Skip to content
2000
Volume 25, Issue 6
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

Introduction/Objective

Bioinformatic analysis is a valuable tool that allows us to collect, archive, analyze, and disseminate biological data for further interpretation. Analysis of the IL-23/IL-17A axis and its receptors will provide us with essential information about their functions, interactions, and relationships with various diseases. This review aims to identify the central genes co-expressed in the IL-23/IL-17A axis and their receptors and to understand their ontology and modifying factors.

Methods

We used several databases, including COXPRESdb to obtain the co-expressed genes, ShinyGO and ToppGene platforms to explore gene functional enrichment, and the NetworkAnalyst 3.0 platform for gene expression profiling.

Results

We found that genes encoding IL-23/IL-17A axis proteins and their receptors mainly respond to microbial components, participate in the inflammatory response, and are primarily associated with inflammatory and autoimmune diseases. In addition, we observed an association of the IL-23/IL-17 axis with Behcet's disease, Graft--host disease, and Hodgkin's disease, although there is no direct evidence of their interaction.

Conclusion

The IL-23/IL-17A axis is associated with several inflammatory and autoimmune pathologies. Therefore, we suggest further research to confirm its role in these pathologies and, if possible, use it as a therapeutic target.

Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303316226240823045641
2024-09-23
2025-06-11
Loading full text...

Full text loading...

References

  1. GaffenS.L. JainR. GargA.V. CuaD.J. The IL-23–IL-17 immune axis: from mechanisms to therapeutic testing.Nat. Rev. Immunol.201414958560010.1038/nri3707 25145755
    [Google Scholar]
  2. SistoM. LisiS. Interleukin-23 involved in fibrotic autoimmune diseases: New discoveries.J. Clin. Med.20231217569910.3390/jcm12175699 37685766
    [Google Scholar]
  3. LiY. YuX. MaY. HuaS. IL-23 and dendritic cells: What are the roles of their mutual attachment in immune response and immunotherapy?Cytokine2019120788410.1016/j.cyto.2019.02.018 31029042
    [Google Scholar]
  4. VecellioM. HakeV.X. DavidsonC. CarenaM.C. WordsworthB.P. SelmiC. The IL-17/IL-23 axis and its genetic contribution to psoriatic arthritis.Front. Immunol.20211159608610.3389/fimmu.2020.596086 33574815
    [Google Scholar]
  5. BoutetM.A. NervianiA. Gallo AfflittoG. PitzalisC. Role of the IL-23/IL-17 axis in psoriasis and psoriatic arthritis: The clinical importance of its divergence in skin and joints.Int. J. Mol. Sci.201819253010.3390/ijms19020530 29425183
    [Google Scholar]
  6. HuangfuL. LiR. HuangY. WangS. The IL-17 family in diseases: from bench to bedside.Signal Transduct. Target. Ther.20238140210.1038/s41392‑023‑01620‑3 37816755
    [Google Scholar]
  7. LiuT. LiS. YingS. TangS. DingY. LiY. QiaoJ. FangH. The IL-23/IL-17 pathway in inflammatory skin diseases: From bench to bedside.Front. Immunol.20201159473510.3389/fimmu.2020.594735 33281823
    [Google Scholar]
  8. LiuY. OuyangY. YouW. LiuW. ChengY. MaiX. ShenZ. Physiological roles of human interleukin‐17 family.Exp. Dermatol.2024331e1496410.1111/exd.14964 37905720
    [Google Scholar]
  9. McGeachyM.J. CuaD.J. GaffenS.L. The IL-17 family of cytokines in health and disease.Immunity201950489290610.1016/j.immuni.2019.03.021 30995505
    [Google Scholar]
  10. SanchezA.P. da CostaA. Del ReyC. SilvaB. RomitiR. The overview of the immunobiology of interleukin-23 associated with immune-mediated inflammatory disorders: A Narrative Review.J. Drugs Dermatol.2023224375385 37026890
    [Google Scholar]
  11. BianchiE. RoggeL. The IL-23/IL-17 pathway in human chronic inflammatory diseases—new insight from genetics and targeted therapies.Genes Immun.201920541542510.1038/s41435‑019‑0067‑y 31000797
    [Google Scholar]
  12. BunteK. BeiklerT. Th17 cells and the IL-23/IL-17 axis in the pathogenesis of periodontitis and immune-mediated inflammatory diseases.Int. J. Mol. Sci.20192014339410.3390/ijms20143394 31295952
    [Google Scholar]
  13. SchinoccaC. RizzoC. FasanoS. GrassoG. La BarberaL. CicciaF. GugginoG. Role of the IL-23/IL-17 pathway in rheumatic diseases: An Overview.Front. Immunol.20211263782910.3389/fimmu.2021.637829 33692806
    [Google Scholar]
  14. DennyP. FeuermannM. HillD.P. LoveringR.C. Plun-FavreauH. RoncagliaP. Exploring autophagy with gene ontology.Autophagy201814341943610.1080/15548627.2017.1415189 29455577
    [Google Scholar]
  15. ChenC. HouJ. TannerJ.J. ChengJ. Bioinformatics methods for mass spectrometry-based proteomics data analysis.Int. J. Mol. Sci.2020218287310.3390/ijms21082873 32326049
    [Google Scholar]
  16. GaffenS.L. KramerJ.M. YuJ.J. ShenF. The IL‐17 Cytokine Family. In: Vitamins and Hormones.Elsevier2006255282
    [Google Scholar]
  17. ObayashiT. KagayaY. AokiY. TadakaS. KinoshitaK. COXPRESdb v7: a gene coexpression database for 11 animal species supported by 23 coexpression platforms for technical evaluation and evolutionary inference.Nucleic Acids Res.201947D1D55D6210.1093/nar/gky1155 30462320
    [Google Scholar]
  18. GeS.X. JungD. YaoR. ShinyGO: a graphical gene-set enrichment tool for animals and plants.Bioinformatics20203682628262910.1093/bioinformatics/btz931
    [Google Scholar]
  19. ChenJ. XuH. AronowB.J. JeggaA.G. Improved human disease candidate gene prioritization using mouse phenotype.BMC Bioinformatics20078139210.1186/1471‑2105‑8‑392 17939863
    [Google Scholar]
  20. ZhouG. SoufanO. EwaldJ. HancockR.E.W. BasuN. XiaJ. NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis.Nucleic Acids Res.201947W1W234W24110.1093/nar/gkz240 30931480
    [Google Scholar]
  21. LeeG.R. The balance of Th17 versus Treg cells in autoimmunity.Int. J. Mol. Sci.201819373010.3390/ijms19030730 29510522
    [Google Scholar]
  22. ZengL. LindstromM.J. SmithJ.A. Ankylosing spondylitis macrophage production of higher levels of interleukin-23 in response to lipopolysaccharide without induction of a significant unfolded protein response.Arthritis Rheum.201163123807381710.1002/art.30593 22127699
    [Google Scholar]
  23. KortaA. KulaJ. GomułkaK. The role of IL-23 in the pathogenesis and therapy of inflammatory bowel disease.Int. J. Mol. Sci.202324121017210.3390/ijms241210172 37373318
    [Google Scholar]
  24. ChenJ.Q. SzodorayP. ZeherM. Toll-like receptor pathways in autoimmune diseases.Clin. Rev. Allergy Immunol.201650111710.1007/s12016‑015‑8473‑z 25687121
    [Google Scholar]
  25. HansM. HansV.M. Toll-like receptors and their dual role in periodontitis: a review.J. Oral Sci.201153326327110.2334/josnusd.53.263 21959652
    [Google Scholar]
  26. GaffenS.L. MoutsopoulosN.M. Regulation of host-microbe interactions at oral mucosal barriers by type 17 immunity.Sci. Immunol.2020543eaau459410.1126/sciimmunol.aau4594 31901072
    [Google Scholar]
  27. SatoK. SuematsuA. OkamotoK. YamaguchiA. MorishitaY. KadonoY. TanakaS. KodamaT. AkiraS. IwakuraY. CuaD.J. TakayanagiH. Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction.J. Exp. Med.2006203122673268210.1084/jem.20061775 17088434
    [Google Scholar]
  28. AmatyaN. GargA.V. GaffenS.L. IL-17 Signaling: The Yin and the Yang.Trends Immunol.201738531032210.1016/j.it.2017.01.006 28254169
    [Google Scholar]
  29. DouglasA. StevensB. LynchL. Interleukin-17 as a key player in neuroimmunometabolism.Nat. Metab.2023571088110010.1038/s42255‑023‑00846‑3 37488456
    [Google Scholar]
  30. ToussirotE. The IL23/Th17 pathway as a therapeutic target in chronic inflammatory diseases.Inflamm. Allergy Drug Targets201211215916810.2174/187152812800392805 22280236
    [Google Scholar]
  31. SunL. WangL. MooreB.B. ZhangS. XiaoP. DeckerA.M. WangH.L. IL-17: Balancing protective immunity and pathogenesis.J. Immunol. Res.202320231910.1155/2023/3360310 37600066
    [Google Scholar]
  32. BabaieF. HasankhaniM. MohammadiH. SafarzadehE. RezaiemaneshA. SalimiR. BaradaranB. BabalooZ. The role of gut microbiota and IL-23/IL-17 pathway in ankylosing spondylitis immunopathogenesis: New insights and updates.Immunol. Lett.2018196526210.1016/j.imlet.2018.01.014 29409751
    [Google Scholar]
  33. JiangY. DaiY. LiuZ. LiaoY. SunS. KongX. HuJ. TangY. The role of IL-23/IL-17 axis in ischemic stroke from the perspective of gut-brain axis.Neuropharmacology202323110950510.1016/j.neuropharm.2023.109505 36924925
    [Google Scholar]
  34. HajishengallisG. Periodontitis: from microbial immune sub-version to systemic inflammation.Nat. Rev. Immunol.2015151304410.1038/nri3785 25534621
    [Google Scholar]
  35. HajishengallisG. ChavakisT. Local and systemic mechanisms linking periodontal disease and inflammatory comorbidities.Nat. Rev. Immunol.202121742644010.1038/s41577‑020‑00488‑6 33510490
    [Google Scholar]
  36. FlossD.M. SchröderJ. FrankeM. SchellerJ. Insights into IL-23 biology: From structure to function.Cytokine Growth Factor Rev.201526556957810.1016/j.cytogfr.2015.07.005 26195433
    [Google Scholar]
  37. AbuslemeL. MoutsopoulosN.M.I.L. ‐17: overview and role in oral immunity and microbiome.Oral Dis.201723785486510.1111/odi.12598 27763707
    [Google Scholar]
  38. Shu-HaiH. Interleukin-17 and the interleukin-17 family member network.Allergy Asthma Proc.20042511721
    [Google Scholar]
  39. SohdaM. MisumiY. TashiroK. YamazakiM. SakuT. OdaK. Identification of a soluble isoform of human IL-17RA generated by alternative splicing.Cytokine201364364264510.1016/j.cyto.2013.09.012 24084331
    [Google Scholar]
  40. HaudenschildD. MoseleyT. RoseL. ReddiA.H. Soluble and transmembrane isoforms of novel interleukin-17 receptor-like protein by RNA splicing and expression in prostate cancer.J. Biol. Chem.200227764309431610.1074/jbc.M109372200 11706037
    [Google Scholar]
  41. Navarro-CompánV. PuigL. VidalS. RamírezJ. Llamas-VelascoM. Fernández-CarballidoC. AlmodóvarR. PintoJ.A. Galíndez-AguirregoikoaE. ZarcoP. JovenB. GratacósJ. JuanolaX. BlancoR. Arias-SantiagoS. Sanz SanzJ. QueiroR. CañeteJ.D. The paradigm of IL-23-independent production of IL-17F and IL-17A and their role in chronic inflammatory diseases.Front. Immunol.202314119178210.3389/fimmu.2023.1191782 37600764
    [Google Scholar]
  42. MezghicheI. Yahia-CherbalH. RoggeL. BianchiE. Interleukin 23 receptor: Expression and regulation in immune cells.Eur. J. Immunol.2024541225034810.1002/eji.202250348 37837262
    [Google Scholar]
  43. Kan S h, Mancini G, Gallagher G. Identification and characterization of multiple splice forms of the human interleukin-23 receptor a chain in mitogen-activated leukocytes.Genes Immun.20089631639
    [Google Scholar]
  44. YangX.P. GhoreschiK. Steward-TharpS.M. Rodriguez-CanalesJ. ZhuJ. GraingerJ.R. HiraharaK. SunH.W. WeiL. VahediG. KannoY. O’SheaJ.J. LaurenceA. Opposing regulation of the locus encoding IL-17 through direct, reciprocal actions of STAT3 and STAT5.Nat. Immunol.201112324725410.1038/ni.1995 21278738
    [Google Scholar]
  45. BecharaR. McGeachyM.J. GaffenS.L. The metabolism-modulating activity of IL-17 signaling in health and disease.J. Exp. Med.20212185e2020219110.1084/jem.20202191 33822846
    [Google Scholar]
  46. BrembillaN.C. BoehnckeW.H. Revisiting the interleukin 17 family of cytokines in psoriasis: pathogenesis and potential targets for innovative therapies.Front. Immunol.202314118645510.3389/fimmu.2023.1186455 37283755
    [Google Scholar]
  47. PanW. WangQ. ChenQ. The cytokine network involved in the host immune response to periodontitis.Int. J. Oral Sci.20191133010.1038/s41368‑019‑0064‑z 31685798
    [Google Scholar]
  48. SivanesanD. BeauchampC. QuinouC. LeeJ. LesageS. ChemtobS. RiouxJ.D. MichnickS.W. IL23R (interleukin 23 receptor) variants protective against inflammatory bowel diseases (ibd) display loss of function due to impaired protein stability and intracellular trafficking.J. Biol. Chem.2016291168673868510.1074/jbc.M116.715870 26887945
    [Google Scholar]
  49. KuestnerR.E. TaftD.W. HaranA. BrandtC.S. BrenderT. LumK. HarderB. OkadaS. OstranderC.D. KreindlerJ.L. AujlaS.J. ReardonB. MooreM. SheaP. SchreckhiseR. BukowskiT.R. PresnellS. Guerra-LewisP. Parrish-NovakJ. EllsworthJ.L. JaspersS. LewisK.E. ApplebyM. KollsJ.K. RixonM. WestJ.W. GaoZ. LevinS.D. Identification of the IL-17 receptor related molecule IL-17RC as the receptor for IL-17F.J. Immunol.200717985462547310.4049/jimmunol.179.8.5462 17911633
    [Google Scholar]
  50. SchmittH. NeurathM.F. AtreyaR. Role of the IL23/IL17 pathway in crohn’s disease.Front. Immunol.20211262293410.3389/fimmu.2021.622934 33859636
    [Google Scholar]
  51. VerstocktB. Van AsscheG. VermeireS. FerranteM. Biological therapy targeting the IL-23/IL-17 axis in inflammatory bowel disease.Expert Opin. Biol. Ther.2017171314710.1080/14712598.2017.1258399 27817215
    [Google Scholar]
  52. QuN. XuM. MizoguchiI. FurusawaJ. KanekoK. WatanabeK. MizuguchiJ. ItohM. KawakamiY. YoshimotoT. Pivotal roles of T-helper 17-related cytokines, IL-17, IL-22, and IL-23, in inflammatory diseases.Clin. Dev. Immunol.2013201311310.1155/2013/968549 23956763
    [Google Scholar]
  53. ClebakK.T. HelmL. UppalP. DavisC.R. HelmM.F. Atopic Dermatitis.Prim. Care202350219120310.1016/j.pop.2022.12.004 37105601
    [Google Scholar]
  54. KimJ. KimB.E. LeungD.Y.M. Pathophysiology of atopic dermatitis: Clinical implications.Allergy Asthma Proc.2019402849210.2500/aap.2019.40.4202 30819278
    [Google Scholar]
  55. LeonardiS. CuppariC. MantiS. FilippelliM. ParisiG.F. BorgiaF. BriugliaS. CannavòP. SalpietroA. ArrigoT. SalpietroC. Serum interleukin 17, interleukin 23, and interleukin 10 values in children with atopic eczema/dermatitis syndrome (AEDS): Association with clinical severity and phenotype.Allergy Asthma Proc.2015361748110.2500/aap.2015.36.3808 25562560
    [Google Scholar]
  56. BugautH. AractingiS. Major role of the IL17/23 axis in psoriasis supports the development of new targeted therapies.Front. Immunol.20211262195610.3389/fimmu.2021.621956 33717124
    [Google Scholar]
  57. AljohaniS. JazzarA. Tear cytokine levels in sicca syndrome-related dry eye: A Meta-Analysis.Diagnostics (Basel)20231313218410.3390/diagnostics13132184 37443578
    [Google Scholar]
  58. VerstappenG.M. CornethO.B.J. BootsmaH. KroeseF.G.M. Th17 cells in primary Sjögren’s syndrome: Pathogenicity and plasticity.J. Autoimmun.201887162510.1016/j.jaut.2017.11.003 29191572
    [Google Scholar]
  59. ZhangL.W. ZhouP.R. WeiP. CongX. WuL.L. HuaH. Expression of interleukin‐17 in primary Sjögren’s syndrome and the correlation with disease severity: A systematic review and meta‐analysis.Scand. J. Immunol.2018874e1264910.1111/sji.12649 29476557
    [Google Scholar]
  60. Al-ObeidiA.F. NowatzkyJ. Immunopathogenesis of Behçet’s disease.Clin. Immunol.202325310966110.1016/j.clim.2023.109661 37295542
    [Google Scholar]
  61. ShimizuJ. TakaiK. FujiwaraN. ArimitsuN. UedaY. WakisakaS. YoshikawaH. KanekoF. SuzukiT. SuzukiN. Excessive CD4+ T cells co-expressing interleukin-17 and interferon-γ in patients with Behçet’s disease.Clin. Exp. Immunol.20121681687410.1111/j.1365‑2249.2011.04543.x 22385240
    [Google Scholar]
  62. LaneL.C. WoodC.L. CheethamT. Graves’ disease: moving forwards.Arch. Dis. Child.2023108427628110.1136/archdischild‑2022‑323905 35831126
    [Google Scholar]
  63. ZhengL. YeP. LiuC. The role of the IL-23/IL-17 axis in the pathogenesis of Graves’ disease.Endocr. J.201360559159710.1507/endocrj.EJ12‑0264 23327801
    [Google Scholar]
  64. RamachandranV. KolliS.S. StrowdL.C. Review of graft-versus-host disease.Dermatol. Clin.201937456958210.1016/j.det.2019.05.014 31466596
    [Google Scholar]
  65. JiangH. FuD. BidgoliA. PaczesnyS. T cell subsets in graft versus host disease and graft versus tumor.Front. Immunol.20211276144810.3389/fimmu.2021.761448 34675938
    [Google Scholar]
  66. MunirF. HarditV. SheikhI.N. AlQahtaniS. HeJ. CuglievanB. HosingC. TewariP. KhazalS. Classical hodgkin lymphoma: From past to future-a comprehensive review of pathophysiology and therapeutic advances.Int. J. Mol. Sci.202324121009510.3390/ijms241210095 37373245
    [Google Scholar]
  67. FerrariniI. RigoA. ZamòA. VinanteF. Classical Hodgkin lymphoma cells may promote an IL-17-enriched micro-environment.Leuk. Lymphoma201960143395340510.1080/10428194.2019.1636983 31304817
    [Google Scholar]
  68. TsukazakiH. KaitoT. The role of the IL-23/IL-17 pathway in the pathogenesis of spondyloarthritis.Int. J. Mol. Sci.20202117640110.3390/ijms21176401 32899140
    [Google Scholar]
  69. Pastor-FernándezG. MariblancaI.R. NavarroM.N. Decoding IL-23 signaling cascade for new therapeutic opportunities.Cells202099204410.3390/cells9092044 32906785
    [Google Scholar]
  70. ZhouH. BaoJ. ZhuX. DaiG. JiangX. JiaoX. ShengH. HuangJ. YuH. Retinoblastoma binding protein 5 correlates with the progression in Hepatocellular carcinoma.BioMed Res. Int.201820181910.1155/2018/1073432 30533424
    [Google Scholar]
  71. FengH. ZhangY.B. GuiJ.F. LemonS.M. YamaneD. Interferon regulatory factor 1 (IRF1) and anti-pathogen innate immune responses.PLOS Pathog.2021171e1009220
    [Google Scholar]
  72. PerevalovaA.M. GulyaevaL.F. PustylnyakV.O. Roles of interferon regulatory factor 1 in tumor progression and regression: two sides of a coin.Int. J. Mol. Sci.2024254215310.3390/ijms25042153 38396830
    [Google Scholar]
  73. CaiT. ChenX. WangR. XuH. YouY. ZhangT. LanM.S. NotkinsA.L. Expression of insulinoma-associated 2 (INSM2) in pancreatic islet cells is regulated by the transcription factors Ngn3 and NeuroD1.Endocrinology201115251961196910.1210/en.2010‑1065 21343251
    [Google Scholar]
  74. WangL. SunZ.S. XiangB. WeiC. WangY. SunK. ChenG. LanM.S. CarmonaG.N. NotkinsA.L. CaiT. Targeted deletion of Insm2 in mice result in reduced insulin secretion and glucose intolerance.J. Transl. Med.201816129710.1186/s12967‑018‑1665‑6 30359270
    [Google Scholar]
  75. CaoH. ZhuoR. ZhangZ. WangJ. TaoY. YangR. GuoX. ChenY. JiaS. YaoY. YangP. YuJ. JiaoW. LiX. FangF. XieY. LiG. WuD. WangH. FengC. XuY. LiZ. PanJ. WangJ. Super-enhancer-associated INSM2 regulates lipid metabolism by modulating mTOR signaling pathway in neuroblastoma.Cell Biosci.202212115810.1186/s13578‑022‑00895‑3 36114560
    [Google Scholar]
  76. SekiyaT. KasaharaH. TakemuraR. FujitaS. KatoJ. DokiN. KatayamaY. OzawaY. TakadaS. EtoT. Fu-kudaT. IchinoheT. TakanashiM. OnizukaM. AtsutaY. OkamotoS. YoshimuraA. TakakiS. MoriT. Essential roles of the transcription factor NR4A1 in regulatory T cell differentiation under the influence of immunosuppressants.J. Immunol.202220892122213010.4049/jimmunol.2100808 35387841
    [Google Scholar]
  77. WangH. ZhangM. FangF. XuC. LiuJ. GaoL. ZhaoC. WangZ. ZhongY. WangX. The nuclear receptor sub-family 4 group A1 in human disease.Biochem. Cell Biol.2023101214815910.1139/bcb‑2022‑0331 36861809
    [Google Scholar]
  78. LiuX. WangY. LuH. LiJ. YanX. XiaoM. HaoJ. AlekseevA. KhongH. ChenT. HuangR. WuJ. ZhaoQ. WuQ. XuS. WangX. JinW. YuS. WangY. WeiL. WangA. ZhongB. NiL. LiuX. NurievaR. YeL. TianQ. BianX.W. DongC. Genome-wide analysis identifies NR4A1 as a key mediator of T cell dysfunction.Nature2019567774952552910.1038/s41586‑019‑0979‑8 30814730
    [Google Scholar]
  79. LoneB.A. AhmadF. KarnaS.K.L. PokharelY.R. SUPT5H post-transcriptional silencing modulates PIN1 expression, inhibits tumorigenicity, and induces apoptosis of human breast cancer cells.Cell. Physiol. Biochem.202054592894610.33594/000000279 32961044
    [Google Scholar]
  80. ChenR. ZhuJ. DongY. HeC. HuX. Suppressor of Ty homolog-5, a novel tumor-specific human telomerase reverse transcriptase promoter-binding protein and activator in colon cancer cells.Oncotarget2015632328413285510.18632/oncotarget.5301 26418880
    [Google Scholar]
  81. DopytalskaK. CzaplickaA. SzymańskaE. WaleckaI. The essential role of microRNAs in inflammatory and autoimmune skin diseases-A Review.Int. J. Mol. Sci.20232411913010.3390/ijms24119130 37298095
    [Google Scholar]
  82. GareevI. de Jesus Encarnacion RamirezM. GoncharovE. IvlievD. ShumadalovaA. IlyasovaT. WangC. MiRNAs and lncRNAs in the regulation of innate immune signaling.Noncoding RNA Res.20238453454110.1016/j.ncrna.2023.07.002 37564295
    [Google Scholar]
  83. SalviV. GianelloV. TiberioL. SozzaniS. BosisioD. Cytokine targeting by miRNAs in autoimmune diseases.Front. Immunol.2019101510.3389/fimmu.2019.00015 30761124
    [Google Scholar]
  84. KhanD. Ansar AhmedS. Regulation of IL-17 in autoimmune diseases by transcriptional factors and microRNAs.Front. Genet.2015623610.3389/fgene.2015.00236 26236331
    [Google Scholar]
  85. ZhangR. TianA. WangJ. ShenX. QiG. TangY. miR26a modulates Th17/T reg balance in the EAE model of multiple sclerosis by targeting IL6.Neuromol. Med.2015171243410.1007/s12017‑014‑8335‑5 25362566
    [Google Scholar]
  86. BalkanE. BilgeN. Expression levels of IL-17/IL-23 cytokine-targeting microRNAs 20, 21, 26, 155, and Let-7 in patients with relapsing-remitting multiple sclerosis.Neurol. Res.202143977878310.1080/01616412.2021.1935099 34130607
    [Google Scholar]
  87. PodsiadA. StandifordT.J. BallingerM.N. EakinR. ParkP. KunkelS.L. MooreB.B. BhanU. MicroRNA-155 regulates host immune response to postviral bacterial pneumonia via IL-23/IL-17 pathway.Am. J. Physiol. Lung Cell. Mol. Physiol.20163105L465L47510.1152/ajplung.00224.2015 26589478
    [Google Scholar]
  88. LiuJ. LongY. XuP. GuoH. CuiG. Pathogenesis of miR-155 on nonmodifiable and modifiable risk factors in Alzheimer’s disease.Alzheimers Res. Ther.202315112210.1186/s13195‑023‑01264‑z 37452431
    [Google Scholar]
  89. HouJ. HuX. ChenB. ChenX. ZhaoL. ChenZ. LiuF. LiuZ. miR-155 targets Est-1 and induces ulcerative colitis via the IL-23/17/6-mediated Th17 pathway.Pathol. Res. Pract.2017213101289129510.1016/j.prp.2017.08.001 28888763
    [Google Scholar]
  90. SimmondsR.E. Transient up-regulation of miR-155-3p by lipopolysaccharide in primary human monocyte-derived macrophages results in RISC incorporation but does not alter TNF expression.Wellcome Open Res.2019444310.12688/wellcomeopenres.15065.2 31641696
    [Google Scholar]
  91. LaiN.S. YuH.C. TungC.H. HuangK.Y. HuangH.B. LuM.C. Aberrant expression of interleukin-23-regulated miRNAs in T cells from patients with ankylosing spondylitis.Arthritis Res. Ther.201820125910.1186/s13075‑018‑1754‑1 30463609
    [Google Scholar]
  92. LiuY. CuiX. WangS. LiuJ. ZhaoN. HuangM. QinJ. LiY. ShanZ. TengW. Elevated microRNA-326 levels regulate the IL-23/IL-23R/Th17 cell axis in Hashimoto’s thyroiditis by targeting a disintegrin and metalloprotease 17.Thyroid20203091327133710.1089/thy.2019.0552 32204685
    [Google Scholar]
  93. ChenY. LiZ.H. LiuX. LiuG.X. YangH.M. WuP.F. Reduced expression of miR-3653 in glioma and its correlations with clinical progression and patient survival.Eur. Rev. Med. Pharmacol. Sci.2019231565966601 31378901
    [Google Scholar]
  94. ZhangL. ZhangT. DengZ. SunL. MicroRNA 3653 inhibits the growth and metastasis of hepatocellular carcinoma by inhibiting ITGB1.Oncol. Rep.20194131669167710.3892/or.2019.6971 30664185
    [Google Scholar]
  95. ZhuW. LuoX. FuH. LiuL. SunP. WangZ. MiR-3653 inhibits the metastasis and epithelial-mesenchymal transition of colon cancer by targeting Zeb2.Pathol. Res. Pract.20192151015257710.1016/j.prp.2019.152577 31405759
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303316226240823045641
Loading
/content/journals/emiddt/10.2174/0118715303316226240823045641
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): bioinformatics; cytokine; gene; IL-17; IL-23; inflammation; receptor
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test