Skip to content
2000
Volume 25, Issue 6
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

Objective

The objective of this study was to examine the impact of “Tianyu” Pairing on oxidative stress in the development of Rheumatoid arthritis (RA) and approach its potential mechanism using cell experiments.

Methods

A cell model of RA was developed by stimulating rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS) with tumor necrosis factor-α (TNF-α). This model aimed to assess the impact of serum containing Rhodiola rosea-Euonymus alatus drug pair (TYP) on inflammation and oxidative stress in the development of RA, specifically through the Keap1/Nrf2/HO-1 pathway.

Results

The findings from the experiment demonstrated that the presence of TYP in the serum effectively suppressed the proliferation of RA-FLS induced by TNF-α. Additionally, TYP facilitated the apoptosis of afflicted cells, attenuated the migratory and invasive capabilities of diseased cells, and decreased the levels of Kelch ECH associating protein 1 (Keap1), reactive oxygen species (ROS), glutathione peroxidase (GSH-Px), catalase (CAT), and malondialdehyde (MDA) ( < 0.01). The influence of inflammation and oxidative stress in RA-FLS cells was reduced by increasing the nuclear-cytoplasmic ratio of Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) and levels of phosphorylated Nrf2, Heme Oxygenase 1 (HO-1), and Superoxide Dismutase (SOD) ( < 0.01).

Conclusion

TYP can regulate inflammation and oxidative stress in RA-FLS cells by activating the Keap1/Nrf2/HO-1 pathway.

Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303307608240812114651
2024-08-26
2025-06-22
Loading full text...

Full text loading...

References

  1. AndreasK. LübkeC. HäuplT. DehneT. MorawietzL. RingeJ. KapsC. SittingerM. Key regulatory molecules of cartilage destruction in rheumatoid arthritis: An in vitro study.Arthritis Res. Ther.2008101R910.1186/ar235818205922
    [Google Scholar]
  2. AlmutairiK. NossentJ. PreenD. KeenH. InderjeethC. The global prevalence of rheumatoid arthritis: A meta-analysis based on a systematic review.Rheumatol. Int.202141586387710.1007/s00296‑020‑04731‑033175207
    [Google Scholar]
  3. FigusF.A. PigaM. AzzolinI. McConnellR. IagnoccoA. Rheumatoid arthritis: Extra-articular manifestations and comorbidities.Autoimmun. Rev.202120410277610.1016/j.autrev.2021.10277633609792
    [Google Scholar]
  4. EnglandBR ThieleGM AndersonDR MikulsTR Increased cardiovascular risk in rheumatoid arthritis: Mechanisms and implications.BMJ2018361k103610.1136/bmj.k1036
    [Google Scholar]
  5. MuellerA.L. PayandehZ. MohammadkhaniN. MubarakS.M.H. ZakeriA. Alagheband BahramiA. BrockmuellerA. ShakibaeiM. Recent advances in understanding the pathogenesis of rheumatoid arthritis: New treatment strategies.Cells20211011301710.3390/cells1011301734831240
    [Google Scholar]
  6. HuaC. DaienC.I. CombeB. LandeweR. Diagnosis, prognosis and classification of early arthritis: Results of a systematic review informing the 2016 update of the EULAR recommendations for the management of early arthritis.RMD Open201731e00040610.1136/rmdopen‑2016‑00040628155923
    [Google Scholar]
  7. LuY.T. GaoC.B. ZhangT.Y. FuB. Study on the materia medica of Semen Cuscutae.Shizhen Guo Yi Guo Yao202031716321634
    [Google Scholar]
  8. SunR.X. PengJ. GuoJ. WanM.T. HuangH.Q. LiL. Research results on the modern pharmacological effects of Semen Cuscutae.Global Traditional Chinese Med.201582245249
    [Google Scholar]
  9. ChenY. TangM. YuanS. Rhodiola rosea: A therapeutic candidate on cardiovascular Diseases.Oxid Med Cell Longev2022202211410.1155/2022/1348795
    [Google Scholar]
  10. ZhengY.Y. DaiD.X. PanZ. TangC.F. WangY.H. Inhibitory effect and significance of salidroside on the proliferation of TNF-α-induced human rheumatoid arthritis fibroblast-like synoviocytes.Jilin Univ J.,201743348549010.13481/j.1671‑587x.20170305
    [Google Scholar]
  11. IvanovaS.E. QuintelaJ.C. The effectiveness of Rhodiola rosea L. preparations in alleviating various aspects of life-stress symptoms and stress-induced conditions—encouraging clinical evidence.Molecules20222712390210.3390/molecules2712390235745023
    [Google Scholar]
  12. OtterbeinL.E. SoaresM.P. YamashitaK. BachF.H. Heme oxygenase-1: Unleashing the protective properties of heme.Trends Immunol.200324844945510.1016/S1471‑4906(03)00181‑912909459
    [Google Scholar]
  13. ThiruvengadamM. VenkidasamyB. SubramanianU. SamynathanR. Ali ShariatiM. RebezovM. GirishS. ThangavelS. DhanapalA.R. FedoseevaN. LeeJ. ChungI.M. Bioactive compounds in oxidative stress-mediated diseases: Targeting the NRF2/ARE signaling pathway and epigenetic regulation.Antioxidants20211012185910.3390/antiox1012185934942962
    [Google Scholar]
  14. YuC. XiaoJ.H. The Keap1-Nrf2 system: A mediator between oxidative stress and aging.Oxid. Med. Cell. Longev.20212216635460110.1155/2021/6635460
    [Google Scholar]
  15. HeL. LuanH. HeJ. ZhangM. QinQ. HuY. CaiY. SunD. ShiY. WangQ. Shikonin attenuates rheumatoid arthritis by targeting SOCS1/JAK/STAT signaling pathway of fibroblast like synoviocytes.Chin. Med.20211619610.1186/s13020‑021‑00510‑634600581
    [Google Scholar]
  16. LongL. YuP. LiuY. WangS. LiR. ShiJ. ZhangX. LiY. SunX. ZhouB. CuiL. LiZ. Upregulated microRNA-155 expression in peripheral blood mononuclear cells and fibroblast-like synoviocytes in rheumatoid arthritis.Clin. Dev. Immunol.2013201311010.1155/2013/29613924151514
    [Google Scholar]
  17. LinD. LaiW. ZhengN. LuoH. ChenX. QueW. ZhangN. Novel mechanistic study of HDAC6 regulation of rheumatoid arthritis via CMA: Exploring potential therapeutic targets.Front. Pharmacol.202415138366310.3389/fphar.2024.138366338576491
    [Google Scholar]
  18. WangM. LiH. WangY. HaoY. HuangY. WangX. LuY. DuY. FuF. XinW. ZhangL. Anti-rheumatic properties of gentiopicroside are associated with suppression of ROS-NF-κB-NLRP3 axis in fibroblast-like synoviocytes and nf-κb pathway in adjuvant-induced arthritis.Front. Pharmacol.20201151510.3389/fphar.2020.0051532477105
    [Google Scholar]
  19. JiaY. FengB. JiX. TianX. ZhaoL. ZhouJ. ZhangW. LiM. FeiY. WuX. Complement factor H attenuates TNF-α-induced inflammation by upregulating EIF3C in rheumatoid arthritis.J. Transl. Med.202321184610.1186/s12967‑023‑04730‑237996918
    [Google Scholar]
  20. ZhangZ. WangY. XuQ. ZhouX. LingY. ZhangJ. MaoL. Methyl canthin-6-one-2-carboxylate restrains the migration/invasion properties of fibroblast-like synoviocytes by suppressing the hippo/YAP signaling pathway.Pharmaceuticals20231610144010.3390/ph1610144037895911
    [Google Scholar]
  21. WangX.H. Shikonin suppresses rheumatoid arthritis by inducing apoptosis and autophagy via modulation of the AMPK/mTOR/ULK-1 signaling pathway.Phytomedicine2024128115551210.1016/j.phymed.2024.155512
    [Google Scholar]
  22. WangG. ChenX. ShaoY. XuB. PINK1/parkin-mediated mitochondrial autophagy participates in H2O2-induced abnormal proliferation of fibroblast-like synoviocytes in rheumatoid arthritis.J. Inflamm. Res.2023161271128210.2147/JIR.S39869036993991
    [Google Scholar]
  23. XuK. CaiY. LuS.M. LiX. LiuL. LiZ. LiuH. XuP. Autophagy induction contributes to the resistance to methotrexate treatment in rheumatoid arthritis fibroblast-like synovial cells through high mobility group box chromosomal protein 1.Arthritis Res. Ther.201517137410.1186/s13075‑015‑0892‑y26702616
    [Google Scholar]
  24. ZhangY. WangG. WangT. CaoW. ZhangL. ChenX. Nrf2–Keap1 pathway–mediated effects of resveratrol on oxidative stress and apoptosis in hydrogen peroxide–treated rheumatoid arthritis fibroblast-like synoviocytes.Ann. N. Y. Acad. Sci.20191457116617810.1111/nyas.1419631475364
    [Google Scholar]
  25. GomesC.J. HarmanM.W. CentuoriS.M. WolgemuthC.W. MartinezJ.D. Measuring DNA content in live cells by fluorescence microscopy.Cell Div.2018131610.1186/s13008‑018‑0039‑z30202427
    [Google Scholar]
  26. CaoD. LiX.H. LuoX.G. YuH.M. WanL.S. WeiL. RenY. Phorbol myristate acetate induces cellular senescence in rat microglia in vitro.Int. J. Mol. Med.202046141542610.3892/ijmm.2020.458732626908
    [Google Scholar]
  27. LiagreB. Vergne-SalleP. CorbiereC. CharissouxJ.L. BeneytoutJ.L. Diosgenin, a plant steroid, induces apoptosis in human rheumatoid arthritis synoviocytes with cyclooxygenase-2 overexpression.Arthritis Res. Ther.200464R373R38310.1186/ar119915225373
    [Google Scholar]
  28. CaiY. ZhangJ. LiangJ. XiaoM. ZhangG. JingZ. LvL. NanK. DangX. The burden of rheumatoid arthritis: Findings from the 2019 global burden of diseases study and forecasts for 2030 by bayesian age-period-cohort analysis.J. Clin. Med.2023124129110.3390/jcm1204129136835827
    [Google Scholar]
  29. TranF. SchirmerJ.H. RatjenI. LiebW. HelliwellP. BurischJ. SchulzJ. SchrinnerF. JaeckelC. Müller-LadnerU. SchreiberS. HoyerB.F. Patient reported outcomes in chronic inflammatory diseases: Current state, limitations and perspectives.Front. Immunol.20211261465310.3389/fimmu.2021.61465333815372
    [Google Scholar]
  30. ShiG. LiaoX. LinZ. LiuW. LuoX. ZhanH. CaiX. Estimation of the global prevalence, incidence, years lived with disability of rheumatoid arthritis in 2019 and forecasted incidence in 2040: Results from the Global Burden of Disease Study 2019.Clin. Rheumatol.20234292297230910.1007/s10067‑023‑06628‑237294370
    [Google Scholar]
  31. AtzeniF. BenucciM. SallìS. BongiovanniS. BoccassiniL. Sarzi-PuttiniP. Different effects of biological drugs in rheumatoid arthritis.Autoimmun. Rev.201312557557910.1016/j.autrev.2012.10.02023219774
    [Google Scholar]
  32. BurmesterG.R. PopeJ.E. Novel treatment strategies in rheumatoid arthritis.Lancet2017389100862338234810.1016/S0140‑6736(17)31491‑528612748
    [Google Scholar]
  33. AnX. YangJ. CuiX. ZhaoJ. JiangC. TangM. DongY. LinL. LiH. WangF. Advances in local drug delivery technologies for improved rheumatoid arthritis therapy.Adv. Drug Deliv. Rev.202420911532510.1016/j.addr.2024.11532538670229
    [Google Scholar]
  34. FriedmanB. CronsteinB. Methotrexate mechanism in treatment of rheumatoid arthritis.Joint Bone Spine201986330130710.1016/j.jbspin.2018.07.00430081197
    [Google Scholar]
  35. ZhangJ. JiangL. SunL. WangP. SunS. XuM. ZhangL. WangS. LiangX. CuiL. Targeted drug delivery strategies for the treatment of rheumatoid arthritis.Sci. China Life Sci.20216471187118910.1007/s11427‑020‑1920‑534008167
    [Google Scholar]
  36. ChenF. XiaoM. HuS. WangM. Keap1-Nrf2 pathway: A key mechanism in the occurrence and development of cancer.Front. Oncol.202414138146710.3389/fonc.2024.138146738634043
    [Google Scholar]
  37. SykiotisG.P. Keap1/Nrf2 signaling pathway.Antioxidants202110682810.3390/antiox1006082834067331
    [Google Scholar]
  38. ThanasC. ZirosP.G. ChartoumpekisD.V. RenaudC.O. SykiotisG.P. The Keap1/Nrf2 signaling pathway in the thyroid-2020 Update.Antioxidants2020911108210.3390/antiox911108233158045
    [Google Scholar]
  39. SahaS. An overview of therapeutic targeting of Nrf2 signaling pathway in rheumatoid arthritis.ACS Omega202499100491005710.1021/acsomega.4c0016338463248
    [Google Scholar]
  40. HoE. KarimiG.K. LiuC.C. BhindiR. FigtreeG.A. Biological markers of oxidative stress: Applications to cardiovascular research and practice.Redox Biol.20131148349110.1016/j.redox.2013.07.00624251116
    [Google Scholar]
  41. JuanC.A. Pérez de la LastraJ.M. PlouF.J. Pérez-LebeñaE. The chemistry of reactive oxygen species (ROS) revisited: Outlining their role in biological macromolecules (DNA, Lipids and Proteins) and induced pathologies.Int. J. Mol. Sci.2021229464210.3390/ijms2209464233924958
    [Google Scholar]
  42. SalvagnoM. StercheleE.D. ZaccarelliM. Mrakic-SpostaS. WelsbyI.J. BalestraC. TacconeF.S. Oxidative stress and cerebral vascular tone: The role of reactive oxygen and nitrogen species.Int. J. Mol. Sci.2024255300710.3390/ijms2505300738474253
    [Google Scholar]
  43. FacchinettiM.M. Heme-Oxygenase-1.Antioxid. Redox Signal.202032171239124210.1089/ars.2020.806532148070
    [Google Scholar]
  44. WangX. FanD. CaoX. YeQ. WangQ. ZhangM. XiaoC. The role of reactive oxygen species in the rheumatoid arthritis-associated synovial microenvironment.Antioxidants2022116115310.3390/antiox1106115335740050
    [Google Scholar]
  45. ChadhaS. BehlT. KumarA. KhullarG. AroraS. Role of Nrf2 in rheumatoid arthritis.Curr. Res. Transl. Med.202068417118110.1016/j.retram.2020.05.00232620467
    [Google Scholar]
  46. KondoN. KanaiT. OkadaM. Rheumatoid arthritis and reactive oxygen species: A review.Curr. Issues Mol. Biol.20234543000301510.3390/cimb4504019737185721
    [Google Scholar]
  47. MengJ. YuP. JiangH. YuanT. LiuN. TongJ. ChenH. BaoN. ZhaoJ. Molecular hydrogen decelerates rheumatoid arthritis progression through inhibition of oxidative stress.Am. J. Transl. Res.20168104472447727830032
    [Google Scholar]
  48. WangH. ChengQ. BaoL. LiM. ChangK. YiX. Cytoprotective role of heme oxygenase-1 in cancer chemoresistance: Focus on antioxidant, antiapoptotic, and pro-autophagy properties.Antioxidants2023126121710.3390/antiox1206121737371947
    [Google Scholar]
  49. HungS.Y. ChenJ.L. TuY.K. TsaiH.Y. LuP.H. JouI.M. MbuyisaL. LinM.W. Isoliquiritigenin inhibits apoptosis and ameliorates oxidative stress in rheumatoid arthritis chondrocytes through the Nrf2/HO-1-mediated pathway.Biomed. Pharmacother.202417011600610.1016/j.biopha.2023.11600638091640
    [Google Scholar]
  50. JingW. LiuC. SuC. LiuL. ChenP. LiX. ZhangX. YuanB. WangH. DuX. Role of reactive oxygen species and mitochondrial damage in rheumatoid arthritis and targeted drugs.Front. Immunol.202314110767010.3389/fimmu.2023.110767036845127
    [Google Scholar]
  51. PiccaA. CalvaniR. Coelho-JuniorH.J. LandiF. BernabeiR. MarzettiE. Mitochondrial dysfunction, oxidative stress, and neuroinflammation: Intertwined roads to neurodegeneration.Antioxidants20209864710.3390/antiox908064732707949
    [Google Scholar]
  52. SunZ. HuangZ. ZhangD.D. Phosphorylation of Nrf2 at Multiple Sites by MAP Kinases Has a Limited Contribution in Modulating the Nrf2-Dependent Antioxidant Response.PLoS One2009148e658810.1371/journal.pone.0006588
    [Google Scholar]
  53. SeolS.I. KangI.S. LeeJ.S. LeeJ.K. KimC. Taurine chloramine-mediated Nrf2 activation and HO-1 induction confer protective effects in astrocytes.Antioxidants202413216910.3390/antiox1302016938397767
    [Google Scholar]
  54. KasamaT. KobayashiK. SekineF. NegishiM. IdeH. TakahashiT. NiwaY. Follow-up study of lipid peroxides, superoxide dismutase and glutathione peroxidase in the synovial membrane, serum and liver of young and old mice with collagen-induced arthritis.Life Sci.198843231887189610.1016/S0024‑3205(88)80006‑73200113
    [Google Scholar]
  55. MazzettiI. GrigoloB. BorzìR.M. MeliconiR. FacchiniA. Serum copper/zinc superoxide dismutase levels in patients with rheumatoid arthritis.Int. J. Clin. Lab. Res.199626424524910.1007/BF026029579007615
    [Google Scholar]
  56. MarklundS.L. Human copper-containing superoxide dismutase of high molecular weight.Proc. Natl. Acad. Sci. USA198279247634763810.1073/pnas.79.24.76346961438
    [Google Scholar]
  57. HassanS.Z. GheitaT.A. KenawyS.A. FahimA.T. El-SorougyI.M. AbdouM.S. Oxidative stress in systemic lupus erythematosus and rheumatoid arthritis patients: Relationship to disease manifestations and activity.Int. J. Rheum. Dis.201114432533110.1111/j.1756‑185X.2011.01630.x22004228
    [Google Scholar]
  58. ZamaniB. TaghvaeeF. AkbariH. MohtashamianA. SharifiN. Effects of selenium supplementation on the indices of disease activity, inflammation and oxidative stress in patients with rheumatoid arthritis: A randomized clinical trial.Biol. Trace Elem. Res.202320241457146710.1007/s12011‑023‑03782‑137477848
    [Google Scholar]
  59. TarpU. HansenJ.C. OvervadK. ThorlingE.B. TarpB.D. GraudalH. Glutathione peroxidase activity in patients with rheumatoid arthritis and in normal subjects: Effects of long-term selenium supplementation.Arthritis Rheum.198730101162116610.1002/art.17803010123675661
    [Google Scholar]
  60. JacobsonG.A. IvesS.J. NarkowiczC. JonesG. Plasma glutathione peroxidase (GSH-Px) concentration is elevated in rheumatoid arthritis: A case–control study.Clin. Rheumatol.201231111543154710.1007/s10067‑012‑2046‑923010849
    [Google Scholar]
  61. HonkanenV.E.A. The factors affecting plasma glutathione peroxidase and selenium in rheumatoid arthritis: A multiple linear regression analysis.Scand. J. Rheumatol.199120638539110.3109/030097491090968161685261
    [Google Scholar]
  62. RaesM. MichielsC. RemacleJ. Comparative study of the enzymatic defense systems against oxygen-derived free radicals: The key role of glutathione peroxidase.Free Radic. Biol. Med.1987313710.1016/0891‑5849(87)90032‑33623187
    [Google Scholar]
  63. ZengL. YuG. YangK. LiJ. HaoW. ChenH. The efficacy of antioxidative stress therapy on oxidative stress levels in rheumatoid arthritis: A systematic review and meta-analysis of randomized controlled trials.Oxid. Med. Cell. Longev.,2021 2021 330288610.1155/2021/3302886
    [Google Scholar]
  64. DeisserothA. DounceA.L. Catalase: Physical and chemical properties, mechanism of catalysis, and physiological role.Physiol. Rev.197050331937510.1152/physrev.1970.50.3.3194912904
    [Google Scholar]
  65. HammadM. RaftariM. CesárioR. SalmaR. GodoyP. EmamiS.N. HaghdoostS. Roles of oxidative stress and Nrf2 signaling in pathogenic and non-pathogenic cells: A possible general mechanism of resistance to therapy.Antioxidants2023127137110.3390/antiox1207137137507911
    [Google Scholar]
  66. MousaviM.J. KaramiJ. AslaniS. TahmasebiM.N. VaziriA.S. JamshidiA. FarhadiE. MahmoudiM. Transformation of fibroblast-like synoviocytes in rheumatoid arthritis; from a friend to foe.Auto Immun. Highlights2021121310.1186/s13317‑020‑00145‑x33546769
    [Google Scholar]
  67. GeX. Frank-BertonceljM. KleinK. McGovernA. KuretT. HoutmanM. BurjaB. MicheroliR. ShiC. MarksM. FilerA. BuckleyC.D. OrozcoG. DistlerO. MorrisA.P. MartinP. EyreS. OspeltC. Functional genomics atlas of synovial fibroblasts defining rheumatoid arthritis heritability.Genome Biol.202122124710.1186/s13059‑021‑02460‑634433485
    [Google Scholar]
  68. LuY. HaoC. YuS. MaZ. FuX. QinM. DingM. XuZ. FanL. Cationic amino acid transporter-1 (CAT-1) promotes fibroblast-like synoviocyte proliferation and cytokine secretion by taking up L-arginine in rheumatoid arthritis.Arthritis Res. Ther.202224123410.1186/s13075‑022‑02921‑836253807
    [Google Scholar]
  69. HuZ. LiY. ZhangL. JiangY. LongC. YangQ. YangM. Metabolic changes in fibroblast-like synoviocytes in rheumatoid arthritis: State of the art review.Front. Immunol.202415125088410.3389/fimmu.2024.125088438482018
    [Google Scholar]
  70. ClaytonS.A. MacDonaldL. Kurowska-StolarskaM. ClarkA.R. Mitochondria as key players in the pathogenesis and treatment of rheumatoid arthritis.Front. Immunol.20211267391610.3389/fimmu.2021.67391633995417
    [Google Scholar]
  71. DuJ. YuS. WangD. ChenS. ChenS. ZhengY. WangN. ChenS. LiJ. ShenB. Germline and somatic mtDNA mutation spectrum of rheumatoid arthritis patients in the Taizhou area, China.Rheumatology202059102982299110.1093/rheumatology/keaa06332159782
    [Google Scholar]
  72. López-ArmadaM.J. Fernández-RodríguezJ.A. BlancoF.J. Mitochondrial dysfunction and oxidative stress in rheumatoid arthritis.Antioxidants2022116115110.3390/antiox1106115135740048
    [Google Scholar]
  73. EbanksB. ChakrabartiL. Mitochondrial ATP synthase is a target of oxidative stress in neurodegenerative diseases.Front. Mol. Biosci.2022985432110.3389/fmolb.2022.85432135237666
    [Google Scholar]
  74. HodgeJ.A. KawabataT.T. KrishnaswamiS. ClarkJ.D. TelliezJ.B. DowtyM.E. MenonS. LambaM. ZwillichS. The mechanism of action of tofacitinib - an oral Janus kinase inhibitor for the treatment of rheumatoid arthritis.Clin. Exp. Rheumatol.201634231832826966791
    [Google Scholar]
  75. CuiL. WeiyaoJ. ChenghongS. LimeiL. XinghuaZ. BoY. XiaozhengD. HaidongW. Rheumatoid arthritis and mitochondrial homeostasis: The crossroads of metabolism and immunity.Front. Med.20229101765010.3389/fmed.2022.101765036213670
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303307608240812114651
Loading
/content/journals/emiddt/10.2174/0118715303307608240812114651
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Euonymus alatus; HO-1; Keap1; Nrf2; oxidative stress; Rheumatoid arthritis; Rhodiola rosea
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test