Skip to content
2000
Volume 25, Issue 4
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

In this study, we examined preexisting systemic inflammation before COVID-19 (SIC), as assessed through C-reactive protein (CRP) levels, to gain insights into the origins of acute kidney injury (AKI) in adults with comorbidities affected by COVID-19. Although aging is not categorized as a disease, it is characterized by chronic inflammation, and older individuals typically exhibit higher circulating levels of inflammatory molecules, particularly CRP, compared to younger individuals. Conversely, elevated CRP concentrations in older adults have been linked with the development of comorbidities. Simultaneously, these comorbidities contribute to the production of inflammatory molecules, including CRP. Consequently, older adults with comorbidities have higher CRP concentrations than their counterparts without comorbidities or those with fewer comorbidities. Given that CRP levels are correlated with the development and severity of AKI in non-COVID-19 patients, we hypothesized that individuals with greater SIC are more likely to develop AKI during SARS-CoV-2 infection than those with less SIC.

Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303312433240611093855
2024-06-25
2025-05-22
Loading full text...

Full text loading...

References

  1. The pandemic emergency is over, but COVID-19 continues-PAHO/WHO| Pan American Health Organization.Available from: https://www.paho.org/es/noticias/6-5-2023-se-acaba-emergencia-por-pandemia-pero-covid-19-continua [cited 2023 May 18].
  2. CoronavirusW.H.O. WHO coronavirus (COVID-19) dashboard.Available from: https://covid19.who.int
  3. MulitaF. SotiropoulouM. VailasM. A multifaceted virus. Non-reducible and strangulated effects of COVID-19.J. Trauma Acute Care Surg.2021911e3410.1097/TA.0000000000003219 33797481
    [Google Scholar]
  4. MulitaF. VailasM. TchabashviliL. LiolisE. IliopoulosF. DrakosN. MaroulisI. The impact of the COVID-19 outbreak on emergency surgery: A Greek emergency department experience.Prz. Gastroenterol.20211619510.5114/pg.2021.104739 33986894
    [Google Scholar]
  5. SARS-CoV-2 evolution.Available from: https://www.who.int/news-room/questions-and-answers/item/sars-cov-2-evolution [cited 2023 May 18].
  6. FisherM. NeugartenJ. BellinE. YunesM. StahlL. JohnsT.S. AbramowitzM.K. LevyR. KumarN. MokrzyckiM.H. CocoM. DominguezM. PrudhviK. GolestanehL. AKI in hospitalized patients with and without COVID-19: A comparison study.J. Am. Soc. Nephrol.20203192145215710.1681/ASN.2020040509 32669322
    [Google Scholar]
  7. ChebotarevaN. BernsS. BernsA. AndrosovaT. LebedevaM. MoiseevS. Acute kidney injury and mortality in coronavirus disease 2019: results from a cohort study of 1,280 patients.Kidney Res. Clin. Pract.202140224124910.23876/j.krcp.20.128 34078024
    [Google Scholar]
  8. JewellP.D. BramhamK. GallowayJ. PostF. NortonS. TeoJ. FisherR. SahaR. HutchingsS. HopkinsP. SmithP. JoslinJ. JayawardeneS. MackieS. MudhafferA. HollowayA. KibbleH. AkterM. ZuckermanB. PalmerK. MurphyC. IatropoulouD. SharpeC.C. LioudakiE. COVID-19-related acute kidney injury; Incidence, risk factors and outcomes in a large UK cohort.BMC Nephrol.202122135910.1186/s12882‑021‑02557‑x 34719384
    [Google Scholar]
  9. ChanL. ChaudharyK. SahaA. ChauhanK. VaidA. ZhaoS. ParanjpeI. SomaniS. RichterF. MiottoR. LalaA. KiaA. TimsinaP. LiL. FreemanR. ChenR. NarulaJ. JustA.C. HorowitzC. FayadZ. Cordon-CardoC. SchadtE. LevinM.A. ReichD.L. FusterV. MurphyB. HeJ.C. CharneyA.W. BöttingerE.P. GlicksbergB.S. CocaS.G. NadkarniG.N. AKI in hospitalized patients with COVID-19.J. Am. Soc. Nephrol.202132115116010.1681/ASN.2020050615 32883700
    [Google Scholar]
  10. CharytanD.M. ParniaS. KhatriM. PetrilliC.M. JonesS. BensteinJ. HorwitzL.I. Decreasing incidence of acute kidney injury in patients with covid-19 critical illness in new york city.Kidney Int. Rep.20216491692710.1016/j.ekir.2021.01.036 33558853
    [Google Scholar]
  11. ProcacciniF.L. Alcázar ArroyoR. Albalate RamónM. Torres AguileraE. Martín NavarroJ. Ryan MuruaP. Cintra CabreraM. Ortega DíazM. Puerta CarreteroM. de Sequera OrtizP. Acute kidney injury in 3182 patients admitted with COVID-19: A single-center, retrospective, case–control study.Clin. Kidney J.20211461557156910.1093/ckj/sfab021 34079618
    [Google Scholar]
  12. LuJ.Y. BoparaiM.S. ShiC. HenningerE.M. RangareddyM. VeeraraghavanS. MirhajiP. FisherM.C. DuongT.Q. Long-term outcomes of COVID-19 survivors with hospital AKI: Association with time to recovery from AKI.Nephrol. Dial. Transplant.202338102160216910.1093/ndt/gfad020 36702551
    [Google Scholar]
  13. KimH.O. KimH.S. YounJ.C. ShinE.C. ParkS. Serum cytokine profiles in healthy young and elderly population assessed using multiplexed bead-based immunoassays.J. Transl. Med.20119111310.1186/1479‑5876‑9‑113 21774806
    [Google Scholar]
  14. RoubenoffR. HarrisT.B. AbadL.W. WilsonP.W.F. DallalG.E. DinarelloC.A. Monocyte cytokine production in an elderly population: Effect of age and inflammation.J. Gerontol. A Biol. Sci. Med. Sci.199853A1M20M2610.1093/gerona/53A.1.M20 9467429
    [Google Scholar]
  15. Wyczalkowska-TomasikA. Czarkowska-PaczekB. ZielenkiewiczM. PaczekL. Inflammatory markers change with age, but do not fall beyond reported normal ranges.Arch. Immunol. Ther. Exp.201664324925410.1007/s00005‑015‑0357‑7 26283530
    [Google Scholar]
  16. ChungH.Y. SungB. JungK.J. ZouY. YuB.P. The molecular inflammatory process in aging.Antioxid. Redox Signal.200683-457258110.1089/ars.2006.8.572 16677101
    [Google Scholar]
  17. HommelsM.J. van der VenA.J A M. KroonA.A. KesselsA.G.H. van Dieijen-VisserM.P. van EngelshovenJ A M. BruggemanC.A. de LeeuwP.W. C-reactive protein, atherosclerosis and kidney function in hypertensive patients.J. Hum. Hypertens.200519752152610.1038/sj.jhh.1001878 15944720
    [Google Scholar]
  18. DybiecJ. SzlagorM. MłynarskaE. RyszJ. FranczykB. Structural and functional changes in aging kidneys.Int. J. Mol. Sci.202223231543510.3390/ijms232315435 36499760
    [Google Scholar]
  19. EsteghamatiA. MortezaA. KhalilzadehO. AnvariM. NoshadS. ZandiehA. NakhjavaniM. Physical inactivity is correlated with levels of quantitative C-reactive protein in serum, independent of obesity: Results of the national surveillance of risk factors of non-communicable diseases in Iran.J. Health Popul. Nutr.2012301667210.3329/jhpn.v30i1.11278 22524121
    [Google Scholar]
  20. RankinJ.W. TurpynA.D. Low carbohydrate, high fat diet increases C-reactive protein during weight loss.J. Am. Coll. Nutr.200726216316910.1080/07315724.2007.10719598 17536128
    [Google Scholar]
  21. KennedyE. NiedzwiedzC.L. The association of anxiety and stress-related disorders with C-reactive protein (CRP) within UK Biobank.Brain Behav. Immun. Health2022 Feb 1;19, 100410.
    [Google Scholar]
  22. OhsawaM. OkayamaA. NakamuraM. OnodaT. KatoK. ItaiK. YoshidaY. OgawaA. KawamuraK. HiramoriK. CRP levels are elevated in smokers but unrelated to the number of cigarettes and are decreased by long-term smoking cessation in male smokers.Prev. Med.200541265165610.1016/j.ypmed.2005.02.002 15917065
    [Google Scholar]
  23. CarlsonC.S. AldredS.F. LeeP.K. TracyR.P. SchwartzS.M. RiederM. LiuK. WilliamsO.D. IribarrenC. LewisE.C. FornageM. BoerwinkleE. GrossM. JaquishC. NickersonD.A. MyersR.M. SiscovickD.S. ReinerA.P. Polymorphisms within the C-reactive protein (CRP) promoter region are associated with plasma CRP levels.Am. J. Hum. Genet.2005771647710.1086/431366 15897982
    [Google Scholar]
  24. LuanY.Y. YaoY.M. The clinical significance and potential role of c-reactive protein in chronic inflammatory and neurodegenerative diseases.Front. Immunol.201891302
    [Google Scholar]
  25. FoxE.R. BenjaminE.J. SarpongD.F. NagarajaraoH. TaylorJ.K. SteffesM.W. SalahudeenA.K. FlessnerM.F. AkylbekovaE.L. FoxC.S. GarrisonR.J. TaylorH.A.Jr The relation of C - reactive protein to chronic kidney disease in African Americans: the Jackson Heart Study.BMC Nephrol.2010111110.1186/1471‑2369‑11‑1 20078870
    [Google Scholar]
  26. MahmoudA. MohammadN. SolimanA. The relationship between high sensitive c- reactive protein, interleukin-6, tumor necrosis factors -α and cognitive function in elderly diabetics in zagazig university hospitals.ZUMJ2022282333341
    [Google Scholar]
  27. HidruT.H. YangX. XiaY. MaL. LiH.H. The relationship between plasma markers and essential hypertension in middle-aged and elderly chinese population: A community based cross-sectional study.Sci. Rep.201991681310.1038/s41598‑019‑43278‑4 31048753
    [Google Scholar]
  28. BagherniyaM. KhayyatzadehS.S. Heidari BakavoliA. FernsG.A. EbrahimiM. SafarianM. NematyM. Ghayour-MobarhanM. Serum high-sensitive C-reactive protein is associated with dietary intakes in diabetic patients with and without hypertension: A cross-sectional study.Ann. Clin. Biochem.201855442242910.1177/0004563217733286 28882065
    [Google Scholar]
  29. LimaL.M. CarvalhoM.G. SoaresA.L. SabinoA.P. FernandesA.P. NovelliB.A. SousaM.O. High-sensitivity C-reactive protein in subjects with type 2 diabetes mellitus and/or high blood pressure.Arq. Bras. Endocrinol. Metabol200751695696010.1590/S0004‑27302007000600010 17934663
    [Google Scholar]
  30. PouvreauC. DayreA. ButkowskiE. de JongB. JelinekH.F. Inflammation and oxidative stress markers in diabetes and hypertension.J. Inflamm. Res.201811616810.2147/JIR.S148911 29497324
    [Google Scholar]
  31. AsadikaramG. RamM. IzadiA. Sheikh FathollahiM. NematollahiM.H. NajafipourH. ShahoozehiB. MirhoseiniM. MasoumiM. ShahrokhiN. ArababadiM.K. The study of the serum level of IL‐4, TGF‐β, IFN‐γ, and IL‐6 in overweight patients with and without diabetes mellitus and hypertension.J. Cell. Biochem.201912034147415710.1002/jcb.27700 30260038
    [Google Scholar]
  32. HirschJ.S. NgJ.H. RossD.W. SharmaP. ShahH.H. BarnettR.L. HazzanA.D. FishbaneS. JhaveriK.D. AbateM. AndradeH.P. BarnettR.L. BellucciA. BhaskaranM.C. CoronaA.G. ChangB.F. FingerM. FishbaneS. GitmanM. HalinskiC. HasanS. HazzanA.D. HirschJ.S. HongS. JhaveriK.D. KhaninY. KuanA. MadireddyV. MalieckalD. MuzibA. NairG. NairV.V. NgJ.H. ParikhR. RossD.W. SakhiyaV. SachdevaM. SchwarzR. ShahH.H. SharmaP. SinghalP.C. UppalN.N. WanchooR. NgJ.H. Acute kidney injury in patients hospitalized with COVID-19.Kidney Int.202098120921810.1016/j.kint.2020.05.006 32416116
    [Google Scholar]
  33. GustineJ.N. JonesD. Immunopathology of Hyperinflammation in COVID-19.Am. J. Pathol.2021191141710.1016/j.ajpath.2020.08.009 32919977
    [Google Scholar]
  34. GuptaA. MadhavanM.V. SehgalK. NairN. MahajanS. SehrawatT.S. BikdeliB. AhluwaliaN. AusielloJ.C. WanE.Y. FreedbergD.E. KirtaneA.J. ParikhS.A. MaurerM.S. NordvigA.S. AcciliD. BathonJ.M. MohanS. BauerK.A. LeonM.B. KrumholzH.M. UrielN. MehraM.R. ElkindM.S.V. StoneG.W. SchwartzA. HoD.D. BilezikianJ.P. LandryD.W. Extrapulmonary manifestations of COVID-19.Nat. Med.20202671017103210.1038/s41591‑020‑0968‑3 32651579
    [Google Scholar]
  35. GameiroJ. FonsecaJ.A. OliveiraJ. MarquesF. BernardoJ. CostaC. CarreiroC. BrazS. LopesJ.A. Acute kidney injury in hospitalized patients with COVID-19: A Portuguese cohort.Nefrologia202141668969810.1016/j.nefro.2021.04.002
    [Google Scholar]
  36. GeS. NieS. LiuZ. ChenC. ZhaY. QianJ. LiuB. TengS. XuA. BinW. XuX. XuG. Epidemiology and outcomes of acute kidney injury in elderly chinese patients: A subgroup analysis from the EACH study.BMC Nephrol.201617113610.1186/s12882‑016‑0351‑2 27682843
    [Google Scholar]
  37. DiaoB. WangC. WangR. FengZ. ZhangJ. YangH. TanY. WangH. WangC. LiuL. LiuY. LiuY. WangG. YuanZ. HouX. RenL. WuY. ChenY. Human kidney is a target for novel severe acute respiratory syndrome coronavirus 2 infection.Nat. Commun.2021121250610.1038/s41467‑021‑22781‑1 33947851
    [Google Scholar]
  38. LelyA.T. HammingI. van GoorH. NavisG.J. Renal ACE2 expression in human kidney disease.J. Pathol.2004204558759310.1002/path.1670 15538735
    [Google Scholar]
  39. PanX. XuD. ZhangH. ZhouW. WangL. CuiX. Identification of a potential mechanism of acute kidney injury during the COVID-19 outbreak: A study based on single-cell transcriptome analysis.Intensive Care Med.20204661114111610.1007/s00134‑020‑06026‑1 32236644
    [Google Scholar]
  40. SuH. YangM. WanC. YiL.X. TangF. ZhuH.Y. YiF. YangH.C. FogoA.B. NieX. ZhangC. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China.Kidney Int.202098121922710.1016/j.kint.2020.04.003 32327202
    [Google Scholar]
  41. BakerS.A. KwokS. BerryG.J. MontineT.J. Angiotensin-converting enzyme 2 (ACE2) expression increases with age in patients requiring mechanical ventilation.PLoS One2021162e024706010.1371/journal.pone.0247060 33592054
    [Google Scholar]
  42. XuH. Garcia-PtacekS. AnnetorpM. BruchfeldA. CederholmT. JohnsonP. KivipeltoM. MetznerC. ReligaD. EriksdotterM. Acute kidney injury and mortality risk in older adults with COVID-19.J. Nephrol.202134229530410.1007/s40620‑021‑01022‑0 33751497
    [Google Scholar]
  43. YuasaB.K. MagalhãesL.E. de OliveiraP.G.S. YokotaL.G. CardosoP.A. ZamonerW. Acute kidney injury in elderly patients with coronavirus infectious disease: A study of incidence, risk factors, and prognosis in Brazil.Front. Nephrol.20222896891
    [Google Scholar]
  44. Marquez-ExpositoL. Tejedor-SantamariaL. Santos-SanchezL. ValentijnF.A. Cantero-NavarroE. Rayego-MateosS. Rodrigues-DiezR.R. Tejera-MuñozA. MarchantV. SanzA.B. OrtizA. GoldschmedingR. Ruiz-OrtegaM. Acute kidney injury is aggravated in aged mice by the exacerbation of proinflammatory processes.Front. Pharmacol.20211266202010.3389/fphar.2021.662020 34239439
    [Google Scholar]
  45. Mancilla-GalindoJ. Kammar-GarcíaA. Martínez-EstebanA. Meza-ComparánH.D. Mancilla-RamírezJ. Galindo-SevillaN. COVID-19 patients with increasing age experience differential time to initial medical care and severity of symptoms.Epidemiol. Infect.2021149e23010.1017/S095026882100234X 34674789
    [Google Scholar]
  46. OsmanI.O. MelenotteC. BrouquiP. MillionM. LagierJ.C. ParolaP. SteinA. La ScolaB. MeddebL. MegeJ.L. RaoultD. DevauxC.A. Expression of ACE2, soluble ACE2, angiotensin I, angiotensin II and angiotensin-(1-7) is modulated in covid-19 patients.Front. Immunol.20211262573210.3389/fimmu.2021.625732 34194422
    [Google Scholar]
  47. SharmaP. UppalN.N. WanchooR. ShahH.H. YangY. ParikhR. KhaninY. MadireddyV. LarsenC.P. JhaveriK.D. BijolV. COVID-19–associated kidney injury: A case series of kidney biopsy findings.J. Am. Soc. Nephrol.20203191948195810.1681/ASN.2020050699 32660970
    [Google Scholar]
  48. Ebrahimi-DehkordiS. BanitalebiH. Hasanpour-DehkordiA. Acute kidney injury due to cytokine storm in patients with COVID-19 infection.J. Nephropathol.2020104e37e3710.34172/jnp.2021.37
    [Google Scholar]
  49. Del Nogal AvilaM. DasR. KharlyngdohJ. Molina-JijonE. Donoro BlazquezH. GambutS. CrowleyM. CrossmanD.K. GbadagesinR.A. ChughS.S. ChughS.S. Avila-CasadoC. MacéC. ClementL.C. ChughS.S. Cytokine storm–based mechanisms for extrapulmonary manifestations of SARS-CoV-2 infection.JCI Insight2023810e16601210.1172/jci.insight.166012 37040185
    [Google Scholar]
  50. FranceschiC. BonafèM. ValensinS. OlivieriF. De LucaM. OttavianiE. De BenedictisG. Inflamm-aging. An evolutionary perspective on immunosenescence.Ann. N. Y. Acad. Sci.2000908124425410.1111/j.1749‑6632.2000.tb06651.x 10911963
    [Google Scholar]
  51. De la FuenteM. Role of the immune system in aging.Inmunologia200827417619110.1016/S0213‑9626(08)70066‑0
    [Google Scholar]
  52. LiuY.Z. WangY.X. JiangC.L. Inflammation: The common pathway of stress-related diseases.Front. Hum. Neurosci.20171131610.3389/fnhum.2017.00316 28676747
    [Google Scholar]
  53. ParkJ.H. MoonJ.H. KimH.J. KongM.H. OhY.H. Sedentary lifestyle: Overview of updated evidence of potential health risks.Korean J. Fam. Med.202041636537310.4082/kjfm.20.0165 33242381
    [Google Scholar]
  54. KloverP.J. ZimmersT.A. KoniarisL.G. MooneyR.A. Chronic exposure to interleukin-6 causes hepatic insulin resistance in mice.Diabetes200352112784278910.2337/diabetes.52.11.2784 14578297
    [Google Scholar]
  55. LagathuC. BastardJ.P. AuclairM. MaachiM. CapeauJ. CaronM. Chronic interleukin-6 (IL-6) treatment increased IL-6 secretion and induced insulin resistance in adipocyte: Prevention by rosiglitazone.Biochem. Biophys. Res. Commun.2003311237237910.1016/j.bbrc.2003.10.013 14592424
    [Google Scholar]
  56. StephensJ.M. LeeJ. PilchP.F. Tumor necrosis factor-alpha-induced insulin resistance in 3T3-L1 adipocytes is accompanied by a loss of insulin receptor substrate-1 and GLUT4 expression without a loss of insulin receptor-mediated signal transduction.J. Biol. Chem.1997272297197610.1074/jbc.272.2.971 8995390
    [Google Scholar]
  57. D’AlessandrisC. LauroR. PrestaI. SestiG. C-reactive protein induces phosphorylation of insulin receptor substrate-1 on Ser307 and Ser612 in L6 myocytes, thereby impairing the insulin signalling pathway that promotes glucose transport.Diabetologia200750484084910.1007/s00125‑006‑0522‑y 17279354
    [Google Scholar]
  58. ChoN.H. KuE.J. JungK.Y. OhT.J. KwakS.H. MoonJ.H. ParkK.S. JangH.C. KimY.J. ChoiS.H. Estimated association between cytokines and the progression to diabetes: 10-year follow-up from a community-based cohort.J. Clin. Endocrinol. Metab.20201053e381e38910.1210/clinem/dgz171 31690939
    [Google Scholar]
  59. OparilS. AcelajadoM.C. BakrisG.L. BerlowitzD.R. CífkováR. DominiczakA.F. GrassiG. JordanJ. PoulterN.R. RodgersA. WheltonP.K. Hypertension.Nat. Rev. Dis. Primers2018411801410.1038/nrdp.2018.14 29565029
    [Google Scholar]
  60. KrishnanS.M. DowlingJ.K. LingY.H. DiepH. ChanC.T. FerensD. KettM.M. PinarA. SamuelC.S. VinhA. ArumugamT.V. HewitsonT.D. Kemp-HarperB.K. RobertsonA A B. CooperM.A. LatzE. MansellA. SobeyC.G. DrummondG.R. Inflammasome activity is essential for one kidney/deoxycorticosterone acetate/salt‐induced hypertension in mice.Br. J. Pharmacol.2016173475276510.1111/bph.13230 26103560
    [Google Scholar]
  61. ThomasJ.M. LingY.H. HuuskesB. JelinicM. SharmaP. SainiN. FerensD.M. DiepH. KrishnanS.M. Kemp-HarperB.K. O’ConnorP.M. LatzE. ArumugamT.V. GuzikT.J. HickeyM.J. MansellA. SobeyC.G. VinhA. DrummondG.R. IL-18 (Interleukin-18) produced by renal tubular epithelial cells promotes renal inflammation and injury during deoxycorticosterone/salt-induced hypertension in mice.Hypertension20217851296130910.1161/HYPERTENSIONAHA.120.16437 34488433
    [Google Scholar]
  62. ZhangJ. RudemillerN.P. PatelM.B. KarlovichN.S. WuM. McDonoughA.A. GriffithsR. SparksM.A. JeffsA.D. CrowleyS.D. Interleukin-1 receptor activation potentiates salt reabsorption in angiotensin ii-induced hypertension via the NKCC2 co-transporter in the nephron.Cell Metab.201623236036810.1016/j.cmet.2015.11.013 26712462
    [Google Scholar]
  63. YangY. TangS. ZhaiC. ZengX. LiuQ. XuC. ChenH. Interleukin-9 deletion relieves vascular dysfunction and decreases blood pressure via the STAT3 pathway in angiotensin II-treated mice.Mediators Inflamm.202020205741047 32148441
    [Google Scholar]
  64. MadhurM.S. LobH.E. McCannL.A. IwakuraY. BlinderY. GuzikT.J. HarrisonD.G. Interleukin 17 promotes angiotensin II-induced hypertension and vascular dysfunction.Hypertension201055250050710.1161/HYPERTENSIONAHA.109.145094 20038749
    [Google Scholar]
  65. PatrickD.M. Van BeusecumJ.P. KiraboA. The role of inflammation in hypertension: Novel concepts.Curr. Opin. Physiol.202119929810.1016/j.cophys.2020.09.016 33073072
    [Google Scholar]
  66. SessoH.D. BuringJ.E. RifaiN. BlakeG.J. GazianoJ.M. RidkerP.M. C-reactive protein and the risk of developing hypertension.JAMA2003290222945295110.1001/jama.290.22.2945 14665655
    [Google Scholar]
  67. SunX.N. LiC. LiuY. DuL.J. ZengM.R. ZhengX.J. ZhangW.C. LiuY. ZhuM. KongD. ZhouL. LuL. ShenZ.X. YiY. DuL. QinM. LiuX. HuaZ. SunS. YinH. ZhouB. YuY. ZhangZ. DuanS.Z. T-cell mineralocorticoid receptor controls blood pressure by regulating interferon-gamma.Circ. Res.2017120101584159710.1161/CIRCRESAHA.116.310480 28298295
    [Google Scholar]
  68. BautistaL.E. VeraL.M. ArenasI.A. GamarraG. Independent association between inflammatory markers (C-reactive protein, interleukin-6, and TNF-α) and essential hypertension.J. Hum. Hypertens.200519214915410.1038/sj.jhh.1001785 15361891
    [Google Scholar]
  69. NaserA.Y. AlwafiH. AlotaibiB. SalawatiE. SamannodiM. AlsairafiZ. AlanaziA.F.R. DairiM.S. Prevalence of chronic kidney diseases in patients with diabetes mellitus in the middle east: A systematic review and meta-analysis.Int. J. Endocrinol.202120211910.1155/2021/4572743 34497644
    [Google Scholar]
  70. HunegnawA. MekonnenH.S. TechaneM.A. AgegnehuC.D. Prevalence and associated factors of chronic kidney disease among adult hypertensive patients at northwest amhara referral hospitals, northwest ethiopia, 2020.Int. J. Hypertens.202120211810.1155/2021/5515832 34484816
    [Google Scholar]
  71. ParkY.C. LeeS. KimY.S. ParkJ.M. HanK. LeeH. HongK.W. KimJ.K. ChoE.S. ChungT.H. KimB.T. KohS.B. Serum leptin level and incidence of CKD: A longitudinal study of adult enrolled in the Korean genome and epidemiology study(KoGES).BMC Nephrol.202223119710.1186/s12882‑022‑02795‑7 35619087
    [Google Scholar]
  72. LeeB.T. AhmedF.A. HammL.L. TeranF.J. ChenC.S. LiuY. ShahK. RifaiN. BatumanV. SimonE.E. HeJ. ChenJ. Association of C-reactive protein, tumor necrosis factor-alpha, and interleukin-6 with chronic kidney disease.BMC Nephrol.20151617710.1186/s12882‑015‑0068‑7 26025192
    [Google Scholar]
  73. GuptaJ. MitraN. KanetskyP.A. DevaneyJ. WingM.R. ReillyM. ShahV.O. BalakrishnanV.S. GuzmanN.J. GirndtM. PerieraB.G. FeldmanH.I. KusekJ.W. JoffeM.M. RajD.S. Association between albuminuria, kidney function, and inflammatory biomarker profile in CKD in CRIC.Clin. J. Am. Soc. Nephrol.20127121938194610.2215/CJN.03500412 23024164
    [Google Scholar]
  74. KuboS. KitamuraA. ImanoH. CuiR. YamagishiK. UmesawaM. Serum albumin and high-sensitivity c-reactive protein are independent risk factors of chronic kidney disease in middle-aged japanese individuals: The circulatory risk in communities study.J. Atheroscler. Thromb.201623910891098
    [Google Scholar]
  75. ŠkrhaJ.Jr KalousováM. ŠvarcováJ. MuravskáA. KvasničkaJ. LandováL. ZimaT. ŠkrhaJ. Relationship of soluble RAGE and RAGE ligands HMGB1 and EN-RAGE to endothelial dysfunction in type 1 and type 2 diabetes mellitus.Exp. Clin. Endocrinol. Diabetes2012120527728110.1055/s‑0031‑1283161 22549347
    [Google Scholar]
  76. TabákA.G. KivimäkiM. BrunnerE.J. LoweG.D. JokelaM. AkbaralyT.N. Singh-ManouxA. FerrieJ.E. WitteD.R. Changes in C-reactive protein levels before type 2 diabetes and cardiovascular death: The Whitehall II study.Eur. J. Endocrinol.20101631899510.1530/EJE‑10‑0277 20573938
    [Google Scholar]
  77. SaukkonenT. MuttS.J. JokelainenJ. SaukkonenA.M. RazaG.S. KarhuT. HärkönenP. EckelJ. HerzigK.H. RajalaU. Keinänen-KiukaanniemiS. Adipokines and inflammatory markers in elderly subjects with high risk of type 2 diabetes and cardiovascular disease.Sci. Rep.2018811281610.1038/s41598‑018‑31144‑8 30143687
    [Google Scholar]
  78. TabassumR. MiaA.R. Reza-Ul-HaqK.M. YesminM. FaruquiJ.M. C-reactive protein level in type-2 diabetic patients attending mymensingh medical college hospital, mymensingh.Mymensingh Med. J.20172615660 28260756
    [Google Scholar]
  79. LiX. TNF-alpha in peripheral neuropathy patients with impaired glucose regulation.J. Diabetes Res.201720177024024
    [Google Scholar]
  80. DhindsaS. TripathyD. MohantyP. GhanimH. SyedT. AljadaA. DandonaP. Differential effects of glucose and alcohol on reactive oxygen species generation and intranuclear nuclear factor-κB in mononuclear cells.Metabolism200453333033410.1016/j.metabol.2003.10.013 15015145
    [Google Scholar]
  81. MorohoshiM. FujisawaK. UchimuraaI. NumanoF. Glucose-dependent interleukin 6 and tumor necrosis factor production by human peripheral blood monocytes in vitro.Diabetes199645795495910.2337/diab.45.7.954 8666148
    [Google Scholar]
  82. HâncuN. NeteaM.G. BaciuI. High glucose concentrations increase the tumor necrosis factor-alpha production capacity by human peripheral blood mononuclear cells.Rom. J. Physiol.1998353-4325330 11061332
    [Google Scholar]
  83. GrosickR. Alvarado-VazquezP.A. MessersmithA. Romero-SandovalE.A. High glucose induces a priming effect in macrophages and exacerbates the production of pro-inflammatory cytokines after a challenge.J. Pain Res.2018111769177810.2147/JPR.S164493 30237731
    [Google Scholar]
  84. PavlouS. LindsayJ. IngramR. XuH. ChenM. Sustained high glucose exposure sensitizes macrophage responses to cytokine stimuli but reduces their phagocytic activity.BMC Immunol.20181912410.1186/s12865‑018‑0261‑0 29996768
    [Google Scholar]
  85. PeetersA.C.T.M. NeteaM.G. JanssenM.C.H. KullbergB.J. Van der MeerJ.W.M. ThienT. Pro‐inflammatory cytokines in patients with essential hypertension.Eur. J. Clin. Invest.2001311313610.1046/j.1365‑2362.2001.00743.x 11168436
    [Google Scholar]
  86. YinX. CaoH. WeiY. LiH.H. Alteration of the IL-33-sST2 pathway in hypertensive patients and a mouse model.Hypertens. Res.201942111664167110.1038/s41440‑019‑0291‑x 31235844
    [Google Scholar]
  87. LakoskiS.G. CushmanM. PalmasW. BlumenthalR. D’AgostinoR.B.Jr HerringtonD.M. The relationship between blood pressure and C-reactive protein in the Multi-Ethnic Study of Atherosclerosis (MESA).J. Am. Coll. Cardiol.200546101869187410.1016/j.jacc.2005.07.050 16286174
    [Google Scholar]
  88. KrishnanS.M. SobeyC.G. LatzE. MansellA. DrummondG.R.I.L. ‐1β and IL ‐18: Inflammatory markers or mediators of hypertension?Br. J. Pharmacol.2014171245589560210.1111/bph.12876 25117218
    [Google Scholar]
  89. ChamarthiB. WilliamsG.H. RicchiutiV. SrikumarN. HopkinsP.N. LutherJ.M. JeunemaitreX. ThomasA. Inflammation and hypertension: The interplay of interleukin-6, dietary sodium, and the renin-angiotensin system in humans.Am. J. Hypertens.201124101143114810.1038/ajh.2011.113 21716327
    [Google Scholar]
  90. JiQ. ChengG. MaN. HuangY. LinY. ZhouQ. QueB. DongJ. ZhouY. NieS. Circulating Th1, Th2, and Th17 levels in hypertensive patients.Dis. Markers2017201711210.1155/2017/7146290 28757677
    [Google Scholar]
  91. DörffelY. LätschC. StuhlmüllerB. SchreiberS. ScholzeS. BurmesterG.R. ScholzeJ. Preactivated peripheral blood monocytes in patients with essential hypertension.Hypertension199934111311710.1161/01.HYP.34.1.113 10406833
    [Google Scholar]
  92. KimH.Y. KangY.J. SongI.H. ChoiH.C. KimH.S. Upregulation of interleukin-8/CXCL8 in vascular smooth muscle cells from spontaneously hypertensive rats.Hypertens. Res.200831351552310.1291/hypres.31.515 18497472
    [Google Scholar]
  93. BandachI. SegevY. LandauD. Experimental modulation of Interleukin 1 shows its key role in chronic kidney disease progression and anemia.Sci. Rep.2021111628810.1038/s41598‑021‑85778‑2 33737665
    [Google Scholar]
  94. RomanovaY.D. MarkelovaM.I. LaikovA.V. FakhrutdinovaL.I. HasanovaM.I. MalaninS.Y. ChernovV.M. SalafutdinovI.I. KhaiboullinaS.F. Cytokine levels in the serum of patients with chronic kidney insufficiency before and after hemodialysis.Bionanoscience20177241541810.1007/s12668‑016‑0379‑6
    [Google Scholar]
  95. PanichiV. MiglioriM. De PietroS. TaccolaD. BianchiA.M. NorpothM. MetelliM.R. GiovanniniL. TettaC. PallaR. C reactive protein in patients with chronic renal diseases.Ren. Fail.2001233-455156210.1081/JDI‑100104737 11499569
    [Google Scholar]
  96. EloueykA.K. AlameddineR.Y. OstaB.A. AwadD.M. Correlations between serum inflammatory markers and comorbidities in patients with end-stage renal disease.J. Taibah Univ. Med. Sci.201914654755210.1016/j.jtumed.2019.10.003 31908643
    [Google Scholar]
  97. WilairatanaP. MahannopP. TussatoT. HayeedolohI. BoonhokR. KlangbudW.K. MalaW. KotepuiK.U. KotepuiM. C-reactive protein as an early biomarker for malaria infection and monitoring of malaria severity: A meta-analysis.Sci. Rep.20211112203310.1038/s41598‑021‑01556‑0 34764364
    [Google Scholar]
  98. VuongN.L. Le DuyenH.T. LamP.K. TamD.T.H. Vinh ChauN.V. Van KinhN. ChanpheaktraN. LumL.C.S. PleitésE. JonesN.K. SimmonsC.P. RosenbergerK. JaenischT. HalleuxC. OlliaroP.L. WillsB. YacoubS. C-reactive protein as a potential biomarker for disease progression in dengue: A multi-country observational study.BMC Med.20201813510.1186/s12916‑020‑1496‑1 32063229
    [Google Scholar]
  99. LoboS.M.A. LoboF.R.M. BotaD.P. Lopes-FerreiraF. SolimanH.M. MeélotC. VincentJ.L. C-reactive protein levels correlate with mortality and organ failure in critically ill patients.Chest200312362043204910.1378/chest.123.6.2043 12796187
    [Google Scholar]
  100. YouY.K. WuW.F. HuangX.R. LiH.D. RenY.P. ZengJ.C. ChenH. LanH.Y. Deletion of Smad3 protects against C-reactive protein-induced renal fibrosis and inflammation in obstructive nephropathy.Int. J. Biol. Sci.202117143911392210.7150/ijbs.62929 34671208
    [Google Scholar]
  101. LiJ. ChenJ. LanH. TangY. Role of C-reactive protein in kidney diseases.Kidney Dis.202392738110.1159/000528693
    [Google Scholar]
  102. TangP. ZhangY.Y. HungJ. ChungJ.Y.F. HuangX.R. ToK.F. DPP4/CD32b/NF-κB circuit: A novel druggable target for inhibiting crp-driven diabetic nephropathy.Mol. Ther.202029365375
    [Google Scholar]
  103. BashirA.M. MukhtarM.S. MohamedY.G. CetinkayaO. FiidowO.A. Prevalence of acute kidney injury in covid-19 patients- retrospective single-center study.Infect. Drug Resist.2022151555156010.2147/IDR.S357997 35411159
    [Google Scholar]
  104. ParangaT.G. Pavel-TanasaM. ConstantinescuD. PlescaC.E. PetroviciC. MiftodeI.L. MoscaluM. CiangaP. MiftodeE.G. Comparison of C-reactive protein with distinct hyperinflammatory biomarkers in association with COVID-19 severity, mortality and SARS-CoV-2 variants.Front. Immunol.202314121324610.3389/fimmu.2023.1213246 37388734
    [Google Scholar]
  105. XuZ. ZhangY. ZhangC. XiongF. ZhangJ. XiongJ. Clinical features and outcomes of covid-19 patients with acute kidney injury and acute kidney injury on chronic kidney disease.Aging Dis.202213388489810.14336/AD.2021.1125 35656097
    [Google Scholar]
  106. LeeJ.R. SilberzweigJ. AkchurinO. ChoiM.E. SrivatanaV. LinJ. LiuF. MalhaL. LubetzkyM. DadhaniaD.M. ShankaranarayananD. ShimonovD. NeupaneS. SalinasT. BhasinA. VarmaE. LeuprechtL. GerardineS. LambaP. GoyalP. CaliendoE. TiaseV. SharmaR. ParkJ.C. SteelP.A.D. SuthanthiranM. ZhangY. Characteristics of acute kidney injury in hospitalized covid-19 patients in an urban academic medical center.Clin. J. Am. Soc. Nephrol.202116228428610.2215/CJN.07440520 32948642
    [Google Scholar]
  107. LuJ.Y. BuczekA. FleysherR. HoogenboomW.S. HouW. RodriguezC.J. FisherM.C. DuongT.Q. Outcomes of hospitalized patients with covid-19 with acute kidney injury and acute cardiac injury.Front. Cardiovasc. Med.2022879889710.3389/fcvm.2021.798897 35242818
    [Google Scholar]
  108. SchaubroeckH. VandenbergheW. BoerW. BoonenE. DewulfB. BourgeoisC. DuboisJ. DumoulinA. FivezT. GunstJ. HermansG. LormansP. MeerssemanP. MesottenD. StesselB. VanhoofM. De VliegerG. HosteE. Acute kidney injury in critical COVID-19: A multicenter cohort analysis in seven large hospitals in Belgium.Crit. Care202226122510.1186/s13054‑022‑04086‑x 35879765
    [Google Scholar]
  109. SunS. AnnadiR.R. ChaudhriI. MunirK. HajagosJ. SaltzJ. HoaiM. MallipattuS.K. MoffittR. KoraishyF.M. Short- and long-term recovery after moderate/severe aki in patients with and without covid-19.Kidney36020223224225710.34067/KID.0005342021 35373118
    [Google Scholar]
  110. KeC. XiaoJ. WangZ. YuC. YangC. HuZ. Characteristics of patients with kidney injury associated with COVID-19.Int. Immunopharmacol.20219610779410.1016/j.intimp.2021.107794 34162156
    [Google Scholar]
  111. Soto-FajardoJ.M. Castillo-AvalosV.J. Hernandez-ParedesE.N. Santillán-CerónA. Gaytan-ArochaJ.E. Vega-VegaO. Longitudinal changes of serum creatine kinase and acute kidney injury among patients with severe COVID-19.In: Int. J. Nephrol.20222022855679310.1155/2022/8556793 35497933
    [Google Scholar]
  112. XiaP. WenY. DuanY. SuH. CaoW. XiaoM. MaJ. ZhouY. ChenG. JiangW. WuH. HuY. XuS. CaiH. LiuZ. ZhouX. DuB. WangJ. LiT. YanX. ChenL. LiangZ. ZhangS. ZhangC. QinY. WangG. LiX. Clinicopathological features and outcomes of acute kidney injury in critically ill covid-19 with prolonged disease course: A retrospective cohort.J. Am. Soc. Nephrol.20203192205222110.1681/ASN.2020040426 32826326
    [Google Scholar]
  113. WanY.I. BienZ. ApeaV.J. OrkinC.M. DhairyawanR. KirwanC.J. PearseR.M. PuthuchearyZ.A. ProwleJ.R. Acute kidney injury in COVID-19: Multicentre prospective analysis of registry data.Clin. Kidney J.202114112356236410.1093/ckj/sfab071 34751235
    [Google Scholar]
  114. PengS. WangH.Y. SunX. LiP. YeZ. LiQ. WangJ. ShiX. LiuL. YaoY. ZengR. HeF. LiJ. GeS. KeX. ZhouZ. DongE. WangH. XuG. ZhangL. ZhaoM.H. Early versus late acute kidney injury among patients with COVID-19—a multicenter study from Wuhan, China.Nephrol. Dial. Transplant.202035122095210210.1093/ndt/gfaa288 33275762
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303312433240611093855
Loading
/content/journals/emiddt/10.2174/0118715303312433240611093855
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test