Skip to content
2000
Volume 25, Issue 4
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

Lung cancer and tuberculosis (TB) are classified as the second-most life-threatening diseases globally. They both are exclusively represented as major public health risks and might exhibit similar symptoms, occasionally diagnosed simultaneously. Several epidemiological studies suggest that TB is a significant risk factor for the progression of lung cancer. The staggering mortality rates of pulmonary disorders are intrinsically connected to lung cancer and TB. Numerous factors play a pivotal role in the development of TB and may promote lung carcinogenesis, particularly among the geriatric population. Understanding the intricacies involved in the association between lung carcinogenesis and TB has become a crucial demand of current research. Consequently, this study aims to comprehensively review current knowledge on the relationship between tuberculosis-related inflammation and the emergence of lung carcinoma, highlighting the impact of persistent inflammation on lung tissue, immune modulation, fibrosis, aspects of reactive oxygen species, and an altered microenvironment that are linked to the progression of tuberculosis and subsequently trigger lung carcinoma.

Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303301146240522095638
2024-05-31
2025-05-25
Loading full text...

Full text loading...

References

  1. YoungD.B. PerkinsM.D. DuncanK. BarryC.E.III Confronting the scientific obstacles to global control of tuberculosis.J. Clin. Invest.200811841255126510.1172/JCI34614 18382738
    [Google Scholar]
  2. SrivastavaD. SrivastavaS.K. KhanS.B. SinghH.R. MaakarS.K. AgarwalA.K. MalibariA.A. AlbalawiE. Early detection of lung nodules using a revolutionized deep learning model.Diagnostics20231322348510.3390/diagnostics13223485 37998620
    [Google Scholar]
  3. ZhouB. ZangR. ZhangM. SongP. LiuL. BieF. PengY. BaiG. GaoS. Worldwide burden and epidemiological trends of tracheal, bronchus, and lung cancer: A population-based study.Bio. Medi.20227810395110.1016/j.ebiom.2022.103951 35313216
    [Google Scholar]
  4. Koru-SengulT. PinheiroP.S. ZhaoW. HernandezM.N. HernandezD.R. MaggioniA. KobetzE.N. Caban-MartinezA.J. LeeD.J. Lung cancer survival among Florida male firefighters.Front. Oncol.202313115565010.3389/fonc.2023.1155650 37664012
    [Google Scholar]
  5. WangA. MacNeilA. MaloneyS. Comparison and lessons learned from neglected tropical diseases and tuberculosis.PLOS Global Public Health2021110e000002710.1371/journal.pgph.0000027 36962087
    [Google Scholar]
  6. SachanR.S.K. MistryV. DholariaM. RanaA. DevgonI. AliI. IqbalJ. EldinS.M. Mohammad Said Al-TawahaA.R. BawazeerS. DuttaJ. KarnwalA. Overcoming Mycobacterium tuberculosis drug resistance: Novel medications and repositioning strategies.ACS Omega2023836322443225710.1021/acsomega.3c02563 37720746
    [Google Scholar]
  7. ZhuoQ. ZhangX. ZhangK. ChenC. HuangZ. XuY. The gut and lung microbiota in pulmonary tuberculosis: Susceptibility, function, and new insights into treatment.Expert Rev. Anti Infect. Ther.202321121355136410.1080/14787210.2023.2283036 37970631
    [Google Scholar]
  8. Mata-EspinosaD. Lara-EspinosaJ.V. Barrios-PayánJ. Hernández-PandoR. The use of viral vectors for gene therapy and vaccination in tuberculosis.Pharmaceuticals20231610147510.3390/ph16101475 37895946
    [Google Scholar]
  9. QinY. ChenY. ChenJ. XuK. XuF. ShiJ. The relationship between previous pulmonary tuberculosis and risk of lung cancer in the future.Infect. Agent. Cancer20221712010.1186/s13027‑022‑00434‑2 35525982
    [Google Scholar]
  10. PredaM. TănaseB.C. ZobD.L. GheorgheA.S. LungulescuC.V. DumitrescuE.A. StănculeanuD.L. ManolescuL.S.C. PopescuO. IbraimE. MahlerB. The bidirectional relationship between pulmonary tuberculosis and lung cancer.Int. J. Environ. Res. Public Health2023202128210.3390/ijerph20021282 36674038
    [Google Scholar]
  11. CicėnasS. VencevičiusV. Lung cancer in patients with tuberculosis.World J. Surg. Oncol.2007512210.1186/1477‑7819‑5‑22 17309797
    [Google Scholar]
  12. YadavS. Pulmonary tuberculosis with concomitant aspergillus fungal ball in a diabetic Indian male: A rare case report.Cureus2023157e4144310.7759/cureus.41443 37546067
    [Google Scholar]
  13. BaracA. VujovicA. DrazicA. StevanovicG. PagliettiB. LukicK. StojanovicM. StjepanovicM. Diagnosis of chronic pulmonary aspergillosis: Clinical, radiological or laboratory?J. Fungi2023911108410.3390/jof9111084 37998889
    [Google Scholar]
  14. SheikhpourM. MirbahariS.N. SadrM. MalekiM. ArabiM. AbolfathiH. A comprehensive study on the correlation of treatment, diagnosis and epidemiology of tuberculosis and lung cancer.Tanaffos2023221718 37920308
    [Google Scholar]
  15. AnsaryA. Hematogenous disseminated tuberculosis misdiagnosed as metastatic lung cancer.The Misdiagnosis Casebook in Clinical Medicine: A Case-Based Guide.ChamSpringer International Publishing202329329910.1007/978‑3‑031‑28296‑6_41
    [Google Scholar]
  16. MalikH. AneesT. DinM. NaeemA. CDC_Net: multi-classification convolutional neural network model for detection of COVID-19, pneumothorax, pneumonia, lung Cancer, and tuberculosis using chest X-rays.Multimedia Tools Appl.2023829138551388010.1007/s11042‑022‑13843‑7 36157356
    [Google Scholar]
  17. AokiK. Excess incidence of lung cancer among pulmonary tuberculosis patients.Jpn. J. Clin. Oncol.1993234205220 8411734
    [Google Scholar]
  18. WuA.H. FonthamE.T.H. ReynoldsP. GreenbergR.S. BufflerP. LiffJ. BoydP. HendersonB.E. CorreaP. Previous lung disease and risk of lung cancer among lifetime nonsmoking women in the United States.Am. J. Epidemiol.1995141111023103210.1093/oxfordjournals.aje.a117366 7771438
    [Google Scholar]
  19. ParkD.W. KimB.G. JeongY.H. JangH.J. YangB. ShinS. LeeH. Risk of short- and long-term pulmonary complications should be determined before surgery for tuberculosis-destroyed lung.J. Thorac. Dis.202315395095210.21037/jtd‑22‑1799 37065596
    [Google Scholar]
  20. TiwariD. MartineauA.R. Inflammation-mediated tissue damage in pulmonary tuberculosis and host-directed therapeutic strategies.Seminars in ImmunologyAcademic Press20236510167210.1016/j.smim.2022.101672
    [Google Scholar]
  21. AshenafiS. BrighentiS. Reinventing the human tuberculosis (TB) granuloma: Learning from the cancer field.Front. Immunol.202213105972510.3389/fimmu.2022.1059725 36591229
    [Google Scholar]
  22. VashishthA. ShuaibM. BansalT. KumarS. Mycobacterium tubercular mediated inflammation and lung carcinogenesis: Connecting links.OBM Genet.20237211710.21926/obm.genet.2302183
    [Google Scholar]
  23. XiongK. SunW. HeY. FanL. Advances in molecular mechanisms of interaction between Mycobacterium tuberculosis and lung cancer: a narrative review.Transl. Lung Cancer Res.202110104012402610.21037/tlcr‑21‑465 34858788
    [Google Scholar]
  24. AhmedM. TezeraL.B. ElkingtonP.T. LeslieA.J. The paradox of immune checkpoint inhibition re-activating tuberculosis.Eur. Respir. J.2022605210251210.1183/13993003.02512‑2021 35595321
    [Google Scholar]
  25. AzadN. RojanasakulY. VallyathanV. Inflammation and lung cancer: roles of reactive oxygen/nitrogen species.J. Toxicol. Environ. Health B Crit. Rev.200811111510.1080/10937400701436460 18176884
    [Google Scholar]
  26. KaufmannS.H.E. DorhoiA. Inflammation in tuberculosis: interactions, imbalances and interventions.Curr. Opin. Immunol.201325444144910.1016/j.coi.2013.05.005 23725875
    [Google Scholar]
  27. Romero-AdrianT.B. Leal-MontielJ. FernándezG. ValecilloA. Role of cytokines and other factors involved in the Mycobacterium tuberculosis infection.World J. Immunol.201551165010.5411/wji.v5.i1.16
    [Google Scholar]
  28. ValavanidisA. VlachogianniT. FiotakisK. LoridasS. Pulmonary oxidative stress, inflammation and cancer: respirable particulate matter, fibrous dusts and ozone as major causes of lung carcinogenesis through reactive oxygen species mechanisms.Int. J. Environ. Res. Public Health20131093886390710.3390/ijerph10093886 23985773
    [Google Scholar]
  29. YangL. ZhuangL. YeZ. LiL. GuanJ. GongW. Immunotherapy and biomarkers in lung cancer patients with tuberculosis: Recent advances and future directions.iScience2023261010788110.1016/j.isci.2023.107881 37841590
    [Google Scholar]
  30. HoJ.C. LeungC.C. Management of co-existent tuberculosis and lung cancer.Lung Cancer2018122838710.1016/j.lungcan.2018.05.030 30032851
    [Google Scholar]
  31. EngelsE.A. Inflammation in the development of lung cancer: epidemiological evidence.Expert Rev. Anticancer Ther.20088460561510.1586/14737140.8.4.605 18402527
    [Google Scholar]
  32. RooneyC. SethiT. The epithelial cell and lung cancer: The link between chronic obstructive pulmonary disease and lung cancer.Respiration20118128910410.1159/000323946 21311210
    [Google Scholar]
  33. Morales-GarcíaC. Parra-RuizJ. Sánchez-MartínezJ.A. Delgado-MartínA.E. Amzouz-AmzouzA. Hernández-QueroJ. Concomitant tuberculosis and lung cancer diagnosed by bronchoscopy.Int. J. Tuberc. Lung Dis.20151991027103210.5588/ijtld.14.0578 26260819
    [Google Scholar]
  34. KimY.I. GooJ.M. KimH.Y. SongJ.W. ImJ.G. Coexisting bronchogenic carcinoma and pulmonary tuberculosis in the same lobe: radiologic findings and clinical significance.Korean J. Radiol.20012313814410.3348/kjr.2001.2.3.138 11752984
    [Google Scholar]
  35. CronanM.R. In the thick of it: formation of the tuberculous granuloma and its effects on host and therapeutic responses.Front. Immunol.20221382013410.3389/fimmu.2022.820134 35320930
    [Google Scholar]
  36. Carabalí-IsajarM.L. Rodríguez-BejaranoO.H. AmadoT. PatarroyoM.A. IzquierdoM.A. LutzJ.R. OcampoM. Clinical manifestations and immune response to tuberculosis.World J. Microbiol. Biotechnol.202339820610.1007/s11274‑023‑03636‑x 37221438
    [Google Scholar]
  37. CohenS.B. GernB.H. UrdahlK.B. The tuberculous granuloma and preexisting immunity.Annu. Rev. Immunol.202240158961410.1146/annurev‑immunol‑093019‑125148 35130029
    [Google Scholar]
  38. SinghS. AllwoodB.W. ChiyakaT.L. KleyhansL. NaidooC.C. MoodleyS. TheronG. SegalL.N. Immunologic and imaging signatures in post tuberculosis lung disease.Tuberculosis202213610224410.1016/j.tube.2022.102244 36007338
    [Google Scholar]
  39. YuanZ. LiY. ZhangS. WangX. DouH. YuX. ZhangZ. YangS. XiaoM. Extracellular matrix remodeling in tumor progression and immune escape: From mechanisms to treatments.Mol. Cancer20232214810.1186/s12943‑023‑01744‑8 36906534
    [Google Scholar]
  40. PopovaN.V. JückerM. The functional role of extracellular matrix proteins in cancer.Cancers (Basel)202214123810.3390/cancers14010238 35008401
    [Google Scholar]
  41. ChaiQ. LuZ. LiuZ. ZhongY. ZhangF. QiuC. LiB. WangJ. ZhangL. PangY. LiuC.H. Lung gene expression signatures suggest pathogenic links and molecular markers for pulmonary tuberculosis, adenocarcinoma and sarcoidosis.Commun. Biol.20203160410.1038/s42003‑020‑01318‑0 33097805
    [Google Scholar]
  42. PattersonK.C. ChenE.S. The pathogenesis of pulmonary sarcoidosis and implications for treatment.Chest201815361432144210.1016/j.chest.2017.11.030 29224832
    [Google Scholar]
  43. BudisanL. ZanoagaO. BraicuC. PirlogR. CovaliuB. EsanuV. KorbanS. Berindan-NeagoeI. Links between infections, lung cancer, and the immune system.Int. J. Mol. Sci.20212217939410.3390/ijms22179394 34502312
    [Google Scholar]
  44. BurgessJ.K. HarmsenM.C. Chronic lung diseases: Entangled in extracellular matrix.Eur. Respir. Rev.20223116321020210.1183/16000617.0202‑2021 35264410
    [Google Scholar]
  45. WangC. Yang, J. Mechanical forces: The missing link between idiopathic pulmonary fibrosis and lung cancer.Eur. J. Cell Biol.2022101315123410.1016/j.ejcb.2022.151234 35569385
    [Google Scholar]
  46. QiangL. ZhangY. LeiZ. LuZ. TanS. GeP. ChaiQ. ZhaoM. ZhangX. LiB. PangY. ZhangL. LiuC.H. WangJ. A mycobacterial effector promotes ferroptosis-dependent pathogenicity and dissemination.Nat. Commun.2023141143010.1038/s41467‑023‑37148‑x 36932056
    [Google Scholar]
  47. JaiswalS. KumarS. Velarde de la CruzE. Exploring the role of the protein tyrosine kinase a (PtkA) in mycobacterial intracellular survival.Tuberculosis202314210239810.1016/j.tube.2023.102398 37657276
    [Google Scholar]
  48. ChatterjeeA. Mycobacterium tuberculosis and its secreted tyrosine phosphatases.Biochimie2023212414710.1016/j.biochi.2023.04.007 37059349
    [Google Scholar]
  49. MalikA.A. SheikhJ.A. EhteshamN.Z. HiraS. HasnainS.E. Can Mycobacterium tuberculosis infection lead to cancer? Call for a paradigm shift in understanding TB and cancer.Int. J. Med. Microbiol.2022312515155810.1016/j.ijmm.2022.151558 35842995
    [Google Scholar]
  50. NagdevP.K. AgniveshP.K. RoyA. SauS. KaliaN.P. Exploring and exploiting the host cell autophagy during Mycobacterium tuberculosis infection.Eur. J. Clin. Microbiol. Infect. Dis.202342111297131510.1007/s10096‑023‑04663‑0 37740791
    [Google Scholar]
  51. WangJ. GeP. QiangL. TianF. ZhaoD. ChaiQ. ZhuM. ZhouR. MengG. IwakuraY. GaoG.F. LiuC.H. The mycobacterial phosphatase PtpA regulates the expression of host genes and promotes cell proliferation.Nat. Commun.20178124410.1038/s41467‑017‑00279‑z 28811474
    [Google Scholar]
  52. AverbakhM.M. ErgeshowA. Interaction between Mycobacterium tuberculosis and human host: Role of cytokines in pathogenesis and treatment monitoring.Tuberculosis201893
    [Google Scholar]
  53. LimasC. JapazeH. Garcia-BunuelR. “Scar” carcinoma of the lung.Chest197159221922210.1378/chest.59.2.219 4322551
    [Google Scholar]
  54. LiangH.Y. LiX.L. YuX.S. GuanP. YinZ.H. HeQ.C. ZhouB.S. Facts and fiction of the relationship between preexisting tuberculosis and lung cancer risk: A systematic review.Int. J. Cancer2009125122936294410.1002/ijc.24636 19521963
    [Google Scholar]
  55. Molina-RomeroC. ArrietaO. Hernández-PandoR. Tuberculosis and lung cancer.Salud Publica Mex.201961328629110.21149/10090 31276345
    [Google Scholar]
  56. VassilevA. DePamphilisM. Links between DNA replication, stem cells and cancer.Genes2017824510.3390/genes8020045 28125050
    [Google Scholar]
  57. MalkovaA. HaberJ.E. Mutations arising during repair of chromosome breaks.Annu. Rev. Genet.201246145547310.1146/annurev‑genet‑110711‑155547 23146099
    [Google Scholar]
  58. PandyaN.M. DhallaN.S. SantaniD.D. Angiogenesis—a new target for future therapy.Vascul. Pharmacol.200644526527410.1016/j.vph.2006.01.005 16545987
    [Google Scholar]
  59. RajabiM. MousaS. The role of angiogenesis in cancer treatment.Biomedicines2017543410.3390/biomedicines5020034 28635679
    [Google Scholar]
  60. DyckL. MillsK.H.G. Immune checkpoints and their inhibition in cancer and infectious diseases.Eur. J. Immunol.201747576577910.1002/eji.201646875 28393361
    [Google Scholar]
  61. ManolescuL. TemereancaA. DiaconuC.C. RutaS. Correlation between resistance profile and immunosuppression in heavily treated HIV-1 infected Romanian patients.Rom. Biotechnol. Lett.201116464396449 22180722
    [Google Scholar]
  62. PlayfordE.G. MunroT. MahlerS.M. ElliottS. GeromettaM. HogerK.L. JonesM.L. GriffinP. LynchK.D. CarrollH. El SaadiD. GilmourM.E. HughesB. HughesK. HuangE. de BakkerC. KleinR. ScherM.G. SmithI.L. WangL.F. LambertS.B. DimitrovD.S. GrayP.P. BroderC.C. Safety, tolerability, pharmacokinetics, and immunogenicity of a human monoclonal antibody targeting the G glycoprotein of henipaviruses in healthy adults: A first-in-human, randomised, controlled, phase 1 study.Lancet Infect. Dis.202020444545410.1016/S1473‑3099(19)30634‑6 32027842
    [Google Scholar]
  63. RožmanP. ŠvajgerU. The tolerogenic role of IFN-γ.Cytokine Growth Factor Rev.201841405310.1016/j.cytogfr.2018.04.001 29655565
    [Google Scholar]
  64. HassanS.S. AkramM. KingE.C. DockrellH.M. CliffJ.M. PD-1, PD-L1 and PD-L2 gene expression on T-cells and natural killer cells declines in conjunction with a reduction in PD-1 protein during the intensive phase of tuberculosis treatment.PLoS One2015109e013764610.1371/journal.pone.0137646 26359860
    [Google Scholar]
  65. JayaramanP. JacquesM.K. ZhuC. SteblenkoK.M. StowellB.L. MadiA. AndersonA.C. KuchrooV.K. BeharS.M. TIM3 mediates T cell exhaustion during Mycobacterium tuberculosis infection.PLoS Pathog.2016123e100549010.1371/journal.ppat.1005490 26967901
    [Google Scholar]
  66. ReadingJ.L. Gálvez-CancinoF. SwantonC. LladserA. PeggsK.S. QuezadaS.A. The function and dysfunction of memory CD 8+ T cells in tumor immunity.Immunol. Rev.2018283119421210.1111/imr.12657 29664561
    [Google Scholar]
  67. LombardiA. VillaS. CastelliV. BanderaA. GoriA. T-cell exhaustion in Mycobacterium tuberculosis and nontuberculous mycobacteria infection: pathophysiology and therapeutic perspectives.Microorganisms2021912246010.3390/microorganisms9122460 34946062
    [Google Scholar]
  68. PostowM.A. CallahanM.K. WolchokJ.D. Immune checkpoint blockade in cancer therapy.J. Clin. Oncol.201533171974198210.1200/JCO.2014.59.4358 25605845
    [Google Scholar]
  69. CaoS. LiJ. LuJ. ZhongR. ZhongH. Mycobacterium tuberculosis antigens repress Th1 immune response suppression and promotes lung cancer metastasis through PD-1/PDl-1 signaling pathway.Cell Death Dis.20191024410.1038/s41419‑018‑1237‑y 30718463
    [Google Scholar]
  70. BickettT.E. KaramS.D. Tuberculosis–cancer parallels in immune response regulation.Int. J. Mol. Sci.20202117613610.3390/ijms21176136 32858811
    [Google Scholar]
  71. QueiroloP. BoutrosA. TandaE. SpagnoloF. QuaglinoP. Immune-checkpoint inhibitors for the treatment of metastatic melanoma: a model of cancer immunotherapy.Seminars in cancer biologyAcademic Press20195929029710.1016/j.semcancer.2019.08.001
    [Google Scholar]
  72. MarhelavaK. PilchZ. BajorM. Graczyk-JarzynkaA. ZagozdzonR. Targeting negative and positive immune checkpoints with monoclonal antibodies in therapy of cancer.Cancers20191111175610.3390/cancers11111756 31717326
    [Google Scholar]
  73. ChyuanI.T. ChuC.L. HsuP.N. Targeting the tumor microenvironment for improving therapeutic effectiveness in cancer immunotherapy: focusing on immune checkpoint inhibitors and combination therapies.Cancers2021136118810.3390/cancers13061188 33801815
    [Google Scholar]
  74. LiX. ShaoC. ShiY. HanW. Lessons learned from the blockade of immune checkpoints in cancer immunotherapy.J. Hematol. Oncol.20181113110.1186/s13045‑018‑0578‑4 29482595
    [Google Scholar]
  75. MackallC.L. T-cell immunodeficiency following cytotoxic antineoplastic therapy: A review.Stem Cells2000181101810.1634/stemcells.18‑1‑10 10661568
    [Google Scholar]
  76. SharmaS.K. MohanA. KadhiravanT. HIV-TB co-infection: epidemiology, diagnosis & management.Indian J. Med. Res.20051214550567 15817963
    [Google Scholar]
  77. NichollsD.G. BuddS.L. Mitochondria and neuronal survival.Physiol. Rev.200080131536010.1152/physrev.2000.80.1.315 10617771
    [Google Scholar]
  78. Lázár-MolnárE. ChenB. SweeneyK.A. WangE.J. LiuW. LinJ. PorcelliS.A. AlmoS.C. NathensonS.G. JacobsW.R. Jr Programmed death-1 (PD-1)–deficient mice are extraordinarily sensitive to tuberculosis.Proc. Natl. Acad. Sci. USA201010730134021340710.1073/pnas.1007394107 20624978
    [Google Scholar]
  79. DayC.L. AbrahamsD.A. BunjunR. StoneL. de KockM. WalzlG. WilkinsonR.J. BurgersW.A. HanekomW.A. PD-1 expression on Mycobacterium tuberculosis-specific CD4 T cells is associated with bacterial load in human tuberculosis.Front. Immunol.20189199510.3389/fimmu.2018.01995 30233588
    [Google Scholar]
  80. ShawD.M. MerienF. BraakhuisA. DulsonD. T-cells and their cytokine production: The anti-inflammatory and immunosuppressive effects of strenuous exercise.Cytokine201810413614210.1016/j.cyto.2017.10.001 29021092
    [Google Scholar]
  81. Moro-GarcíaM.A. MayoJ.C. SainzR.M. Alonso-AriasR. Influence of inflammation in the process of T lymphocyte differentiation: proliferative, metabolic, and oxidative changes.Front. Immunol.2018933910.3389/fimmu.2018.00339 29545794
    [Google Scholar]
  82. RotteA. JinJ.Y. LemaireV. Mechanistic overview of immune checkpoints to support the rational design of their combinations in cancer immunotherapy.Ann. Oncol.2018291718310.1093/annonc/mdx686 29069302
    [Google Scholar]
  83. GavaliS. LiuJ. LiX. PaolinoM. Ubiquitination in T-cell activation and checkpoint inhibition: New avenues for targeted cancer immunotherapy.Int. J. Mol. Sci.202122191080010.3390/ijms221910800 34639141
    [Google Scholar]
  84. OkoyeI.S. HoughtonM. TyrrellL. BarakatK. ElahiS. Coinhibitory receptor expression and immune checkpoint blockade: maintaining a balance in CD8+ T cell responses to chronic viral infections and cancer.Front. Immunol.20178121510.3389/fimmu.2017.01215 29033936
    [Google Scholar]
  85. KhanN. VidyarthiA. AmirM. MushtaqK. AgrewalaJ.N. T-cell exhaustion in tuberculosis: Pitfalls and prospects.Crit. Rev. Microbiol.201743213314110.1080/1040841X.2016.1185603
    [Google Scholar]
  86. WherryE.J. KurachiM. Molecular and cellular insights into T cell exhaustion.Nat. Rev. Immunol.201515848649910.1038/nri3862 26205583
    [Google Scholar]
  87. SeiwertT.Y. BurtnessB. MehraR. WeissJ. BergerR. EderJ.P. HeathK. McClanahanT. LuncefordJ. GauseC. ChengJ.D. ChowL.Q. Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial.Lancet Oncol.201617795696510.1016/S1470‑2045(16)30066‑3 27247226
    [Google Scholar]
  88. PopovicA. JaffeeE.M. ZaidiN. Emerging strategies for combination checkpoint modulators in cancer immunotherapy.J. Clin. Invest.201812883209321810.1172/JCI120775 30067248
    [Google Scholar]
  89. LiX. WangM. MingS. LiangZ. ZhanX. CaoC. LiangS. LiuQ. ShangY. LaoJ. ZhangS. KuangL. GengL. WuZ. WuM. GongS. WuY. TARM-1 is critical for macrophage activation and Th1 response in Mycobacterium tuberculosis infection.J. Immunol.2021207123424310.4049/jimmunol.2001037 34183366
    [Google Scholar]
  90. YangQ. LiaoM. WangW. ZhangM. ChenQ. GuoJ. PengB. HuangJ. LiuH. YahagiA. XuX. IshiharaK. CooperA. ChenX. CaiY. CD157 confers host resistance to Mycobacterium tuberculosis via TLR2-CD157-PKCzeta-induced reactive oxygen species production.MBio2019104e019491910.1128/mBio.01949‑19 31455656
    [Google Scholar]
  91. KwiatkowskaS. SzkudlarekU. ŁuczyńskaM. NowakD. ZiębaM. Elevated exhalation of hydrogen peroxide and circulating IL-18 in patients with pulmonary tuberculosis.Respir. Med.2007101357458010.1016/j.rmed.2006.06.015 16890418
    [Google Scholar]
  92. ShinD.M. YangC.S. LeeJ.Y. LeeS.J. ChoiH.H. LeeH.M. YukJ.M. HardingC.V. JoE.K. Mycobacterium tuberculosis lipoprotein-induced association of TLR2 with protein kinase C ζ in lipid rafts contributes to reactive oxygen species-dependent inflammatory signalling in macrophages.Cell. Microbiol.20081091893190510.1111/j.1462‑5822.2008.01179.x 18503635
    [Google Scholar]
  93. ZhangR. MengN. LiuC. LiK. WangM. LvZ. ChenS. GuoX. WangX. WangQ. SunJ. PDB-1 from Potentilla discolor Bunge induces apoptosis and autophagy by downregulating the PI3K/Akt/mTOR signaling pathway in A549 cells.Biomed. Pharmacother.202012911037810.1016/j.biopha.2020.110378 32544818
    [Google Scholar]
  94. AkaikeT. Host defense and oxidative stress signaling in bacterial infection.Jpn. J. Bacteriol.201570333934910.3412/jsb.70.339 26310178
    [Google Scholar]
  95. BocchinoM. AgneseS. FagoneE. SvegliatiS. GriecoD. VancheriC. GabrielliA. SanduzziA. AvvedimentoE.V. Reactive oxygen species are required for maintenance and differentiation of primary lung fibroblasts in idiopathic pulmonary fibrosis.PLoS One2010511e1400310.1371/journal.pone.0014003 21103368
    [Google Scholar]
  96. AgrawalA. MabalirajanU. Rejuvenating cellular respiration for optimizing respiratory function: targeting mitochondria.Am. J. Physiol. Lung Cell. Mol. Physiol.20163102L103L11310.1152/ajplung.00320.2015 26566906
    [Google Scholar]
  97. KimS.J. ChereshP. JablonskiR. WilliamsD. KampD. The role of mitochondrial DNA in mediating alveolar epithelial cell apoptosis and pulmonary fibrosis.Int. J. Mol. Sci.2015169214862151910.3390/ijms160921486 26370974
    [Google Scholar]
  98. KopustinskieneD.M. JakstasV. SavickasA. BernatonieneJ. Flavonoids as anticancer agents.Nutrients202012245710.3390/nu12020457 32059369
    [Google Scholar]
  99. RyuC. SunH. GulatiM. Herazo-MayaJ.D. ChenY. Osafo-AddoA. BrandsdorferC. WinklerJ. BlaulC. FaunceJ. PanH. WoolardT. TzouvelekisA. Antin-OzerkisD.E. PuchalskiJ.T. SladeM. GonzalezA.L. BogenhagenD.F. KirillovV. Feghali-BostwickC. GibsonK. LindellK. HerzogR.I. Dela CruzC.S. MehalW. KaminskiN. HerzogE.L. TrujilloG. Extracellular mitochondrial DNA is generated by fibroblasts and predicts death in idiopathic pulmonary fibrosis.Am. J. Respir. Crit. Care Med.2017196121571158110.1164/rccm.201612‑2480OC 28783377
    [Google Scholar]
  100. GuX. WuG. YaoY. ZengJ. ShiD. LvT. LuoL. SongY. Intratracheal administration of mitochondrial DNA directly provokes lung inflammation through the TLR9–p38 MAPK pathway.Free Radic. Biol. Med.20158314915810.1016/j.freeradbiomed.2015.02.034 25772007
    [Google Scholar]
  101. ChrysanthopoulouA. MitroulisI. ApostolidouE. ArelakiS. MikroulisD. KonstantinidisT. SivridisE. KoffaM. GiatromanolakiA. BoumpasD.T. RitisK. KambasK. Neutrophil extracellular traps promote differentiation and function of fibroblasts.J. Pathol.2014233329430710.1002/path.4359 24740698
    [Google Scholar]
  102. BoyleW.J. SmealT. DefizeL.H.K. AngelP. WoodgettJ.R. KarinM. HunterT. Activation of protein kinase C decreases phosphorylation of c-Jun at sites that negatively regulate its DNA-binding activity.Cell199164357358410.1016/0092‑8674(91)90241‑P 1846781
    [Google Scholar]
  103. MeyerM. PahlH.L. BaeuerleP.A. Regulation of the transcription factors NF-κB and AP-1 by redox changes.Chem. Biol. Interact.1994912-39110010.1016/0009‑2797(94)90029‑9 8194138
    [Google Scholar]
  104. TimblinC. BeruBe, K.; Churg, A.; Driscoll, K.; Gordon, T.; Hemenway, D.; Walsh, E.; Cummins, A.B.; Vacek, P.; Mossman, B. Ambient particulate matter causes activation of the c-jun kinase/stress-activated protein kinase cascade and DNA synthesis in lung epithelial cells.Cancer Res.1998582045434547 9788597
    [Google Scholar]
  105. Wook ChungY. JeongD. Yun WonJ. ChoiE.J. Hyun ChoiY. Young KimI. H2O2-induced AP-1 activation and its effect on p21WAF1/CIP1-mediated G2/M arrest in a p53-deficient human lung cancer cell.Biochem. Biophys. Res. Commun.200229341248125310.1016/S0006‑291X(02)00360‑1 12054510
    [Google Scholar]
  106. GuptaS. HussainT. MukhtarH. Molecular pathway for (−)-epigallocatechin-3-gallate-induced cell cycle arrest and apoptosis of human prostate carcinoma cells.Arch. Biochem. Biophys.2003410117718510.1016/S0003‑9861(02)00668‑9 12559991
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303301146240522095638
Loading
/content/journals/emiddt/10.2174/0118715303301146240522095638
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test