OhnoM. LanaspaM.A. JohnsonR.J. Elevated serum uric acid level predicts rapid decline in kidney function.Am. J. Nephrol.201745433033710.1159/00046426028285309
    [Google Scholar]
  76. JordanD.M. ChoiH.K. VerbanckM. ToplessR. WonH.H. NadkarniG. MerrimanT.R. DoR. No causal effects of serum urate levels on the risk of chronic kidney disease: A mendelian randomization study.PLoS Med.2019161e100272510.1371/journal.pmed.100272530645594
    [Google Scholar]
  77. JohnsonR.J. BakrisG.L. BorghiC. ChoncholM.B. FeldmanD. LanaspaM.A. MerrimanT.R. MoeO.W. MountD.B. Sanchez LozadaL.G. StahlE. WeinerD.E. ChertowG.M. Hyperuricemia, acute and chronic kidney disease, hypertension, and cardiovascular disease: Report of a scientific workshop organized by the national kidney foundation.Am. J. Kidney Dis.201871685186510.1053/j.ajkd.2017.12.00929496260
    [Google Scholar]
  78. GreenbergK.I. McAdams-DeMarcoM.A. KöttgenA. AppelL.J. CoreshJ. GramsM.E. Plasma urate and risk of a hospital stay with AKI.Clin. J. Am. Soc. Nephrol.201510577678310.2215/CJN.0587061425717072
    [Google Scholar]
  79. GoldbergA. Garcia-ArroyoF. SasaiF. Rodriguez-IturbeB. Sanchez-LozadaL.G. LanaspaM.A. JohnsonR.J. Mini review: Reappraisal of uric acid in chronic kidney disease.Am. J. Nephrol.20215210-1183784410.1159/00051949134673651
    [Google Scholar]
  80. IxJ.H. ShlipakM.G. The promise of tubule biomarkers in kidney disease: A review.Am. J. Kidney Dis.202178571972710.1053/j.ajkd.2021.03.02634051308
    [Google Scholar]
  81. TanaseD.M. GosavE.M. RaduS. CosteaC.F. CiocoiuM. CarauleanuA. LacatusuC.M. MaranducaM.A. FloriaM. RezusC. The predictive role of the biomarker kidney molecule-1 (KIM-1) in acute kidney injury (AKI) cisplatin-induced nephrotoxicity.Int. J. Mol. Sci.20192020523810.3390/ijms2020523831652595
    [Google Scholar]
  82. PanduruN.M. SandholmN. ForsblomC. SaraheimoM. DahlströmE.H. ThornL.M. GordinD. TolonenN. WadénJ. HarjutsaloV. BierhausA. HumpertP.M. GroopP.H. FinnDiane study group.Kidney injury molecule-1 and the loss of kidney function in diabetic nephropathy: A likely causal link in patients with type 1 diabetes.Diabetes Care20153861130113710.2337/dc14‑233025784666
    [Google Scholar]
  83. RasmussenK.L. NordestgaardB.G. NielsenS.F. Complement C3 and risk of diabetic microvascular disease: A cohort study of 95202 individuals from the general population.Clin. Chem.20186471113112410.1373/clinchem.2018.28758129523638
    [Google Scholar]
  84. GulA. ZagerP. Does altered uric acid metabolism contribute to diabetic kidney disease pathophysiology?Curr. Diab. Rep.20181841810.1007/s11892‑018‑0985‑529497863
    [Google Scholar]
  85. AholaA.J. SandholmN. ForsblomC. HarjutsaloV. DahlströmE. GroopP.H. FinnDiane study group.The serum uric acid concentration is not causally linked to diabetic nephropathy in type 1 diabetes.Kidney Int.20179151178118510.1016/j.kint.2016.11.02528238338
    [Google Scholar]
  86. TakeishiJ. TatewakiY. NakaseT. TakanoY. TomitaN. YamamotoS. MutohT. TakiY. Alzheimer’s disease and type 2 diabetes mellitus: The use of MCT oil and a ketogenic diet.Int. J. Mol. Sci.202122221231010.3390/ijms22221231034830192
    [Google Scholar]
  87. SędzikowskaA. SzablewskiL. Insulin and insulin resistance in alzheimer’s disease.Int. J. Mol. Sci.20212218998710.3390/ijms2218998734576151
    [Google Scholar]
  88. TahmiM. PaltaP. LuchsingerJ.A. Metabolic syndrome and cognitive function.Curr. Cardiol. Rep.2021231218010.1007/s11886‑021‑01615‑y34668083
    [Google Scholar]
  89. PalK. MukadamN. PetersenI. CooperC. Mild cognitive impairment and progression to dementia in people with diabetes, prediabetes and metabolic syndrome: A systematic review and meta-analysis.Soc. Psychiatry Psychiatr. Epidemiol.201853111149116010.1007/s00127‑018‑1581‑330182156
    [Google Scholar]
  90. PanzaF. FrisardiV. SeripaD. ImbimboB.P. SancarloD. D’OnofrioG. AddanteF. ParisF. PilottoA. SolfrizziV. Metabolic syndrome, mild cognitive impairment, and dementia.Curr. Alzheimer Res.20118549250910.2174/15672051179639181821605050
    [Google Scholar]
  91. Kalantar-ZadehK. LockwoodM.B. RheeC.M. TantisattamoE. AndreoliS. BalducciA. LaffinP. HarrisT. KnightR. KumaraswamiL. LiakopoulosV. LuiS.F. KumarS. NgM. SaadiG. UlasiI. TongA. LiP.K.T. Patient-centred approaches for the management of unpleasant symptoms in kidney disease.Nat. Rev. Nephrol.202218318519810.1038/s41581‑021‑00518‑z34980890
    [Google Scholar]
  92. HamedS.A. Neurologic conditions and disorders of uremic syndrome of chronic kidney disease: Presentations, causes, and treatment strategies.Expert Rev. Clin. Pharmacol.2019121619010.1080/17512433.2019.155546830501441
    [Google Scholar]
  93. BugnicourtJ.M. GodefroyO. ChillonJ.M. ChoukrounG. MassyZ.A. Cognitive disorders and dementia in CKD: The neglected kidney-brain axis.J. Am. Soc. Nephrol.201324335336310.1681/ASN.201205053623291474
    [Google Scholar]
  94. MirandaA.S. CordeiroT.M. dos Santos Lacerda SoaresT.M. FerreiraR.N. Simões e SilvaA.C. Kidney–brain axis inflammatory cross-talk: From bench to bedside.Clin. Sci2017131111093110510.1042/CS2016092728515344
    [Google Scholar]
  95. VermeerS.E. PrinsN.D. den HeijerT. HofmanA. KoudstaalP.J. BretelerM.M.B. Silent brain infarcts and the risk of dementia and cognitive decline.N. Engl. J. Med.2003348131215122210.1056/NEJMoa02206612660385
    [Google Scholar]
  96. TsuruyaK. YoshidaH. KurokiY. NagataM. MizumasaT. MitsuikiK. YoshiuraT. HirakawaM. KanaiH. HoriK. HirakataH. KitazonoT. Brain atrophy in peritoneal dialysis and CKD stages 3-5: a cross-sectional and longitudinal study.Am. J. Kidney Dis.201565231232110.1053/j.ajkd.2014.07.01125218680
    [Google Scholar]
  97. ChenX. KongJ. PanJ. HuangK. ZhouW. DiaoX. CaiJ. ZhengJ. YangX. XieW. YuH. LiJ. PeiL. DongW. QinH. HuangJ. LinT. Kidney damage causally affects the brain cortical structure: A Mendelian randomization study.EBioMedicine20217210359210.1016/j.ebiom.2021.10359234619639
    [Google Scholar]
  98. MariniS. GeorgakisM.K. ChungJ. HenryJ.Q.A. DichgansM. RosandJ. MalikR. AndersonC.D. Genetic overlap and causal inferences between kidney function and cerebrovascular disease.Neurology20209424e2581e259110.1212/WNL.000000000000964232439819
    [Google Scholar]
  99. VanentK.N. LeasureA.C. AcostaJ.N. KuohnL.R. WooD. MurthyS.B. KamelH. MesséS.R. MullenM.T. CohenJ.B. CohenD.L. TownsendR.R. PetersenN.H. SansingL.H. GillT.M. ShethK.N. FalconeG.J. Association of chronic kidney disease with risk of intracerebral hemorrhage.JAMA Neurol.202279991191810.1001/jamaneurol.2022.229935969388
    [Google Scholar]
  100. Castro-BarqueroS. Ruiz-LeónA.M. Sierra-PérezM. EstruchR. CasasR. Dietary strategies for metabolic syndrome: A Comprehensive Review.Nutrients20201210298310.3390/nu1210298333003472
    [Google Scholar]
  101. De Toro-MartínJ. ArsenaultB. DesprésJ.P. VohlM.C. Precision nutrition: A review of personalized nutritional approaches for the prevention and management of metabolic syndrome.Nutrients20179891310.3390/nu908091328829397
    [Google Scholar]
  102. DjousséL. PadillaH. NelsonT.L. GazianoJ.M. MukamalK.J. Diet and metabolic syndrome.Endocr. Metab. Immune Disord. Drug Targets201010212413710.2174/18715301079121305620088815
    [Google Scholar]
  103. ParkS. LeeS. KimY. LeeY. KangM.W. KimK. KimY.C. HanS.S. LeeH. LeeJ.P. JooK.W. LimC.S. KimY.S. KimD.K. Causal effects of relative fat, protein, and carbohydrate intake on chronic kidney disease: A Mendelian randomization study.Am. J. Clin. Nutr.202111341023103110.1093/ajcn/nqaa37933564816
    [Google Scholar]
  104. KennedyO.J. PirastuN. PooleR. FallowfieldJ.A. HayesP.C. GrzeszkowiakE.J. TaalM.W. WilsonJ.F. ParkesJ. RoderickP.J. Coffee consumption and kidney function: A mendelian randomization study.Am. J. Kidney Dis.202075575376110.1053/j.ajkd.2019.08.02531837886
    [Google Scholar]
  105. WijarnpreechaK. ThongprayoonC. ThamcharoenN. PanjawatananP. CheungpasitpornW. Association of coffee consumption and chronic kidney disease: A meta-analysis.Int. J. Clin. Pract.2017711e1291910.1111/ijcp.1291927933694
    [Google Scholar]
  106. NordestgaardA.T. ThomsenM. NordestgaardB.G. Coffee intake and risk of obesity, metabolic syndrome and type 2 diabetes: A Mendelian randomization study.Int. J. Epidemiol.201544255156510.1093/ije/dyv08326002927
    [Google Scholar]
  107. ParkS. LeeS. KimY. LeeY. KangM.W. KimK. KimY.C. HanS.S. LeeH. LeeJ.P. JooK.W. LimC.S. KimY.S. KimD.K. Causal effect of alcohol use on the risk of end-stage kidney disease and related comorbidities: A Mendelian randomization study.Kidney Res. Clin. Pract.202140228229310.23876/j.krcp.20.18634024088
    [Google Scholar]
  108. ShiN. LiN. DuanX. NiuH. Interaction between the gut microbiome and mucosal immune system.Mil. Med. Res.2017411410.1186/s40779‑017‑0122‑928465831
    [Google Scholar]
  109. SánchezB. DelgadoS. Blanco-MíguezA. LourençoA. GueimondeM. MargollesA. Probiotics, gut microbiota, and their influence on host health and disease.Mol. Nutr. Food Res.2017611160024010.1002/mnfr.20160024027500859
    [Google Scholar]
  110. TakiishiT. FeneroC.I.M. CâmaraN.O.S. Intestinal barrier and gut microbiota: Shaping our immune responses throughout life.Tissue Barriers201754e137320810.1080/21688370.2017.137320828956703
    [Google Scholar]
  111. WadaM. NagasawaH. IsekiC. TakahashiY. SatoH. ArawakaS. KawanamiT. KuritaK. DaimonM. KatoT. Cerebral small vessel disease and chronic kidney disease (CKD): Results of a cross-sectional study in community-based Japanese elderly.J. Neurol. Sci.20082721-2364210.1016/j.jns.2008.04.02918541269
    [Google Scholar]
  112. DabkeK. HendrickG. DevkotaS. The gut microbiome and metabolic syndrome.J. Clin. Invest.2019129104050405710.1172/JCI12919431573550
    [Google Scholar]
  113. SannaS. van ZuydamN. R. MahajanA. KurilshikovA. VilaA. V. VosaU. MujagicZ. MascleeA. A. M. JonkersD. OostingM. JoostenL. A. B. NeteaM. G. FrankeL. ZhernakovaA. FuJ. Y. WijmengaC. McCarthyM. I. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases.Nature Genetics201951460010.1038/s41588‑019‑0350‑x30778224
    [Google Scholar]
  114. SchoelerM. CaesarR. Dietary lipids, gut microbiota and lipid metabolism.Rev. Endocr. Metab. Disord.201920446147210.1007/s11154‑019‑09512‑031707624
    [Google Scholar]
  115. EvenepoelP. PoesenR. MeijersB. The gut–kidney axis.Pediatr. Nephrol.201732112005201410.1007/s00467‑016‑3527‑x27848096
    [Google Scholar]
  116. SumidaK. KovesdyC.P. The gut–kidney–heart axis in chronic kidney disease.Physiol. Int.2019106319520610.1556/2060.106.2019.1931560235
    [Google Scholar]
  117. KhouryT. TzukertK. AbelR. Abu RmeilehA. LeviR. IlanY. The gut-kidney axis in chronic renal failure: A new potential target for therapy.Hemodial. Int.201721332333410.1111/hdi.1248627634464
    [Google Scholar]
  118. YangT. RichardsE.M. PepineC.J. RaizadaM.K. The gut microbiota and the brain–gut–kidney axis in hypertension and chronic kidney disease.Nat. Rev. Nephrol.201814744245610.1038/s41581‑018‑0018‑229760448
    [Google Scholar]
  119. LiN. WangY. WeiP. MinY. YuM. ZhouG. YuanG. SunJ. DaiH. ZhouE. HeW. ShengM. GaoK. ZhengM. SunW. ZhouD. ZhangL. Causal effects of specific gut microbiota on chronic kidney diseases and renal function—a two-sample mendelian randomization study.Nutrients202315236010.3390/nu1502036036678231
    [Google Scholar]
  120. LuoM. CaiJ. LuoS. HongX. XuL. LinH. ChenX. FuW. Causal effects of gut microbiota on the risk of chronic kidney disease: A Mendelian randomization study.Front. Cell. Infect. Microbiol.202313114214010.3389/fcimb.2023.114214037065213
    [Google Scholar]
  121. RenF. JinQ. LiuT. RenX. ZhanY. Causal effects between gut microbiota and IgA nephropathy: A bidirectional Mendelian randomization study.Front. Cell. Infect. Microbiol.202313117151710.3389/fcimb.2023.117151737201114
    [Google Scholar]
  122. ChauquetS. ZhuZ. O’DonovanM.C. WaltersJ.T.R. WrayN.R. ShahS. Association of antihypertensive drug target genes with psychiatric disorders.JAMA Psychiatry202178662363110.1001/jamapsychiatry.2021.000533688928
    [Google Scholar]
  123. LuT. ForgettaV. GreenwoodC.M.T. ZhouS. RichardsJ.B. Circulating proteins influencing psychiatric disease: A mendelian randomization study.Biol. Psychiatry2023931829110.1016/j.biopsych.2022.08.01536280454
    [Google Scholar]
  124. EalesJ. M. JiangX. XuX. G. SalujaS. AkbarovA. Cano-GamezE. McNultyM. T. FinanC. GuoH. WystrychowskiW. SzulinskaM. ThomasH. B. PramanikS. ChopadeS. PrestesP. R. WiseI. EvangelouE. SalehiM. ShakantiY. EkholmM. DenniffM. NazgiewiczA. EichingerF. GodfreyB. AntczakA. GlydaM. KrólR. EyreS. BrownJ. BerzuiniC. BowesJ. CaulfieldM. Zukowska-SzczechowskaE. ZywiecJ. BogdanskiP. KretzlerM. WoolfA. S. TalaveraD. KeavneyB. MaffiaP. GuzikT. J. O'KeefeR. T. TrynkaG. SamaniN. J. HingoraniA. SampsonM. G. MorrisA. P. CharcharF. J. TomaszewskiM. Uncovering genetic mechanisms of hypertension through multi-omic analysis of the kidney.Nature Genetics202153563010.1038/s41588‑021‑00835‑w33958779
    [Google Scholar]
  125. ZhaoJ.V. SchoolingC.M. Sex-specific associations of sex hormone binding globulin with CKD and kidney function: A univariable and multivariable mendelian randomization study in the UK biobank.J. Am. Soc. Nephrol.202132368669410.1681/ASN.202005065933318152
    [Google Scholar]
  126. NguyenA. KhafagyR. GaoY. MeerasaA. RoshandelD. AnvariM. LinB. CherneyD.Z.I. FarkouhM.E. ShahB.R. PatersonA.D. DashS. Association between obesity and chronic kidney disease: Multivariable Mendelian randomization analysis and observational data from a bariatric surgery cohort.Diabetes202372449651010.2337/db22‑069636657976
    [Google Scholar]
  127. LiX. MengX. TimofeevaM. TzoulakiI. TsilidisK.K. IoannidisP.A. CampbellH. TheodoratouE. Serum uric acid levels and multiple health outcomes: Umbrella review of evidence from observational studies, randomised controlled trials, and Mendelian randomisation studies.BMJ2017357j237610.1136/bmj.j237628592419
    [Google Scholar]
  128. LuJ. LiuX. JiangS. KanS. AnY. ZhengC. LiX. LiuZ. XieG. Body mass index and risk of diabetic nephropathy: A mendelian randomization study.J. Clin. Endocrinol. Metab.202210761599160810.1210/clinem/dgac05735191949
    [Google Scholar]
  129. ToddJ.N. DahlströmE.H. SalemR.M. SandholmN. ForsblomC. McKnightA.J. MaxwellA.P. BrennanE. SadlierD. GodsonC. GroopP.H. HirschhornJ.N. FlorezJ.C. Finndiane study group.Genetic evidence for a causal role of obesity in diabetic kidney disease.Diabetes201564124238424610.2337/db15‑025426307587
    [Google Scholar]
  130. HouT. LiM. LinH. ZhaoZ. LuJ. WangT. XuY. WangW. BiY. NingG. XuM. The causal effect of systolic blood pressure lowering on vascular outcomes in diabetes: A mendelian randomization study.J. Clin. Endocrinol. Metab.202210792616262510.1210/clinem/dgac35435703944
    [Google Scholar]
  131. FengB. LuY. YeL. YinL. ZhouY. ChenA. Mendelian randomization study supports the causal association between serum cystatin C and risk of diabetic nephropathy.Front. Endocrinol202213104317410.3389/fendo.2022.104317436482996
    [Google Scholar]
  132. MaL. LiuQ. JiangY. ZhaoH. ZhaoT. CaoY. LiP. NiuW. Genetically elevated circulating homocysteine concentrations increase the risk of diabetic kidney disease in chinese diabetic patients.J. Cell. Mol. Med.20192342794280010.1111/jcmm.1418730729677
    [Google Scholar]
  133. GurungR.L. DorajooR. LiuS. MY. LiuJ.J. WangL. GuoL. YuX. LiuJ.J. LimS.C. Genetic markers for urine haptoglobin is associated with decline in renal function in type 2 diabetes in east asians.Sci. Rep.201881510910.1038/s41598‑018‑23407‑129572449
    [Google Scholar]
  134. ParkS. LeeS. KimY. LeeY. KangM.W. KimK. KimY.C. HanS.S. LeeH. LeeJ.P. JooK.W. LimC.S. KimY.S. KimD.K. Observational or genetically predicted higher vegetable intake and kidney function impairment: An integrated population-scale cross-sectional analysis and Mendelian randomization study.J. Nutr.202115151167117410.1093/jn/nxaa45233693791
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303288685240808073238
Loading
/content/journals/emiddt/10.2174/0118715303288685240808073238
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test