Skip to content
2000
Volume 25, Issue 4
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

Diabetes mellitus is a common chronic metabolic disease characterized by a high incidence and disability rate. Intestinal flora refers to the microbial community that lives in the intestines and plays a crucial role in maintaining intestinal health and the human immune system. In recent years, an increasing body of research has revealed a close relationship between intestinal flora and diabetes. The pathophysiological mechanisms between them have also been constantly uncovered, and the regulation of intestinal flora has shown promising efficacy in the adjuvant treatment of diabetes. This study mainly summarized the characteristics and mechanisms of intestinal flora in patients with diabetes in recent years, as well as the methods of regulating intestinal flora to prevent and treat diabetes, and prospected the future research direction. This will offer a theoretical basis for the clinical adjuvant treatment of diabetes with intestinal flora and the development of new drugs.

Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303308965240624054156
2024-07-02
2025-05-21
Loading full text...

Full text loading...

References

  1. XieJ. WangM. LongZ. NingH. LiJ. CaoY. LiaoY. LiuG. WangF. PanA. Global burden of type 2 diabetes in adolescents and young adults, 1990-2019: systematic analysis of the Global Burden of Disease Study 2019.BMJ2022379e07238510.1136/bmj‑2022‑072385 36740855
    [Google Scholar]
  2. ElSayedN.A. AleppoG. BannuruR.R. BruemmerD. CollinsB.S. EkhlaspourL. GagliaJ.L. HilliardM.E. JohnsonE.L. KhuntiK. LingvayI. MatfinG. McCoyR.G. PerryM.L. PillaS.J. PolskyS. PrahaladP. PratleyR.E. SegalA.R. SeleyJ.J. SelvinE. StantonR.C. GabbayR.A. 2. Diagnosis and classification of diabetes: Standards of Care in Diabetes-2024.Diabetes Care202447Suppl. 1S20S4210.2337/dc24‑S002 38078589
    [Google Scholar]
  3. American diabetes association. Diagnosis and classification of diabetes mellitus.Diabetes Care201437Suppl. 1S81S9010.2337/dc14‑S081 24357215
    [Google Scholar]
  4. Pearson-StuttardJ. ChengY.J. BennettJ. VamosE.P. ZhouB. ValabhjiJ. CrossA.J. EzzatiM. GreggE.W. Trends in leading causes of hospitalisation of adults with diabetes in England from 2003 to 2018: an epidemiological analysis of linked primary care records.Lancet Diabetes Endocrinol.2022101465710.1016/S2213‑8587(21)00288‑6 34861153
    [Google Scholar]
  5. BommerC. SagalovaV. HeesemannE. Manne-GoehlerJ. AtunR. BärnighausenT. DaviesJ. VollmerS. Global economic burden of diabetes in adults: Projections From 2015 to 2030.Diabetes Care201841596397010.2337/dc17‑1962 29475843
    [Google Scholar]
  6. JovelJ. PattersonJ. WangW. HotteN. O’KeefeS. MitchelT. PerryT. KaoD. MasonA.L. MadsenK.L. WongG.K.S. Characterization of the gut microbiome using 16S or shotgun metagenomics.Front. Microbiol.2016745910.3389/fmicb.2016.00459 27148170
    [Google Scholar]
  7. JiaoL. KourkoumpetisT. HutchinsonD. AjamiN.J. HoffmanK. WhiteD.L. GrahamD.Y. HairC. ShahR. KanwalF. Jarbrink-SehgalM. HusainN. HernaezR. HouJ. ColeR. VelezM. KetwarooG. KramerJ. El-SeragH.B. PetrosinoJ.F. Spatial characteristics of colonic mucosa-associated gut microbiota in humans.Microb. Ecol.202283381182110.1007/s00248‑021‑01789‑6 34223947
    [Google Scholar]
  8. AbenavoliL. GiubileiL. ProcopioA.C. SpagnuoloR. LuzzaF. BoccutoL. ScarpelliniE. Gut microbiota in non-alcoholic fatty liver disease patients with inflammatory bowel diseases: A Complex Interplay.Nutrients20221424532310.3390/nu14245323 36558483
    [Google Scholar]
  9. HondaK. LittmanD.R. The microbiome in infectious disease and inflammation.Annu. Rev. Immunol.201230175979510.1146/annurev‑immunol‑020711‑074937 22224764
    [Google Scholar]
  10. ViscontiA. Le RoyC.I. RosaF. RossiN. MartinT.C. MohneyR.P. LiW. de RinaldisE. BellJ.T. VenterJ.C. NelsonK.E. SpectorT.D. FalchiM. Interplay between the human gut microbiome and host metabolism.Nat. Commun.2019101450510.1038/s41467‑019‑12476‑z 31582752
    [Google Scholar]
  11. de VosW.M. TilgH. Van HulM. CaniP.D. Gut microbiome and health: mechanistic insights.Gut20227151020103210.1136/gutjnl‑2021‑326789 35105664
    [Google Scholar]
  12. ShreinerA.B. KaoJ.Y. YoungV.B. The gut microbiome in health and in disease.Curr. Opin. Gastroenterol.2015311697510.1097/MOG.0000000000000139 25394236
    [Google Scholar]
  13. ChenL. WangD. GarmaevaS. KurilshikovA. Vich VilaA. GacesaR. SinhaT. SegalE. WeersmaR.K. WijmengaC. ZhernakovaA. FuJ. The long-term genetic stability and individual specificity of the human gut microbiome.Cell2021184923022315.e1210.1016/j.cell.2021.03.024 33838112
    [Google Scholar]
  14. ZhouB. YuanY. ZhangS. GuoC. LiX. LiG. XiongW. ZengZ. Intestinal flora and disease mutually shape the regional immune system in the intestinal tract.Front. Immunol.20201157510.3389/fimmu.2020.00575 32318067
    [Google Scholar]
  15. SittipoP. LobiondaS. LeeY.K. MaynardC.L. Intestinal microbiota and the immune system in metabolic diseases.J. Microbiol.201856315416210.1007/s12275‑018‑7548‑y 29492872
    [Google Scholar]
  16. NovakovicM. RoutA. KingsleyT. KirchoffR. SinghA. VermaV. KantR. ChaudharyR. Role of gut microbiota in cardiovascular diseases.World J. Cardiol.202012411012210.4330/wjc.v12.i4.110 32431782
    [Google Scholar]
  17. OpazoM.C. Ortega-RochaE.M. Coronado-ArrázolaI. BonifazL.C. BoudinH. NeunlistM. BuenoS.M. KalergisA.M. RiedelC.A. Intestinal microbiota influences non-intestinal related autoimmune diseases.Front. Microbiol.2018943210.3389/fmicb.2018.00432 29593681
    [Google Scholar]
  18. KataokaK. The intestinal microbiota and its role in human health and disease.J. Med. Invest.2016631.2273710.2152/jmi.63.27 27040049
    [Google Scholar]
  19. MassierL. BlüherM. KovacsP. ChakarounR.M. Impaired intestinal barrier and tissue bacteria: Pathomechanisms for metabolic diseases.Front. Endocrinol. (Lausanne)20211261650610.3389/fendo.2021.616506 33767669
    [Google Scholar]
  20. SharmaS. TripathiP. Gut microbiome and type 2 diabetes: where we are and where to go?J. Nutr. Biochem.20196310110810.1016/j.jnutbio.2018.10.003 30366260
    [Google Scholar]
  21. LeeC.J. SearsC.L. MaruthurN. Gut microbiome and its role in obesity and insulin resistance.Ann. N. Y. Acad. Sci.202014611375210.1111/nyas.14107 31087391
    [Google Scholar]
  22. KakleasK. SoldatouA. KarachaliouF. KaravanakiK. Associated autoimmune diseases in children and adolescents with type 1 diabetes mellitus (T1DM).Autoimmun. Rev.201514978179710.1016/j.autrev.2015.05.002 26001590
    [Google Scholar]
  23. WenL. LeyR.E. VolchkovP.Y. StrangesP.B. AvanesyanL. StonebrakerA.C. HuC. WongF.S. SzotG.L. BluestoneJ.A. GordonJ.I. ChervonskyA.V. Innate immunity and intestinal microbiota in the development of Type 1 diabetes.Nature200845572161109111310.1038/nature07336 18806780
    [Google Scholar]
  24. ZhaoY. DuanY. YangZ. ZhangC. NiuB. ChenL. WangM. GuX. LiangG. LiuC. Effects of gestational diabetes mellitus on gut microbiota of 3-month-old infants: A prospective control study.Wei Sheng Yen Chiu2022516934939 36539872
    [Google Scholar]
  25. BéltekyM. MilletichP.L. AhrensA.P. TriplettE.W. LudvigssonJ. Infant gut microbiome composition correlated with type 1 diabetes acquisition in the general population: The ABIS study.Diabetologia20236661116112810.1007/s00125‑023‑05895‑7 36964264
    [Google Scholar]
  26. de GoffauM.C. FuentesS. van den BogertB. HonkanenH. de VosW.M. WellingG.W. HyötyH. HarmsenH.J.M. Aberrant gut microbiota composition at the onset of type 1 diabetes in young children.Diabetologia20145781569157710.1007/s00125‑014‑3274‑0 24930037
    [Google Scholar]
  27. MoreiraL.A.A. da Paz LimaL. de Oliveira FalcãoM.A. RosadoE.L. Profile of gut microbiota of adults with diabetes mellitus type 1: A Systematic Review.Curr. Diabetes Rev.2023194e28032220270610.2174/1573399818666220328150044 35346009
    [Google Scholar]
  28. SiljanderH. HonkanenJ. KnipM. Microbiome and type 1 diabetes.EBioMedicine20194651252110.1016/j.ebiom.2019.06.031 31257149
    [Google Scholar]
  29. BarkoP.C. McMichaelM.A. SwansonK.S. WilliamsD.A. The gastrointestinal microbiome: A Review.J. Vet. Intern. Med.201832192510.1111/jvim.14875 29171095
    [Google Scholar]
  30. VatanenT. FranzosaE.A. SchwagerR. TripathiS. ArthurT.D. VehikK. LernmarkÅ. HagopianW.A. RewersM.J. SheJ.X. ToppariJ. ZieglerA.G. AkolkarB. KrischerJ.P. StewartC.J. AjamiN.J. PetrosinoJ.F. GeversD. LähdesmäkiH. VlamakisH. HuttenhowerC. XavierR.J. The human gut microbiome in early-onset type 1 diabetes from the TEDDY study.Nature2018562772858959410.1038/s41586‑018‑0620‑2 30356183
    [Google Scholar]
  31. KosticA.D. GeversD. SiljanderH. VatanenT. HyötyläinenT. HämäläinenA.M. PeetA. TillmannV. PöhöP. MattilaI. LähdesmäkiH. FranzosaE.A. VaaralaO. de GoffauM. HarmsenH. IlonenJ. VirtanenS.M. ClishC.B. OrešičM. HuttenhowerC. KnipM. XavierR.J. The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes.Cell Host Microbe201517226027310.1016/j.chom.2015.01.001 25662751
    [Google Scholar]
  32. MokhtariP. MetosJ. Anandh BabuP.V. Impact of type 1 diabetes on the composition and functional potential of gut microbiome in children and adolescents: possible mechanisms, current knowledge, and challenges.Gut Microbes2021131192684110.1080/19490976.2021.1926841 34101547
    [Google Scholar]
  33. GavinP.G. MullaneyJ.A. LooD. CaoK.A.L. GottliebP.A. HillM.M. ZiprisD. Hamilton-WilliamsE.E. Intestinal metaproteomics reveals host-microbiota interactions in subjects at risk for type 1 diabetes.Diabetes Care201841102178218610.2337/dc18‑0777 30100563
    [Google Scholar]
  34. YuanX. WangR. HanB. SunC. ChenR. WeiH. ChenL. DuH. LiG. YangY. ChenX. CuiL. XuZ. FuJ. WuJ. GuW. ChenZ. FangX. YangH. SuZ. WuJ. LiQ. ZhangM. ZhouY. ZhangL. JiG. LuoF. Functional and metabolic alterations of gut microbiota in children with new-onset type 1 diabetes.Nat. Commun.2022131635610.1038/s41467‑022‑33656‑4 36289225
    [Google Scholar]
  35. LiB.Y. XuX.Y. GanR.Y. Targeting gut microbiota for the prevention and management of diabetes mellitus by dietary natural products.Foods2019810440
    [Google Scholar]
  36. LêK.A. LiY. XuX. YangW. LiuT. ZhaoX. TangY.G. CaiD. GoV.L.W. PandolS. HuiH. Alterations in fecal lactobacillus and Bifidobacterium species in type 2 diabetic patients in southern china population.Front. Physiol.2013349610.3389/fphys.2012.00496 23386831
    [Google Scholar]
  37. SongZ. YanA. GuoZ. ZhangY. WenT. LiZ. YangZ. ChenR. WangY. Targeting metabolic pathways: a novel therapeutic direction for type 2 diabetes.Front. Cell. Infect. Microbiol.202313121832610.3389/fcimb.2023.1218326 37600949
    [Google Scholar]
  38. EgshatyanL. KashtanovaD. PopenkoA. TkachevaO. TyakhtA. AlexeevD. KaramnovaN. KostryukovaE. BabenkoV. VakhitovaM. BoytsovS. Gut microbiota and diet in patients with different glucose tolerance.Endocr. Connect.2016511910.1530/EC‑15‑0094 26555712
    [Google Scholar]
  39. SedighiM. RazaviS. Navab-MoghadamF. KhamsehM.E. Alaei-ShahmiriF. MehrtashA. AmirmozafariN. Comparison of gut microbiota in adult patients with type 2 diabetes and healthy individuals.Microb. Pathog.201711136236910.1016/j.micpath.2017.08.038 28912092
    [Google Scholar]
  40. DashN.R. Al BatainehM.T. AliliR. Al SafarH. AlkhayyalN. PriftiE. ZuckerJ.D. BeldaE. ClémentK. Functional alterations and predictive capacity of gut microbiome in type 2 diabetes.Sci. Rep.20231312238610.1038/s41598‑023‑49679‑w 38104165
    [Google Scholar]
  41. LiuC. ShaoW. GaoM. LiuJ. GuoQ. JinJ. MengF. Changes in intestinal flora in patients with type 2 diabetes on a low fat diet during 6 months of follow up.Exp. Ther. Med.2020205110.3892/etm.2020.9167 32952631
    [Google Scholar]
  42. SatoJ. KanazawaA. IkedaF. YoshiharaT. GotoH. AbeH. KomiyaK. KawaguchiM. ShimizuT. OgiharaT. TamuraY. SakuraiY. YamamotoR. MitaT. FujitaniY. FukudaH. NomotoK. TakahashiT. AsaharaT. HiroseT. NagataS. YamashiroY. WatadaH. Gut dysbiosis and detection of “live gut bacteria” in blood of Japanese patients with type 2 diabetes.Diabetes Care20143782343235010.2337/dc13‑2817 24824547
    [Google Scholar]
  43. ZhangX. ShenD. FangZ. JieZ. QiuX. ZhangC. ChenY. JiL. Human gut microbiota changes reveal the progression of glucose intolerance.PLoS One201388e7110810.1371/journal.pone.0071108 24013136
    [Google Scholar]
  44. TaoS. LiL. LiL. LiuY. RenQ. ShiM. LiuJ. JiangJ. MaH. HuangZ. XiaZ. PanJ. WeiT. WangY. LiP. LanT. TangX. ZengX. LeiS. TangH. MaL. FuP. Understanding the gut–kidney axis among biopsy-proven diabetic nephropathy, type 2 diabetes mellitus and healthy controls: an analysis of the gut microbiota composition.Acta Diabetol.201956558159210.1007/s00592‑019‑01316‑7 30888537
    [Google Scholar]
  45. HuangY. WangZ. MaH. JiS. ChenZ. CuiZ. ChenJ. TangS. Dysbiosis and implication of the gut microbiota in diabetic retinopathy.Front. Cell. Infect. Microbiol.20211164634810.3389/fcimb.2021.646348 33816351
    [Google Scholar]
  46. DuX. LiuJ. XueY. KongX. LvC. LiZ. HuangY. WangB. Alteration of gut microbial profile in patients with diabetic nephropathy.Endocrine2021731718410.1007/s12020‑021‑02721‑1 33905112
    [Google Scholar]
  47. KohA. De VadderF. Kovatcheva-DatcharyP. BäckhedF. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites.Cell201616561332134510.1016/j.cell.2016.05.041 27259147
    [Google Scholar]
  48. PortincasaP. BonfrateL. VaccaM. De AngelisM. FarellaI. LanzaE. KhalilM. WangD.Q.H. SperandioM. Di CiaulaA. Gut microbiota and short chain fatty acids: Implications in glucose homeostasis.Int. J. Mol. Sci.2022233110510.3390/ijms23031105 35163038
    [Google Scholar]
  49. ToppingD.L. CliftonP.M. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides.Physiol. Rev.20018131031106410.1152/physrev.2001.81.3.1031 11427691
    [Google Scholar]
  50. SawickiC. LivingstonK. ObinM. RobertsS. ChungM. McKeownN. Dietary fiber and the human gut microbiota: application of evidence mapping methodology.Nutrients20179212510.3390/nu9020125 28208609
    [Google Scholar]
  51. TanJ. McKenzieC. PotamitisM. ThorburnA.N. MackayC.R. MaciaL. The role of short-chain fatty acids in health and disease.Adv. Immunol.20141219111910.1016/B978‑0‑12‑800100‑4.00003‑9 24388214
    [Google Scholar]
  52. MaciaL. TanJ. VieiraA.T. LeachK. StanleyD. LuongS. MaruyaM. Ian McKenzieC. HijikataA. WongC. BingeL. ThorburnA.N. ChevalierN. AngC. MarinoE. RobertR. OffermannsS. TeixeiraM.M. MooreR.J. FlavellR.A. FagarasanS. MackayC.R. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome.Nat. Commun.201561673410.1038/ncomms7734 25828455
    [Google Scholar]
  53. ZhaoL. ZhangF. DingX. WuG. LamY.Y. WangX. FuH. XueX. LuC. MaJ. YuL. XuC. RenZ. XuY. XuS. ShenH. ZhuX. ShiY. ShenQ. DongW. LiuR. LingY. ZengY. WangX. ZhangQ. WangJ. WangL. WuY. ZengB. WeiH. ZhangM. PengY. ZhangC. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes.Science201835963801151115610.1126/science.aao5774 29590046
    [Google Scholar]
  54. FullerM. PriyadarshiniM. GibbonsS.M. AngueiraA.R. BrodskyM. HayesM.G. Kovatcheva-DatcharyP. BäckhedF. GilbertJ.A. LoweW.L.Jr LaydenB.T. The short-chain fatty acid receptor, FFA2, contributes to gestational glucose homeostasis.Am. J. Physiol. Endocrinol. Metab.201530910E840E85110.1152/ajpendo.00171.2015 26394664
    [Google Scholar]
  55. KimuraI. OzawaK. InoueD. ImamuraT. KimuraK. MaedaT. TerasawaK. KashiharaD. HiranoK. TaniT. TakahashiT. MiyauchiS. ShioiG. InoueH. TsujimotoG. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43.Nat. Commun.201341182910.1038/ncomms2852 23652017
    [Google Scholar]
  56. SagarN.M. CreeI.A. CovingtonJ.A. ArasaradnamR.P. The interplay of the gut microbiome, bile acids, and volatile organic compounds.Gastroenterol. Res. Pract.201520151610.1155/2015/398585 25821460
    [Google Scholar]
  57. WahlströmA. SayinS.I. MarschallH.U. BäckhedF. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism.Cell Metab.2016241415010.1016/j.cmet.2016.05.005 27320064
    [Google Scholar]
  58. SinhaS.R. HaileselassieY. NguyenL.P. TropiniC. WangM. BeckerL.S. SimD. JarrK. SpearE.T. SinghG. NamkoongH. BittingerK. FischbachM.A. SonnenburgJ.L. HabtezionA. Dysbiosis-induced secondary bile acid deficiency promotes intestinal inflammation.Cell Host Microbe2020274659670.e510.1016/j.chom.2020.01.021 32101703
    [Google Scholar]
  59. SongZ. CaiY. LaoX. WangX. LinX. CuiY. KalavaguntaP.K. LiaoJ. JinL. ShangJ. LiJ. Taxonomic profiling and populational patterns of bacterial bile salt hydrolase (BSH) genes based on worldwide human gut microbiome.Microbiome201971910.1186/s40168‑019‑0628‑3 30674356
    [Google Scholar]
  60. YuH. NieR. ShenC. The role of bile acids in regulating glucose and lipid metabolism.Endocr. J.202370435937410.1507/endocrj.EJ22‑0544 36928060
    [Google Scholar]
  61. HouY. ZhaiX. WangX. WuY. WangH. QinY. HanJ. MengY. Research progress on the relationship between bile acid metabolism and type 2 diabetes mellitus.Diabetol. Metab. Syndr.202315123510.1186/s13098‑023‑01207‑6 37978556
    [Google Scholar]
  62. MaY. LvQ. ZhaoD. WangJ. FuY. LiC. WuG. LiuM. HuJ. LinS. YangJ. Intervention effect of taurine on lps-induced intestinal mechanical barrier injury in piglets.Adv. Exp. Med. Biol.20221370738010.1007/978‑3‑030‑93337‑1_7 35882783
    [Google Scholar]
  63. SunL. XieC. WangG. WuY. WuQ. WangX. LiuJ. DengY. XiaJ. ChenB. ZhangS. YunC. LianG. ZhangX. ZhangH. BissonW.H. ShiJ. GaoX. GeP. LiuC. KrauszK.W. NicholsR.G. CaiJ. RimalB. PattersonA.D. WangX. GonzalezF.J. JiangC. Gut microbiota and intestinal FXR mediate the clinical benefits of metformin.Nat. Med.201824121919192910.1038/s41591‑018‑0222‑4 30397356
    [Google Scholar]
  64. RomanoK.P. HungD.T. Targeting LPS biosynthesis and transport in gram-negative bacteria in the era of multi-drug resistance.Biochim. Biophys. Acta Mol. Cell Res.20231870311940710.1016/j.bbamcr.2022.119407 36543281
    [Google Scholar]
  65. NikaidoH. Molecular basis of bacterial outer membrane permeability revisited.Microbiol. Mol. Biol. Rev.200367459365610.1128/MMBR.67.4.593‑656.2003 14665678
    [Google Scholar]
  66. NguyenA.T. MandardS. DrayC. DeckertV. ValetP. BesnardP. DruckerD.J. LagrostL. GroberJ. Lipopolysaccharides-mediated increase in glucose-stimulated insulin secretion: involvement of the GLP-1 pathway.Diabetes201463247148210.2337/db13‑0903 24186868
    [Google Scholar]
  67. Acosta-MontañoP. Rodríguez-VelázquezE. Ibarra-LópezE. Frayde-GómezH. Mas-OlivaJ. Delgado-CoelloB. RiveroI.A. Alatorre-MedaM. AguileraJ. Guevara-OlayaL. García-GonzálezV. Fatty acid and lipopolysaccharide effect on beta cells proteostasis and its impact on insulin secretion.Cells20198888410.3390/cells8080884 31412623
    [Google Scholar]
  68. HuangJ. GuanB. LinL. WangY. Improvement of intestinal barrier function, gut microbiota, and metabolic endotoxemia in type 2 diabetes rats by curcumin.Bioengineered2021122119471195810.1080/21655979.2021.2009322 34818970
    [Google Scholar]
  69. AmyotJ. SemacheM. FerdaoussiM. FontésG. PoitoutV. Lipopolysaccharides impair insulin gene expression in isolated islets of Langerhans via Toll-Like Receptor-4 and NF-κB signalling.PLoS One201274e3620010.1371/journal.pone.0036200 22558381
    [Google Scholar]
  70. SantoniM. AndrikouK. SotteV. BittoniA. LaneseA. PelleiC. PivaF. ContiA. NabissiM. SantoniG. CascinuS. Toll like receptors and pancreatic diseases: From a pathogenetic mechanism to a therapeutic target.Cancer Treat. Rev.201541756957610.1016/j.ctrv.2015.04.004 26036357
    [Google Scholar]
  71. AssmannT.S. BrondaniL.A. BouçasA.P. CananiL.H. CrispimD. Toll-like receptor 3 (TLR3) and the development of type 1 diabetes mellitus.Arch. Endocrinol. Metab.201559141210.1590/2359‑3997000000003 25926108
    [Google Scholar]
  72. BennerS.E. WalterD.L. ThumaJ.R. CourregesM. JamesC.B.L. SchwartzF.L. McCallK.D. Toll-like receptor 3 is critical to the pancreatic islet milieu that is required for coxsackievirus b4–induced type 1 diabetes in female nonobese diabetic mice.Pancreas2022511485510.1097/MPA.0000000000001960 35195595
    [Google Scholar]
  73. YadavM.K. KumariI. SinghB. SharmaK.K. TiwariS.K. Probiotics, prebiotics and synbiotics: Safe options for next-generation therapeutics.Appl. Microbiol. Biotechnol.2022106250552110.1007/s00253‑021‑11646‑8 35015145
    [Google Scholar]
  74. TsaiY.L. LinT.L. ChangC.J. WuT.R. LaiW.F. LuC.C. LaiH.C. Probiotics, prebiotics and amelioration of diseases.J. Biomed. Sci.2019261310.1186/s12929‑018‑0493‑6 30609922
    [Google Scholar]
  75. ZengZ. GuoX. ZhangJ. YuanQ. ChenS. Lactobacillus paracasei modulates the gut microbiota and improves inflammation in type 2 diabetic rats.Food Funct.202112156809682010.1039/D1FO00515D 34113945
    [Google Scholar]
  76. LiY. WuY. WuL. QinL. LiuT. The effects of probiotic administration on patients with prediabetes: a meta-analysis and systematic review.J. Transl. Med.202220149810.1186/s12967‑022‑03695‑y 36324119
    [Google Scholar]
  77. PalaciosT. VitettaL. CoulsonS. MadiganC.D. LamY.Y. ManuelR. BriskeyD. HendyC. KimJ.N. IshoeyT. Soto-GironM.J. SchottE.M. ToledoG. CatersonI.D. Targeting the intestinal microbiota to prevent type 2 diabetes and enhance the effect of metformin on glycaemia: A randomised controlled pilot study.Nutrients2020127204110.3390/nu12072041 32660025
    [Google Scholar]
  78. MemonH. AbdullaF. ReljicT. AlnuaimiS. SerdarevicF. AsimiZ.V. KumarA. SemizS. Effects of combined treatment of probiotics and metformin in management of type 2 diabetes: A systematic review and meta-analysis.Diabetes Res. Clin. Pract.202320211080610.1016/j.diabres.2023.110806 37369280
    [Google Scholar]
  79. HoJ. NicolucciA.C. VirtanenH. SchickA. MeddingsJ. ReimerR.A. HuangC. Effect of prebiotic on microbiota, intestinal permeability, and glycemic control in children with type 1 Diabetes.J. Clin. Endocrinol. Metab.2019104104427444010.1210/jc.2019‑00481 31188437
    [Google Scholar]
  80. LiX. ShiY. WeiD. NiW. ZhuN. YanX. Impact of a high dietary fiber cereal meal intervention on body weight, adipose distribution, and cardiovascular risk among individuals with type 2 diabetes.Front. Endocrinol.202314128362610.3389/fendo.2023.1283626 37964962
    [Google Scholar]
  81. HansenC.H.F. LarsenC.S. PeterssonH.O. ZachariassenL.F. VeggeA. LauridsenC. KotW. KrychŁ. NielsenD.S. HansenA.K. Targeting gut microbiota and barrier function with prebiotics to alleviate autoimmune manifestations in NOD mice.Diabetologia20196291689170010.1007/s00125‑019‑4910‑5 31139852
    [Google Scholar]
  82. HajifarajiM. JahanjouF. AbbasalizadehF. AghamohammadzadehN. AbbasiM.M. DolatkhahN. Effect of probiotic supplements in women with gestational diabetes mellitus on inflammation and oxidative stress biomarkers: a randomized clinical trial.Asia Pac. J. Clin. Nutr.2018273581591 29737805
    [Google Scholar]
  83. TorunA. HupalowskaA. TrzonkowskiP. KierkusJ. PyrzynskaB. Intestinal microbiota in common chronic inflammatory disorders affecting children.Front. Immunol.20211264216610.3389/fimmu.2021.642166 34163468
    [Google Scholar]
  84. WangC.H. YenH.R. LuW.L. HoH.H. LinW.Y. KuoY.W. HuangY.Y. TsaiS.Y. LinH.C. Adjuvant probiotics of Lactobacillus salivarius subsp. saliciniusAP-32, L. johnsonii MH-68, and Bifidobacterium animalis subsp. lactis CP-9 attenuate glycemic levels and inflammatory cytokines in patients with type 1 Diabetes Mellitus.Front. Endocrinol.20221375440110.3389/fendo.2022.754401 35299968
    [Google Scholar]
  85. SallesB.I.M. CioffiD. FerreiraS.R.G. Probiotics supplementation and insulin resistance: a systematic review.Diabetol. Metab. Syndr.20201219810.1186/s13098‑020‑00603‑6 33292434
    [Google Scholar]
  86. MousaA.H. KormaS.A. AliA.H. AbdeldaiemA.M. BakryI.A. LiuX. ZhangH. AbedS.M. BakryA.M. Microencapsulation of Bifidobacterium bifidum F-35 via modulation of emulsifying technique and its mechanical effects on the rheological stability of set-yogurt.J. Food Sci. Technol.202360122968297710.1007/s13197‑023‑05812‑1 37786598
    [Google Scholar]
  87. AbdulK.S.L. ChangS.K. SimaraniK. ArunachalamK.D. ThammakulkrajangR. HowY.H. PuiL.P. A comprehensive review of Bifidobacterium spp: as a probiotic, application in the food and therapeutic, and forthcoming trends.Crit. Rev. Microbiol.202311710.1080/1040841X.2023.2243617 37551693
    [Google Scholar]
  88. HeB.L. XiongY. HuT.G. ZongM.H. WuH. Bifidobacterium spp. as functional foods: A review of current status, challenges, and strategies.Crit. Rev. Food Sci. Nutr.202363268048806510.1080/10408398.2022.2054934 35319324
    [Google Scholar]
  89. BellK.J. SaadS. TillettB.J. McGuireH.M. BordbarS. YapY.A. NguyenL.T. WilkinsM.R. CorleyS. BrodieS. DuongS. WrightC.J. TwiggS. de St GrothB.F. HarrisonL.C. MackayC.R. GurzovE.N. Hamilton-WilliamsE.E. MariñoE. Metabolite-based dietary supplementation in human type 1 diabetes is associated with microbiota and immune modulation.Microbiome2022101910.1186/s40168‑021‑01193‑9 35045871
    [Google Scholar]
  90. LiuL. ChenY. WuQ. Sodium butyrate attenuated diabetes-induced intestinal inflammation by modulating gut microbiota.Evid. based compl. altern. med.20222022464624510.1155/2022/4646245
    [Google Scholar]
  91. MariñoE. RichardsJ.L. McLeodK.H. StanleyD. YapY.A. KnightJ. McKenzieC. KranichJ. OliveiraA.C. RosselloF.J. KrishnamurthyB. NefzgerC.M. MaciaL. ThorburnA. BaxterA.G. MorahanG. WongL.H. PoloJ.M. MooreR.J. LockettT.J. ClarkeJ.M. ToppingD.L. HarrisonL.C. MackayC.R. Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes.Nat. Immunol.201718555256210.1038/ni.3713 28346408
    [Google Scholar]
  92. KhosraviZ. HadiA. TutunchiH. Asghari-JafarabadiM. NaeinieF. RoshanravanN. OstadrahimiA. FadelA. The effects of butyrate supplementation on glycemic control, lipid profile, blood pressure, nitric oxide level and glutathione peroxidase activity in type 2 diabetic patients: A randomized triple -blind, placebo-controlled trial.Clin. Nutr. ESPEN202249798510.1016/j.clnesp.2022.03.008 35623879
    [Google Scholar]
  93. WangJ.W. KuoC.H. KuoF.C. Fecal microbiota transplantation: Review and update.J. Formosan Med. Assoc.2019118S1S23S31
    [Google Scholar]
  94. VindigniS.M. SurawiczC.M. Fecal microbiota transplantation.Gastroenterol. Clin. North Am.201746117118510.1016/j.gtc.2016.09.012 28164849
    [Google Scholar]
  95. VriezeA. Van NoodE. HollemanF. SalojärviJ. KootteR.S. BartelsmanJ.F.W.M. Dallinga-ThieG.M. AckermansM.T. SerlieM.J. OozeerR. DerrienM. DruesneA. Van Hylckama VliegJ.E.T. BloksV.W. GroenA.K. HeiligH.G.H.J. ZoetendalE.G. StroesE.S. de VosW.M. HoekstraJ.B.L. NieuwdorpM. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome.Gastroenterology20121434913916.e710.1053/j.gastro.2012.06.031 22728514
    [Google Scholar]
  96. XieY.C. JingX.B. ChenX. ChenL.Z. ZhangS.H. CaiX.B. Fecal microbiota transplantation treatment for type 1 diabetes mellitus with malnutrition: a case report.Ther. Adv. Chronic Dis.20221310.1177/20406223221117449 36003287
    [Google Scholar]
  97. de GrootP. NikolicT. PellegriniS. SordiV. ImangaliyevS. RampanelliE. HanssenN. AttayeI. BakkerG. DuinkerkenG. JoostenA. ProdanA. LevinE. LevelsH. Potter van LoonB. van BonA. BrouwerC. van DamS. SimsekS. van RaalteD. StamF. GerdesV. HoogmaR. DiekmanM. GerdingM. RustemeijerC. de BakkerB. HoekstraJ. ZwindermanA. BergmanJ. HollemanF. PiemontiL. De VosW. RoepB. NieuwdorpM. Faecal microbiota transplantation halts progression of human new-onset type 1 diabetes in a randomised controlled trial.Gut20217019210510.1136/gutjnl‑2020‑322630 33106354
    [Google Scholar]
  98. WangH. LuY. YanY. TianS. ZhengD. LengD. WangC. JiaoJ. WangZ. BaiY. Promising treatment for type 2 Diabetes: Fecal microbiota transplantation reverses insulin resistance and impaired islets.Front. Cell. Infect. Microbiol.2020945510.3389/fcimb.2019.00455 32010641
    [Google Scholar]
  99. ZhouY. LiY.Y. LiuY. Effect of fecal microbiota transplantation on type 1 diabetes mellitus in non-obese diabetic mice and its underlying mechanism.Zhonghua Yi Xue Za Zhi20221021612241231 35462505
    [Google Scholar]
  100. ZhengH. XuP. JiangQ. XuQ. ZhengY. YanJ. JiH. NingJ. ZhangX. LiC. ZhangL. LiY. LiX. SongW. GaoH. Depletion of acetate-producing bacteria from the gut microbiota facilitates cognitive impairment through the gut-brain neural mechanism in diabetic mice.Microbiome20219114510.1186/s40168‑021‑01088‑9 34172092
    [Google Scholar]
  101. HaoY. FengY. YanX. ChenL. ZhongR. TangX. ShenW. SunQ. SunZ. RenY. ZhangH. ZhaoY. Gut microbiota-testis axis: FMT improves systemic and testicular micro-environment to increase semen quality in type 1 diabetes.Mol. Med.20222814510.1186/s10020‑022‑00473‑w 35468731
    [Google Scholar]
  102. LvW. GravesD.T. HeL. ShiY. DengX. ZhaoY. DongX. RenY. LiuX. XiaoE. ZhangY. Depletion of the diabetic gut microbiota resistance enhances stem cells therapy in type 1 diabetes mellitus.Theranostics202010146500651610.7150/thno.44113 32483466
    [Google Scholar]
  103. ZuoZ. ZhaoF. Gut microbiota-targeted interventions: From conventional approaches to genetic engineering.Sci. Bull.202368121231123410.1016/j.scib.2023.05.018 37258375
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303308965240624054156
Loading
/content/journals/emiddt/10.2174/0118715303308965240624054156
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test