Skip to content
2000
Volume 25, Issue 4
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

The COVID-19 pandemic impacted all areas of daily life, including medical care. Unfortunately, to date, no specific treatments have been found for the cure of this disease, and therefore, it is advisable to implement all possible strategies to prevent infection. In this context, it is important to better define the role of all behaviors, in particular nutrition, in order to establish whether these can both prevent infection and improve the outcome of the disease in patients with COVID-19. There is sufficient evidence to demonstrate that immune response can be weakened by inadequate nutrition. Nutrition management and treatment are very important to enhance the immune response of an infected person against RNA viral infection. A complete nutritional assessment should include anthropometric, dietary, and laboratorial assessment, as well as a multidisciplinary discussion about the patient's clinical condition. In this way, it is possible to establish an individualized nutritional approach to contribute to improving clinical and nutritional prognoses. From this point of view, diet, through intake of vitamins and trace elements and maintaining adequate functioning of the intestinal barrier, can reduce the severity of the COVID-19 infection. In this study, we provide an overview of the effects of diet on COVID-19 infection in non-cancer patients. This notion needs to be further evaluated, and thus, identification, characterization, and targeting of the right nutrition principles related to the management of patients with COVID-19 are likely to improve outcomes and may prevent the infection or lead to a cure.

Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303296892240506100532
2024-05-24
2025-05-21
Loading full text...

Full text loading...

References

  1. MulitaF. VailasM. TchabashviliL. LiolisE. IliopoulosF. DrakosN. MaroulisI. The impact of the COVID-19 outbreak on emergency surgery: A Greek emergency department experience.Prz. Gastroenterol.20211619510.5114/pg.2021.104739 33986894
    [Google Scholar]
  2. MulitaF. SotiropoulouM. VailasM. A multifaceted virus. Non-reducible and strangulated effects of COVID-19.J. Trauma Acute Care Surg.2021911e3410.1097/TA.0000000000003219 33797481
    [Google Scholar]
  3. BalliniA. CantoreS. SerretielloE. TroianoG. SmimmoA. DioguardiM. SpiritoF. SassoF.C. De VitoD. Lo MuzioL. Di DomenicoM. Multiparametric correlation of laboratory biomarkers to multiorgan failure outcome in hospitalized COVID-19 patients: A retrospective observational study.Eur. Rev. Med. Pharmacol. Sci.202327188962897410.26355/eurrev_202309_33817 37782206
    [Google Scholar]
  4. LiF. Structure, function, and evolution of coronavirus spike proteins.Annu. Rev. Virol.20163123726110.1146/annurev‑virology‑110615‑042301 27578435
    [Google Scholar]
  5. OchaniR. AsadA. YasminF. ShaikhS. KhalidH. BatraS. SohailM.R. MahmoodS.F. OchaniR. ArshadH.M. KumarA. SuraniS. COVID-19 pandemic: From origins to outcomes. A comprehensive review of viral pathogenesis, clinical manifestations, diagnostic evaluation, and management.Infez. Med.20212912036 33664170
    [Google Scholar]
  6. van HemertM.J. van den WormS.H.E. KnoopsK. MommaasA.M. GorbalenyaA.E. SnijderE.J. SARS-coronavirus replication/transcription complexes are membrane-protected and need a host factor for activity in vitro.PLoS Pathog.200845e100005410.1371/journal.ppat.1000054 18451981
    [Google Scholar]
  7. SerretielloE. BalliniA. SmimmoA. AcunzoM. RaimoM. CantoreS. Di DomenicoM. Extracellular vesicles as a translational approach for the treatment of COVID-19 disease: An Updated Overview.Viruses20231510197610.3390/v15101976 37896755
    [Google Scholar]
  8. ZhangH. PenningerJ.M. LiY. ZhongN. SlutskyA.S. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular mechanisms and potential therapeutic target.Intensive Care Med.202046458659010.1007/s00134‑020‑05985‑9 32125455
    [Google Scholar]
  9. YeQ. WangB. MaoJ. The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID-19.J. Infect.202080660761310.1016/j.jinf.2020.03.037 32283152
    [Google Scholar]
  10. SilholF. SarlonG. DeharoJ.C. VaïsseB. Downregulation of ACE2 induces overstimulation of the renin–angiotensin system in COVID-19: Should we block the renin–angiotensin system?Hypertens. Res.202043885485610.1038/s41440‑020‑0476‑3 32439915
    [Google Scholar]
  11. BalliniA. De FrenzaG. CantoreS. PapaF. GranoM. MastrangeloF. TetèS. GrassiF.R. In vitro stem cell cultures from human dental pulp and periodontal ligament: New prospects in dentistry.Int. J. Immunopathol. Pharmacol.200720191610.1177/039463200702000102 17346423
    [Google Scholar]
  12. CantoreS. CrincoliV. BoccaccioA. UvaA.E. FiorentinoM. MonnoG. BolleroP. DerlaC. FabianoF. BalliniA. SantacroceL. Recent advances in endocrine, metabolic and immune disorders: Mesenchymal Stem Cells (MSCs) and engineered scaffolds.Endocr. Metab. Immune Disord. Drug Targets201818546646910.2174/1871530318666180423102905 29692270
    [Google Scholar]
  13. BalzanelliM.G. DistratisP. LazzaroR. PhamV.H. TranT.C. DipalmaG. InchingoloF. SerlengaE.M. AityanS.K. BalliniA. NguyenK.C.D. IsaccoC.G. The anti-viral activity of stem cells: A rational explanation for their use in clinical application.Endocr. Metab. Immune Disord. Drug Targets202323673974710.2174/1871530323666221117094330 37254275
    [Google Scholar]
  14. LuersJ.C. RokohlA.C. LoreckN. MatosW.P.A. AugustinM. DewaldF. KleinF. LehmannC. HeindlL.M. Olfactory and gustatory dysfunction in coronavirus disease 2019 (COVID-19).Clin. Infect. Dis.202071162262226410.1093/cid/ciaa525 32357210
    [Google Scholar]
  15. WiersingaW.J. RhodesA. ChengA.C. PeacockS.J. PrescottH.C. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19).JAMA2020324878279310.1001/jama.2020.12839 32648899
    [Google Scholar]
  16. RecalcatiS. Cutaneous manifestations in COVID‐19: A first perspective.J. Eur. Acad. Dermatol. Venereol.2020345e212e21310.1111/jdv.16387 32215952
    [Google Scholar]
  17. AggarwalK. AgarwalA. JaiswalN. DahiyaN. AhujaA. MahajanS. TongL. DuggalM. SinghM. AgrawalR. GuptaV. Ocular surface manifestations of coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis.PLoS One20201511e024166110.1371/journal.pone.0241661 33151999
    [Google Scholar]
  18. WangD. HuB. HuC. ZhuF. LiuX. ZhangJ. WangB. XiangH. ChengZ. XiongY. ZhaoY. LiY. WangX. PengZ. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China.JAMA2020323111061106910.1001/jama.2020.1585 32031570
    [Google Scholar]
  19. LongB. BradyW.J. KoyfmanA. GottliebM. Cardiovascular complications in COVID-19.Am. J. Emerg. Med.20203871504150710.1016/j.ajem.2020.04.048
    [Google Scholar]
  20. DellinoM. VimercatiA. D’AmatoA. DamianiG.R. LaganàA.S. CicinelliE. PintoV. MalvasiA. ScaccoS. BalliniA. RestaL. IngravalloG. MaioranoE. CazzatoG. CascardiE. “Gone with the wind”: The transitory effects of COVID-19 on the gynecological system.J. Pers. Med.202313231210.3390/jpm13020312 36836546
    [Google Scholar]
  21. LovreglioP. BukvicN. FustinoniS. BalliniA. DragoI. FoàV. GuantiG. SoleoL. Lack of genotoxic effect in workers exposed to very low doses of 1,3-butadiene.Arch. Toxicol.200680637838110.1007/s00204‑005‑0046‑0 16307232
    [Google Scholar]
  22. CazzatoG. AmbrogioF. PisaniM. ColagrandeA. ArezzoF. CascardiE. DellinoM. MacoranoE. TrilliI. ParenteP. LettiniT. RomitaP. MarzulloA. IngravalloG. FotiC. Histopathological patterns of cutaneous adverse reaction to Anti-SARS-CoV-2 vaccines: The integrative role of skin biopsy.Vaccines202311239710.3390/vaccines11020397 36851273
    [Google Scholar]
  23. MarroneM. AngelettiC. CazzatoG. SebastianiG. BuongiornoL. CaricatoP. PitittoF. CascardiE. StellacciA. De LucaB.P. The job that kills the worker: Analysis of two case reports on work-related stress deaths in the COVID-19 Era.Int. J. Environ. Res. Public Health202320188410.3390/ijerph20010884 36613205
    [Google Scholar]
  24. DellinoM. LamannaB. VinciguerraM. TafuriS. StefanizziP. MalvasiA. Di VagnoG. CormioG. LoizziV. CazzatoG. TinelliR. CicinelliE. PintoV. DanieleA. MaioranoE. RestaL. De VitoD. ScaccoS. CascardiE. SARS-CoV-2 vaccines and adverse effects in gynecology and obstetrics: The first italian retrospective study.Int. J. Environ. Res. Public Health202219201316710.3390/ijerph192013167 36293746
    [Google Scholar]
  25. CazzatoG. CascardiE. ColagrandeA. FotiC. StellacciA. MarroneM. IngravalloG. ArezzoF. LoizziV. SolimandoA.G. ParenteP. MaioranoE. CormioG. VaccaA. RestaL. SARS-CoV-2 and skin: New insights and perspectives.Biomolecules2022129121210.3390/biom12091212 36139051
    [Google Scholar]
  26. WeissG. Iron and immunity: A double‐edged sword.Eur. J. Clin. Invest.200232s1707810.1046/j.1365‑2362.2002.0320s1070.x 11886435
    [Google Scholar]
  27. OppenheimerS.J. Iron and its relation to immunity and infectious disease.J. Nutr.20011312616S635S10.1093/jn/131.2.616S 11160594
    [Google Scholar]
  28. SchaibleU.E. KaufmannS.H.E. Iron and microbial infection.Nat. Rev. Microbiol.200421294695310.1038/nrmicro1046 15550940
    [Google Scholar]
  29. CherayilB.J. Iron and immunity: Immunological consequences of iron deficiency and overload.Arch. Immunol. Ther. Exp.201058640741510.1007/s00005‑010‑0095‑9 20878249
    [Google Scholar]
  30. FotiC. RomitaP. RiganoL. ZimersonE. SiciliaM. BalliniA. GhizzoniO. AntelmiA. AngeliniG. BonamonteD. BruzeM. Isobornyl acrylate: An impurity in alkyl glucosides.Cutan. Ocul. Toxicol.20153521510.3109/15569527.2015.1055495 26095233
    [Google Scholar]
  31. NairzM. DichtlS. SchrollA. HaschkaD. TymoszukP. TheurlI. WeissG. Iron and innate antimicrobial immunity—Depriving the pathogen, defending the host.J. Trace Elem. Med. Biol.20184811813310.1016/j.jtemb.2018.03.007 29773170
    [Google Scholar]
  32. NairzM. TheurlI. SwirskiF.K. WeissG. “Pumping iron”—how macrophages handle iron at the systemic, microenvironmental, and cellular levels.Pflugers Arch.20174693-439741810.1007/s00424‑017‑1944‑8 28251312
    [Google Scholar]
  33. DrakesmithH. PrenticeA.M. Hepcidin and the iron-infection axis.Science2012338610876877210.1126/science.1224577 23139325
    [Google Scholar]
  34. PolimenoL. FrancavillaA. PiscitelliD. FioreM.G. PolimenoR. TopiS. HaxhirexhaK. BalliniA. DanieleA. SantacroceL. The role of PIAS3, p-STAT3 and ALR in colorectal cancer: New translational molecular features for an old disease.Eur. Rev. Med. Pharmacol. Sci.202024201049610511 33155205
    [Google Scholar]
  35. MaoS. ZhangA. HuangS. Meta-analysis of Zn, Cu and Fe in the hair of Chinese children with recurrent respiratory tract infection.Scand. J. Clin. Lab. Invest.201474756156710.3109/00365513.2014.921323 24874085
    [Google Scholar]
  36. DellinoM. CascardiE. VinciguerraM. LamannaB. MalvasiA. ScaccoS. AcquavivaS. PintoV. Di VagnoG. CormioG. De LucaR. LafranceschinaM. CazzatoG. IngravalloG. MaioranoE. RestaL. DanieleA. La ForgiaD. Nutrition as personalized medicine against SARS-CoV-2 infections: Clinical and oncological options with a specific female groups overview.Int. J. Mol. Sci.20222316913610.3390/ijms23169136 36012402
    [Google Scholar]
  37. PrasadA.S. Zinc in human health: Effect of zinc on immune cells.Mol. Med.2008145-635335710.2119/2008‑00033.Prasad 18385818
    [Google Scholar]
  38. HasanR. RinkL. HaaseH. Zinc signals in neutrophil granulocytes are required for the formation of neutrophil extracellular traps.Innate Immun.201319325326410.1177/1753425912458815 23008348
    [Google Scholar]
  39. KahmannL. UciechowskiP. WarmuthS. PlümäkersB. GressnerA.M. MalavoltaM. MocchegianiE. RinkL. Zinc supplementation in the elderly reduces spontaneous inflammatory cytokine release and restores T cell functions.Rejuvenation Res.200811122723710.1089/rej.2007.0613 18279033
    [Google Scholar]
  40. BeckF.W. PrasadA.S. KaplanJ. FitzgeraldJ.T. BrewerG.J. Changes in cytokine production and T cell subpopulations in experimentally induced zinc-deficient humans.Am. J. Physiol. Endocrinol. Metab.19972726E1002E100710.1152/ajpendo.1997.272.6.E1002 9227444
    [Google Scholar]
  41. KaushikN. SubramaniC. AnangS. MuthumohanR. Shalimar; Nayak, B.; Kumar, R.C.T.; Surjit, M. Shalimar, n.; Nayak, B.; Ranjith-Kumar, C.; Surjit, M. Zinc salts block hepatitis E virus replication by inhibiting the activity of viral RNA-dependent RNA polymerase.J. Virol.20179121e00754e1710.1128/JVI.00754‑17 28814517
    [Google Scholar]
  42. McCartyM.F. DiNicolantonioJ.J. Nutraceuticals have potential for boosting the type 1 interferon response to RNA viruses including influenza and coronavirus.Prog. Cardiovasc. Dis.202063338338510.1016/j.pcad.2020.02.007 32061635
    [Google Scholar]
  43. UchideN. OhyamaK. BesshoT. YuanB. YamakawaT. Effect of antioxidants on apoptosis induced by influenza virus infection: Inhibition of viral gene replication and transcription with pyrrolidine dithiocarbamate.Antiviral Res.200256320721710.1016/S0166‑3542(02)00109‑2 12406505
    [Google Scholar]
  44. te VelthuisA.J.W. van den WormS.H.E. SimsA.C. BaricR.S. SnijderE.J. van HemertM.J. Zn(2+) inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture.PLoS Pathog.2010611e100117610.1371/journal.ppat.1001176 21079686
    [Google Scholar]
  45. VigneshS.K. DeepeG. Jr Metallothioneins: Emerging modulators in immunity and infection.Int. J. Mol. Sci.20171810219710.3390/ijms18102197 29065550
    [Google Scholar]
  46. HemiläH. Zinc lozenges and the common cold: A meta-analysis comparing zinc acetate and zinc gluconate, and the role of zinc dosage.JRSM Open201785205427041769429110.1177/2054270417694291 28515951
    [Google Scholar]
  47. ScienceM. JohnstoneJ. RothD.E. GuyattG. LoebM. Zinc for the treatment of the common cold: A systematic review and meta-analysis of randomized controlled trials.CMAJ201218410E551E56110.1503/cmaj.111990 22566526
    [Google Scholar]
  48. LassiZ.S. MoinA. BhuttaZ.A. Zinc supplementation for the prevention of pneumonia in children aged 2 months to 59 months.Cochrane Libr.201620171CD00597810.1002/14651858.CD005978.pub3 27915460
    [Google Scholar]
  49. WangL. SongY. Efficacy of zinc given as an adjunct to the treatment of severe pneumonia: A meta‐analysis of randomized, double‐blind and placebo‐controlled trials.Clin. Respir. J.201812385786410.1111/crj.12646 28488366
    [Google Scholar]
  50. ImdadA. WilsonM.E. HaykalM.R. ReganA. SidhuJ. SmithA. BhuttaZ.A. Vitamin A supplementation for preventing morbidity and mortality in children from six months to five years of age.Cochrane Database Syst. Rev.20223CD008524 35294044
    [Google Scholar]
  51. HuN. LiQ.B. ZouS.Y. Effect of vitamin A as an adjuvant therapy for pneumonia in children: A Meta analysis.Zhongguo Dang Dai Er Ke Za Zhi2018202146153
    [Google Scholar]
  52. CharitosI.A. BalliniA. LoveroR. CastellanetaF. ColellaM. ScaccoS. CantoreS. ArrigoniR. MastrangeloF. Update on COVID-19 and effectiveness of a vaccination campaign in a global context.Int. J. Environ. Res. Public Health202228191071210.3390/ijerph191710712
    [Google Scholar]
  53. RosaS.G.V. SantosW.C. Clinical trials on drug repositioning for COVID-19 treatment.Rev. Panam. Salud Publica202044110.26633/RPSP.2020.40 32256547
    [Google Scholar]
  54. AliN. Role of vitamin D in preventing of COVID-19 infection, progression and severity.J. Infect. Public Health202013101373138010.1016/j.jiph.2020.06.021 32605780
    [Google Scholar]
  55. PanareseA. ShahiniE. Letter: COVID‐19, and vitamin D.Aliment. Pharmacol. Ther.2020511099399510.1111/apt.15752 32281109
    [Google Scholar]
  56. GrantW. LahoreH. McDonnellS. BaggerlyC. FrenchC. AlianoJ. BhattoaH. Evidence that Vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths.Nutrients202012498810.3390/nu12040988 32252338
    [Google Scholar]
  57. PagniniC. UrgesiR. Di PaoloM.C. GrazianiM.G. Fighting the Battle against SARS-CoV-2 as Gastroenterologists in Italy.Gastroenterology20201594161910.1053/j.gastro.2020.03.067 32247691
    [Google Scholar]
  58. HemiläH. Vitamin C and Infections.Nutrients20179433910.3390/nu9040339 28353648
    [Google Scholar]
  59. JacobR.A. KelleyD.S. PianaltoF.S. SwendseidM.E. HenningS.M. ZhangJ.Z. AmesB.N. FragaC.G. PetersJ.H. Immunocompetence and oxidant defense during ascorbate depletion of healthy men.Am. J. Clin. Nutr.199154S61302S1309S10.1093/ajcn/54.6.1302s 1962587
    [Google Scholar]
  60. ChrysohoouC. PanagiotakosD.B. PitsavosC. DasU.N. StefanadisC. Adherence to the Mediterranean diet attenuates inflammation and coagulation process in healthy adults.J. Am. Coll. Cardiol.200444115215810.1016/j.jacc.2004.03.039 15234425
    [Google Scholar]
  61. SaadehD. SalamehP. BaldiI. RaherisonC. Diet and allergic diseases among population aged 0 to 18 years: Myth or reality?Nutrients2013593399342310.3390/nu5093399 23995043
    [Google Scholar]
  62. GonzalezM.M.A. RastrolloB.M. Dietary patterns, Mediterranean diet, and cardiovascular disease.Curr. Opin. Lipidol.2014251202610.1097/MOL.0000000000000044 24370845
    [Google Scholar]
  63. TsouprasA. LordanR. ZabetakisI. Inflammation, not cholesterol, is a cause of chronic disease.Nutrients201810560410.3390/nu10050604 29757226
    [Google Scholar]
  64. CasasR. SacanellaE. EstruchR. The immune protective effect of the Mediterranean diet against chronic low-grade inflammatory diseases.Endocr. Metab. Immune Disord. Drug Targets201414424525410.2174/1871530314666140922153350 25244229
    [Google Scholar]
  65. BalliniA. ZhurakivskaK. TroianoG. Lo MuzioL. CaponioV.C.A. SpiritoF. PorroR. RellaM. CantoreS. ArrigoniR. DioguardiM. Dietary polyphenols against oxidative stress in head and neck cancer: What’s New, What’s Next.J. Cancer202415229330810.7150/jca.90545 38169656
    [Google Scholar]
  66. BalliniA. ScaccoS. BoccellinoM. SantacroceL. ArrigoniR. Microbiota and obesity: Where Are We Now?Biology202091241510.3390/biology9120415 33255588
    [Google Scholar]
  67. BonaccioM. PounisG. CerlettiC. DonatiM.B. IacovielloL. de GaetanoG. Mediterranean diet, dietary polyphenols and low grade inflammation: Results from the MOLI‐SANI study.Br. J. Clin. Pharmacol.201783110711310.1111/bcp.12924 26935858
    [Google Scholar]
  68. ArrigoniR. CammarotaF. PorroR. CantoreS. DioguardiM. CazzollaA.P. De LeonardisF. PolimenoL. ZermanN. Di CosolaM. MastrangeloF. SantacroceL. BalliniA. Natural bioactive compounds against oxidative stress: Dietary polyphenols strike back.Endocr. Metab. Immune Disord. Drug Targets202323676477610.2174/1871530323666221107092553 36345247
    [Google Scholar]
  69. ChengS. TuM. LiuH. ZhaoG. DuM. Food-derived antithrombotic peptides: Preparation, identification, and interactions with thrombin.Crit. Rev. Food Sci. Nutr.201959sup1S81S9510.1080/10408398.2018.1524363 30740983
    [Google Scholar]
  70. GombartA.F. The vitamin D–antimicrobial peptide pathway and its role in protection against infection.Future Microbiol.2009491151116510.2217/fmb.09.87 19895218
    [Google Scholar]
  71. WangT.T. NestelF.P. BourdeauV. NagaiY. WangQ. LiaoJ. MendozaT.L. LinR. HanrahanJ.W. MaderS. WhiteJ.H. Cutting edge: 1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression.J. Immunol.200417352909291210.4049/jimmunol.173.5.2909 15322146
    [Google Scholar]
  72. JakovacH. COVID-19 and vitamin D—Is there a link and an opportunity for intervention?Am. J. Physiol. Endocrinol. Metab.20203185E58910.1152/ajpendo.00138.2020 32297519
    [Google Scholar]
  73. BerryD.J. HeskethK. PowerC. HyppönenE. Vitamin D status has a linear association with seasonal infections and lung function in British adults.Br. J. Nutr.201110691433144010.1017/S0007114511001991 21736791
    [Google Scholar]
  74. GindeA.A. MansbachJ.M. CamargoC.A. Jr Association between serum 25-hydroxyvitamin D level and upper respiratory tract infection in the Third National Health and Nutrition Examination Survey.Arch. Intern. Med.2009169438439010.1001/archinternmed.2008.560 19237723
    [Google Scholar]
  75. SabettaJ.R. DePetrilloP. CiprianiR.J. SmardinJ. BurnsL.A. LandryM.L. Serum 25-hydroxyvitamin d and the incidence of acute viral respiratory tract infections in healthy adults.PLoS One201056e1108810.1371/journal.pone.0011088 20559424
    [Google Scholar]
  76. BergmanP. LindhÅ.U. BergmanB.L. LindhJ.D. Vitamin D and respiratory tract infections: A systematic review and Meta-analysis of randomized controlled trials.PLoS One201386e6583510.1371/journal.pone.0065835 23840373
    [Google Scholar]
  77. PhamH. RahmanA. MajidiA. WaterhouseM. NealeR.E. Acute respiratory tract infection and 25-hydroxyvitamin D concentration: A systematic review and meta-analysis.Int. J. Environ. Res. Public Health20191617302010.3390/ijerph16173020 31438516
    [Google Scholar]
  78. MartineauA.R. JolliffeD.A. HooperR.L. GreenbergL. AloiaJ.F. BergmanP. Dubnov-RazG. EspositoS. GanmaaD. GindeA.A. GoodallE.C. GrantC.C. GriffithsC.J. JanssensW. LaaksiI. HollandM.S. MaugerD. MurdochD.R. NealeR. ReesJ.R. SimpsonS.Jr StelmachI. KumarG.T. UrashimaM. CamargoC.A. Jr Vitamin D supplementation to prevent acute respiratory tract infections: Systematic review and meta-analysis of individual participant data.BMJ2017356i658310.1136/bmj.i6583 28202713
    [Google Scholar]
  79. D’AvolioA. AvataneoV. MancaA. CusatoJ. De NicolòA. LucchiniR. KellerF. CantùM. 25-hydroxyvitamin D concentrations Are lower in patients with positive PCR for SARS-CoV-2.Nutrients2020125135910.3390/nu12051359 32397511
    [Google Scholar]
  80. HastieC.E. MackayD.F. HoF. MoralesC.C.A. KatikireddiS.V. NiedzwiedzC.L. JaniB.D. WelshP. MairF.S. GrayS.R. O’DonnellC.A. GillJ.M.R. SattarN. PellJ.P. Vitamin D concentrations and COVID-19 infection in UK Biobank.Diabetes Metab. Syndr.202014456156510.1016/j.dsx.2020.04.050 32413819
    [Google Scholar]
  81. MeydaniS.N. HanS.N. WuD. Vitamin E and immune response in the aged: Molecular mechanisms and clinical implications.Immunol. Rev.2005205126928410.1111/j.0105‑2896.2005.00274.x 15882360
    [Google Scholar]
  82. WuD. MeydaniS. Age-associated changes in immune function: Impact of vitamin E intervention and the underlying mechanisms.Endocr. Metab. Immune Disord. Drug Targets201414428328910.2174/1871530314666140922143950 25244230
    [Google Scholar]
  83. LeeG. HanS. The role of vitamin E in immunity.Nutrients20181011161410.3390/nu10111614 30388871
    [Google Scholar]
  84. WuD. LewisE.D. PaeM. MeydaniS.N. Nutritional modulation of immune function: Analysis of evidence, mechanisms, and clinical relevance.Front. Immunol.20199316010.3389/fimmu.2018.03160 30697214
    [Google Scholar]
  85. ChavanceM. HerbethB. FournierC. JanotC. VernhesG. Vitamin status, immunity and infections in an elderly population.Eur. J. Clin. Nutr.19894312827835 2627929
    [Google Scholar]
  86. MeydaniS.N. BarklundM.P. LiuS. MeydaniM. MillerR.A. CannonJ.G. MorrowF.D. RocklinR. BlumbergJ.B. Vitamin E supplementation enhances cell-mediated immunity in healthy elderly subjects.Am. J. Clin. Nutr.199052355756310.1093/ajcn/52.3.557 2203257
    [Google Scholar]
  87. MeydaniS.N. MeydaniM. BlumbergJ.B. LekaL.S. SiberG. LoszewskiR. ThompsonC. PedrosaM.C. DiamondR.D. StollarB.D. Vitamin E supplementation and in vivo immune response in healthy elderly subjects. A randomized controlled trial.JAMA1997277171380138610.1001/jama.1997.03540410058031 9134944
    [Google Scholar]
  88. PallastE.G. SchoutenE.G. de WaartF.G. FonkH.C. DoekesG. von BlombergB.M. KokF.J. Effect of 50- and 100-mg vitamin E supplements on cellular immune function in noninstitutionalized elderly persons.Am. J. Clin. Nutr.19996961273128110.1093/ajcn/69.6.1273 10357750
    [Google Scholar]
  89. De la FuenteM. HernanzA. GuayerbasN. VictorM.V. ArnalichF. Vitamin E ingestion improves several immune functions in elderly men and women.Free Radic. Res.200842327228010.1080/10715760801898838 18344122
    [Google Scholar]
  90. HemiläH. Vitamin E administration may decrease the incidence of pneumonia in elderly males.Clin. Interv. Aging2016111379138510.2147/CIA.S114515 27757026
    [Google Scholar]
  91. MeydaniS.N. LekaL.S. FineB.C. DallalG.E. KeuschG.T. SinghM.F. HamerD.H. Vitamin E and respiratory tract infections in elderly nursing home residents: A randomized controlled trial.JAMA2004292782883610.1001/jama.292.7.828 15315997
    [Google Scholar]
  92. MeydaniS.N. LewisE.D. WuD. Perspective: Should vitamin E recommendations for older adults be increased?Adv. Nutr.20189553354310.1093/advances/nmy035 30107519
    [Google Scholar]
  93. GavazziC. ColatruglioS. SironiA. MazzaferroV. MiceliR. Importance of early nutritional screening in patients with gastric cancer.Br. J. Nutr.2011106121773177810.1017/S0007114511002509 21679482
    [Google Scholar]
  94. WangJ.Z. ZhangR.Y. BaiJ. An anti-oxidative therapy for ameliorating cardiac injuries of critically ill COVID-19-infected patients.Int. J. Cardiol.202031213713810.1016/j.ijcard.2020.04.009 32321655
    [Google Scholar]
  95. ZhangL. LiuY. Potential interventions for novel coronavirus in China: A systematic review.J. Med. Virol.202092547949010.1002/jmv.25707 32052466
    [Google Scholar]
  96. BonatoG. DioscoridiL. MutignaniM. Fecal-oral transmission of SARS-COV-2: Practical implications.Gastroenterol202015941621162210.1053/j.gastro.2020.03.066 32247692
    [Google Scholar]
  97. FuB. QianK. FuX. SARS-CoV-2-induced vomiting as onset symptom in a patient with COVID-19.Dig. Dis. Sci.20206561568157010.1007/s10620‑020‑06285‑4 32347435
    [Google Scholar]
  98. GargM. ChristensenB. LubelJ.S. Gastrointestinal ACE2, COVID-19 and IBD: Opportunity in the face of tragedy?Gastroenterol1623-16242020159e162310.1053/j.gastro.2020.04.051 32353370
    [Google Scholar]
  99. MartínezE.H.I. PérezR.L. MoyaC.M. Presence of SARS-coronavirus-2 in the Ileal mucosa: Another evidence for infection of GI tract by this virus.Gastroenterology202015941624162510.1053/j.gastro.2020.05.101 32777284
    [Google Scholar]
  100. SongJ. PatelJ. KhatriR. NadparaN. MalikZ. ParkmanH.P. Gastrointestinal symptoms in patients hospitalized with COVID-19.Medicine202210125e2937410.1097/MD.0000000000029374 35758370
    [Google Scholar]
  101. MilanoA. EfthymakisK. D’ArdesD. TanaM. MazzottaE. De FebisG. LaterzaF. TarquiniP. MariniE. PorrecaE. CipolloneF. NeriM. Gastrointestinal manifestations of SARS-CoV-2 infection in an Italian population of hospitalized patients.Therap. Adv. Gastroenterol.2022151756284822110461010.1177/17562848221104610 35757382
    [Google Scholar]
  102. ChenT.H. HsuM.T. LeeM.Y. ChouC.K. Gastrointestinal involvement in SARS-CoV-2 infection.Viruses2022146118810.3390/v14061188 35746659
    [Google Scholar]
  103. SoheilipourM. TabeshE. SamiR. MansourianM. TabeshF. SoltaninejadF. DehghanM. NikgoftarN. GharaviniaA. GhasemiK. AdibiP. Gastrointestinal manifestations in patients with coronavirus disease-2019 (COVID-19): Impact on clinical outcomes.J. Res. Med. Sci.20222713210.4103/jrms.jrms_641_21 35548178
    [Google Scholar]
  104. WangB. ZhangL. WangY. DaiT. QinZ. ZhouF. ZhangL. Alterations in microbiota of patients with COVID-19: Potential mechanisms and therapeutic interventions.Signal Transduct. Target. Ther.20227114310.1038/s41392‑022‑00986‑0 35487886
    [Google Scholar]
  105. HuangC. WangY. LiX. RenL. ZhaoJ. HuY. ZhangL. FanG. XuJ. GuX. ChengZ. YuT. XiaJ. WeiY. WuW. XieX. YinW. LiH. LiuM. XiaoY. GaoH. GuoL. XieJ. WangG. JiangR. GaoZ. JinQ. WangJ. CaoB. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China.Lancet20203951022349750610.1016/S0140‑6736(20)30183‑5 31986264
    [Google Scholar]
  106. XiaoF. TangM. ZhengX. LiuY. LiX. ShanH. Evidence for gastrointestinal infection of SARS-CoV-2.Gastroenterology1831-18332020158e183310.1053/j.gastro.2020.02.055 32142773
    [Google Scholar]
  107. ZadehK.K. WardS.A. ZadehK.K. El-OmarE.M. Considering the effects of microbiome and diet on SARS-CoV-2 infection: Nanotechnology Roles.ACS Nano20201455179518210.1021/acsnano.0c03402 32356654
    [Google Scholar]
  108. Di RenzoL. GualtieriP. RomanoL. MarroneG. NoceA. PujiaA. PerroneM.A. AielloV. ColicaC. De LorenzoA. Role of personalized nutrition in chronic-degenerative diseases.Nutrients2019118170710.3390/nu11081707 31344895
    [Google Scholar]
  109. MehtaP. McAuleyD.F. BrownM. SanchezE. TattersallR.S. MansonJ.J. COVID-19: Consider cytokine storm syndromes and immunosuppression.Lancet2020395102291033103410.1016/S0140‑6736(20)30628‑0 32192578
    [Google Scholar]
  110. ChenL. DengH. CuiH. FangJ. ZuoZ. DengJ. LiY. WangX. ZhaoL. Inflammatory responses and inflammation-associated diseases in organs.Oncotarget2018967204721810.18632/oncotarget.23208 29467962
    [Google Scholar]
  111. GalmésS. SerraF. PalouA. Current state of evidence: Influence of nutritional and nutrigenetic factors on immunity in the COVID-19 pandemic framework.Nutrients2020129273810.3390/nu12092738 32911778
    [Google Scholar]
  112. HammingI. TimensW. BulthuisM.L.C. LelyA.T. NavisG.J. van GoorH. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis.J. Pathol.2004203263163710.1002/path.1570 15141377
    [Google Scholar]
  113. HashimotoT. PerlotT. RehmanA. TrichereauJ. IshiguroH. PaolinoM. SiglV. HanadaT. HanadaR. LipinskiS. WildB. CamargoS.M.R. SingerD. RichterA. KubaK. FukamizuA. SchreiberS. CleversH. VerreyF. RosenstielP. PenningerJ.M. ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation.Nature2012487740847748110.1038/nature11228 22837003
    [Google Scholar]
  114. EltrikiB.M. HopeflR. WrightJ.M. DebS. Association between Vitamin D status and risk of developing severe COVID-19 infection: A Meta-Analysis of Observational Studies.J. Am. Coll. Nutr.202141711110.1080/07315724.2021.1951891 34464543
    [Google Scholar]
  115. VargaZ. FlammerA.J. SteigerP. HabereckerM. AndermattR. ZinkernagelA.S. MehraM.R. SchuepbachR.A. RuschitzkaF. MochH. Endothelial cell infection and endotheliitis in COVID-19.Lancet2020395102341417141810.1016/S0140‑6736(20)30937‑5 32325026
    [Google Scholar]
  116. HarrisonC. Calming the cytokine storm.Nat. Rev. Drug Discov.20109536036110.1038/nrd3162 20431565
    [Google Scholar]
  117. NameJ.J. SouzaA.C.R. VasconcelosA.R. PradoP.S. PereiraC.P.M. zinc, Vitamin D and Vitamin C: Perspectives for COVID-19 with a focus on physical tissue barrier integrity.Front. Nutr.2020760639810.3389/fnut.2020.606398 33365326
    [Google Scholar]
  118. CascardiE. CazzatoG. DanieleA. SilvestrisE. CormioG. Di VagnoG. MalvasiA. LoizziV. ScaccoS. PintoV. CicinelliE. MaioranoE. IngravalloG. RestaL. MinoiaC. DellinoM. Association between cervical microbiota and HPV: Could this be the key to complete cervical cancer eradication?Biology2022118111410.3390/biology11081114 35892970
    [Google Scholar]
  119. DellinoM. CascardiE. TomasoneV. ZaccaroR. MaggipintoK. GiacominoM.E. De NicolòM. De SummaS. CazzatoG. ScaccoS. MalvasiA. PintoV. CicinelliE. CarrieroC. Di VagnoG. CormioG. GencoC.A. Communications is time for Care: An italian monocentric survey on human papillomavirus (HPV) risk information as part of cervical cancer screening.J. Pers. Med.2022129138710.3390/jpm12091387 36143172
    [Google Scholar]
  120. DellinoM. CascardiE. LaganàA.S. Di VagnoG. MalvasiA. ZaccaroR. MaggipintoK. CazzatoG. ScaccoS. TinelliR. De LucaA. VinciguerraM. LoizziV. DanieleA. CicinelliE. CarrieroC. GencoC.A. CormioG. PintoV. Lactobacillus crispatus M247 oral administration: Is it really an effective strategy in the management of papillomavirus-infected women?Infect. Agent. Cancer20221715310.1186/s13027‑022‑00465‑9 36271433
    [Google Scholar]
  121. JunckerH.G. MullenersS.J. CoenenE.R.M. van GoudoeverJ.B. van GilsM.J. van KeulenB.J. Comparing human milk antibody response after 4 different vaccines for COVID-19.JAMA Pediatr.2022176661161210.1001/jamapediatrics.2022.0084 35285889
    [Google Scholar]
  122. KellyJ.C. CarterE.B. RaghuramanN. NolanL.S. GongQ. LewisA.N. GoodM. Anti–severe acute respiratory syndrome coronavirus 2 antibodies induced in breast milk after Pfizer-BioNTech/BNT162b2 vaccination.Am. J. Obstet. Gynecol.2021225110110310.1016/j.ajog.2021.03.031 33798480
    [Google Scholar]
  123. PerlS.H. YulzariU.A. KlainerH. AsiskovichL. YoungsterM. RinottE. YoungsterI. SARS-CoV-2–Specific antibodies in breast milk after COVID-19 vaccination of breastfeeding women.JAMA2021325192013201410.1001/jama.2021.5782 33843975
    [Google Scholar]
  124. FriedmanR.M. KigelA. BaharY. WerbnerM. AlterJ. YogevY. DrorY. LubetzkyR. DessauM. TanamyG.M. ManyA. WineY. BNT162b2 mRNA vaccine elicited antibody response in blood and milk of breastfeeding women.Nat. Commun.2021121622210.1038/s41467‑021‑26507‑1 34711825
    [Google Scholar]
  125. HunagundS. GolanY. AsioduI.V. PrahlM. GawS.L. Effects of vaccination against influenza, pertussis, and COVID-19 on human milk antibodies: Current evidence and implications for health equity.Front. Immunol.20221391038310.3389/fimmu.2022.910383 35903100
    [Google Scholar]
  126. CollierA.Y. McMahanK. YuJ. TostanoskiL.H. AguayoR. AnselJ. ChandrashekarA. PatelS. BondzieA.E. SellersD. BarrettJ. SanbornO. WanH. ChangA. AniokeT. NkololaJ. BradshawC. DolanJ.C. FeldmanJ. GebreM. BorducchiE.N. LiuJ. SchmidtA.G. SuscovichT. LindeC. AlterG. HackerM.R. BarouchD.H. Immunogenicity of COVID-19 mRNA vaccines in pregnant and lactating women.JAMA2021325232370238010.1001/jama.2021.7563 33983379
    [Google Scholar]
  127. GrayK.J. BordtE.A. AtyeoC. DerisoE. AkinwunmiB. YoungN. BaezA.M. ShookL.L. CvrkD. JamesK. Coronavirus disease 2019 vaccine response in pregnant and lactating women: A cohort study.Am. J. Obstet. Gynecol.2021225303e301303 e31710.1016/j.ajog.2021.03.023
    [Google Scholar]
  128. PrahlM. GolanY. CassidyA.G. MatsuiY. LiL. AlvarengaB. ChenH. JigmeddagvaU. LinC.Y. GonzalezV.J. Evaluation of transplacental transfer of mRNA vaccine products and functional antibodies during pregnancy and early infancy.medRxiv2022131442210.1101/2021.12.09.21267423
    [Google Scholar]
  129. BalliniA. TetèS. ScattarellaA. CantoreS. MastrangeloF. PapaF. NardiG.M. PerilloL. CrincoliV. GherloneE. GrassiF.R. The role of anti-cyclic citrullinated peptide antibody in periodontal disease.Int. J. Immunopathol. Pharmacol.201023267768110.1177/039463201002300234 20646367
    [Google Scholar]
  130. MoriG. BrunettiG. ColucciS. OrangerA. CiccolellaE. SardoneF. PignataroP. MoriC. KarapanouV. BalliniA. MastrangeloF. TetèS. GrassiF.R. GranoM. Osteoblast apoptosis in periodontal disease: Role of TNF-related apoptosis-inducing ligand.Int. J. Immunopathol. Pharmacol.20092219510310.1177/039463200902200111 19309556
    [Google Scholar]
  131. MoriG. BrunettiG. ColucciS. CiccolellaF. CoricciatiM. PignataroP. OrangerA. BalliniA. FarronatoD. MastrangeloF. TetèS. GrassiF.R. GranoM. Alteration of activity and survival of osteoblasts obtained from human periodontitis patients: Role of TRAIL.J. Biol. Regul. Homeost. Agents2007213-4105114 18261262
    [Google Scholar]
  132. BemquererL.M. OliveiraS.R. de ArrudaJ.A.A. CostaF.P.D. MiguitaL. BemquererA.L.M. de SenaA.C.V.P. de SouzaA.F. MendesD.F. SchneiderA.H. AzevedoM.C.S. TravassosD.V. GarletG.P. CunhaF.Q. de AguiarR.S. de SouzaR.P. GomezR.S. SpahrA. MianoO.F. AbreuL.G. CostaF.O. SilvaT.A. Clinical, immunological, and microbiological analysis of the association between periodontitis and COVID-19: A case–control study.Odontology2024112120822010.1007/s10266‑023‑00811‑2 37058199
    [Google Scholar]
  133. ZhurakivskaK. TroianoG. PannoneG. CaponioV.C.A. Lo MuzioL. An overview of the temporal shedding of SARS-CoV-2 RNA in clinical specimens.Front. Public Health2020848710.3389/fpubh.2020.00487 32974267
    [Google Scholar]
  134. SpiritoF. AmatoA. ScelzaG. PisanoM. CaponioV.C.A. MartinaS. Education during the COVID-19 pandemic: The perception of Italian dental and medical students.Minerva Dent. Oral. Sc.202271527728610.23736/S2724‑6329.22.04712‑X 35912540
    [Google Scholar]
  135. PannoneG. CaponioV.C.A. De StefanoI.S. RamunnoM.A. MeccarielloM. AgostinoneA. PedicilloM.C. TroianoG. ZhurakivskaK. CassanoT. BizzocaM.E. PapagerakisS. BuonaguroF.M. AdvaniS. MuzioL.L. Lung histopathological findings in COVID-19 disease – A systematic review.Infect. Agent. Cancer20211613410.1186/s13027‑021‑00369‑0 34001199
    [Google Scholar]
  136. CaponioV.C.A. LipsiM.R. FortunatoF. ArenaF. Lo MuzioL. Symptomatic SARS-CoV-2 infection with ageusia after two mRNA vaccine doses.Int. J. Environ. Res. Public Health202219288610.3390/ijerph19020886 35055707
    [Google Scholar]
  137. SpiritoF. GuidaA. CaponioV.C.A. Lo MuzioL. Monkeypox: A new challenge for global health system?Life2023136125010.3390/life13061250 37374034
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303296892240506100532
Loading
/content/journals/emiddt/10.2174/0118715303296892240506100532
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): COVID-19; metabolism; microbiota; nutrition; translational medicine; vitamins
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test