Skip to content
2000
Volume 24, Issue 15
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

The Mediterranean diet, listed as the intangible cultural heritage of humanity by UNESCO, is known as healthy and consumed worldwide. The Japanese diet is also listed and considered healthy. This narrative review compares the Mediterranean diet with its Japanese counterpart. Research has reported that people in Mediterranean regions, such as Italy and Greece, have one-third of the mortality ratio from cardiovascular diseases compared to people in the United States and Northern Europe because of the difference in eating habits. Therefore, Mediterranean diets are considered as healthy. A typical Western diet containing high amounts of fat, sugar, and calories is responsible for several diseases like metabolic syndrome and obesity, which are induced by chronic inflammation. In contrast, Mediterranean and Japanese diets contain them only less. The similarity between Mediterranean and Japanese diets is the substantial intake of vegetables, beans, and fish. On the other hand, the Mediterranean diet consumes large amounts of olive oil, especially polyphenol-rich extra virgin olive oil and dairy products, but meat consumption is relatively small. In contrast, the Japanese diet does not use oil and fat, contains abundant fermented foods, and consumes seaweed. Japan is known for its longevity, and people think that a well-balanced diet daily is good for preventing and curing illness. In this regard, finding non-disease conditions, so-called “ME-BYO,” and curing them before the manifestation of diseases is becoming more common. In this review, we discuss the healthy eating habit, “The Mediterranean-styled Japanese diet,” which prevents ME-BYO condition and reduces the risk of various diseases. The Mediterranean-styled Japanese diet, a hybrid of Mediterranean and Japanese diets, reduces the risk of various diseases by suppressing chronic inflammation. This nutritional intervention prevents ME-BYO and is beneficial for healthy longevity. Hence, a Mediterranean-styled Japanese diet might be helpful for healthy longevity in Japan and around the world.

Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303280097240130072031
2024-02-09
2025-01-18
Loading full text...

Full text loading...

References

  1. KeysA. MienottiA. KarvonenM.J. AravanisC. BlackburnH. BuzinaR. DjordjevicB.S. DontasA.S. FidanzaF. KeysM.H. KromhoutD. NedeljkovicS. PunsarS. SeccarecciaF. ToshimaH. The diet and 15-year death rate in the seven countries study.Am. J. Epidemiol.1986124690391510.1093/oxfordjournals.aje.a1144803776973
    [Google Scholar]
  2. KushiL.H. LenartE.B. WillettW.C. Health implications of Mediterranean diets in light of contemporary knowledge. 1. Plant foods and dairy products.Am. J. Clin. Nutr.19956161407S1415S10.1093/ajcn/61.6.1407S7754996
    [Google Scholar]
  3. Serra-MajemL. TrichopoulouA. de la CruzJ.N. CerveraP. ÁlvarezA.G. La VecchiaC. LemtouniA. TrichopoulosD. Does the definition of the Mediterranean diet need to be updated?Public Health Nutr.20047792792910.1079/PHN200456415482619
    [Google Scholar]
  4. SasakiS. ShimodaT. KatagiriA. TsujiT. AmanoK. Eating frequency of rice vs. bread at breakfast and nutrient and food-group intake among Japanese female college students.J. Community Nutr.200248389
    [Google Scholar]
  5. MentellaM.C. ScaldaferriF. RicciC. GasbarriniA. MiggianoG.A.D. Cancer and mediterranean diet: A review.Nutrients2019119205910.3390/nu1109205931480794
    [Google Scholar]
  6. WillettW.C. SacksF. TrichopoulouA. DrescherG. Ferro-LuzziA. HelsingE. TrichopoulosD. Mediterranean diet pyramid: A cultural model for healthy eating.Am. J. Clin. Nutr.19956161402S1406S10.1093/ajcn/61.6.1402S7754995
    [Google Scholar]
  7. TakabayashiS. OkadaE. HirataT. TakimotoH. NakamuraM. SasakiS. TakahashiK. NakamuraK. UkawaS. TamakoshiA. Nutritional adequacy assessment of the japanese diet using the number of dishes compared to existing dietary diversity indices: A cross-sectional analysis from the 2012 national health and nutrition survey, Japan.J. Nutr. Sci. Vitaminol.202369319720510.3177/jnsv.69.19737394425
    [Google Scholar]
  8. SantaK. WatanabeK. KumazawaY. NagaokaI. Phytochemicals and Vitamin D for a healthy life and prevention of diseases.Int. J. Mol. Sci.202324151216710.3390/ijms24151216737569540
    [Google Scholar]
  9. SkerrettP.J. WillettW.C. Essentials of healthy eating: A guide.J. Midwifery Womens Health201055649250110.1016/j.jmwh.2010.06.01920974411
    [Google Scholar]
  10. SantaK. Healthy diet, grape phytochemicals, and vitamin D: Preventing chronic inflammation and keeping good microbiota.Endocr. Metab. Immune Disord. Drug Targets202323677780010.2174/187153032366622101715170536263483
    [Google Scholar]
  11. MuscogiuriG. VerdeL. SuluC. KatsikiN. HassapidouM. Frias-ToralE. CucalónG. PazderskaA. YumukV.D. ColaoA. BarreaL. Mediterranean diet and obesity-related disorders: What is the evidence?Curr. Obes. Rep.202211428730410.1007/s13679‑022‑00481‑136178601
    [Google Scholar]
  12. KianiA.K. MedoriM.C. BonettiG. AquilantiB. VellutiV. MateraG. IaconelliA. StuppiaL. ConnellyS.T. HerbstK.L. BertelliM. Modern vision of the Mediterranean diet.J. Prev. Med. Hyg.2022632E36E4336479477
    [Google Scholar]
  13. ItsiopoulosC. MayrH.L. ThomasC.J. The anti-inflammatory effects of a Mediterranean diet: A review.Curr. Opin. Clin. Nutr. Metab. Care202225641542210.1097/MCO.000000000000087236039924
    [Google Scholar]
  14. DayiT. OzgorenM. Effects of the Mediterranean diet on the components of metabolic syndrome.J. Prev. Med. Hyg.2022632E56E6436479500
    [Google Scholar]
  15. BellastellaG. ScappaticcioL. CaiazzoF. TomasuoloM. CarotenutoR. CaputoM. ArenaS. CarusoP. MaiorinoM.I. EspositoK. Mediterranean diet and thyroid: An interesting alliance.Nutrients20221419413010.3390/nu1419413036235782
    [Google Scholar]
  16. Pérez-TorresA. Caverni-MuñozA. González GarcíaE. Mediterranean diet and Chronic Kidney Disease (CKD): A practical approach.Nutrients20221519710.3390/nu1501009736615755
    [Google Scholar]
  17. BisagliaM. Mediterranean diet and parkinson’s disease.Int. J. Mol. Sci.20222414210.3390/ijms2401004236613486
    [Google Scholar]
  18. DevranisP. VassilopoulouΕ. TsironisV. SotiriadisP.M. ChourdakisM. AivaliotisM. TsolakiM. Mediterranean diet, ketogenic diet or mind diet for aging populations with cognitive decline: A systematic review.Life202313117310.3390/life1301017336676122
    [Google Scholar]
  19. NaureenZ. BonettiG. MedoriM.C. AquilantiB. VellutiV. MateraG. IaconelliA. BertelliM. Foods of the mediterranean diet: Garlic and mediterranean legumes.J. Prev. Med. Hyg.2022632E12E2036479501
    [Google Scholar]
  20. ZielińskaM. ŁuszczkiE. MichońskaI. DereńK. The mediterranean diet and the western diet in adolescent depression-current reports.Nutrients20221420439010.3390/nu1420439036297074
    [Google Scholar]
  21. Di RosaC. LattanziG. SpieziaC. ImperiaE. PiccirilliS. BeatoI. GaspaG. MicheliV. De JoannonF. VallecorsaN. CiccozziM. DefeudisG. ManfriniS. KhazraiY. Mediterranean diet versus very low-calorie ketogenic diet: Effects of reaching 5% body weight loss on body composition in subjects with overweight and with obesity-a cohort study.Int. J. Environ. Res. Public Health202219201304010.3390/ijerph19201304036293616
    [Google Scholar]
  22. GardnerC.D. LandryM.J. PerelmanD. PetluraC. DurandL.R. AronicaL. CrimarcoA. CunananK.M. ChangA. DantC.C. RobinsonJ.L. KimS.H. Effect of a ketogenic diet versus Mediterranean diet on glycated hemoglobin in individuals with prediabetes and type 2 diabetes mellitus: The interventional Keto-Med randomized crossover trial.Am. J. Clin. Nutr.2022116364065210.1093/ajcn/nqac15435641199
    [Google Scholar]
  23. HaighL. KirkC. El GendyK. GallacherJ. ErringtonL. MathersJ.C. AnsteeQ.M. The effectiveness and acceptability of Mediterranean diet and calorie restriction in non-alcoholic fatty liver disease (NAFLD): A systematic review and meta-analysis.Clin. Nutr.20224191913193110.1016/j.clnu.2022.06.03735947894
    [Google Scholar]
  24. ZelichaH. KlotingN. KaplanA. Yaskolka MeirA. RinottE. TsabanG. ChassidimY. BluherM. CeglarekU. IsermannB. StumvollM. QuaysonR.N. von BergenM. EngelmannB. Rolle-KampczykU.E. HaangeS.B. TuohyK.M. DiotalleviC. ShelefI. HuF.B. StampferM.J. ShaiI. The effect of high-polyphenol Mediterranean diet on visceral adiposity: The DIRECT PLUS randomized controlled trial.BMC Med.202220132710.1186/s12916‑022‑02525‑836175997
    [Google Scholar]
  25. SeethalerB. NguyenN.K. BasraiM. KiechleM. WalterJ. DelzenneN.M. BischoffS.C. Short-chain fatty acids are key mediators of the favorable effects of the Mediterranean diet on intestinal barrier integrity: Data from the randomized controlled LIBRE trial.Am. J. Clin. Nutr.2022116492894210.1093/ajcn/nqac17536055959
    [Google Scholar]
  26. San Mauro MartinI. Sanz RojoS. González CosanoL. Conty de la CampaR. Garicano VilarE. Blumenfeld OlivaresJ.A. Impulsiveness in children with attention-deficit/hyperactivity disorder after an 8-week intervention with the Mediterranean diet and/or omega-3 fatty acids: A randomised clinical trial.Neurologia20223751352310.1016/j.nrl.2019.09.007
    [Google Scholar]
  27. Flor-AlemanyM. MiguelesJ.H. Alemany-ArrebolaI. AparicioV.A. Baena-GarcíaL. Exercise, mediterranean diet adherence or both during pregnancy to prevent postpartum depression-GESTAFIT trial secondary analyses.Int. J. Environ. Res. Public Health202219211445010.3390/ijerph19211445036361335
    [Google Scholar]
  28. PapandreouP. GioxariA. DaskalouE. GrammatikopoulouM.G. SkouroliakouM. BogdanosD.P. Mediterranean diet and physical activity nudges versus usual care in women with rheumatoid arthritis: Results from the MADEIRA randomized controlled trial.Nutrients202315367610.3390/nu1503067636771382
    [Google Scholar]
  29. Ramos-LeviA. BarabashA. ValerioJ. García de la TorreN. MendizabalL. ZuluetaM. de MiguelM.P. DiazA. DuranA. FamiliarC. JimenezI. del ValleL. MeleroV. MoragaI. HerraizM.A. TorrejonM.J. ArregiM. SimónL. RubioM.A. Calle-PascualA.L. Genetic variants for prediction of gestational diabetes mellitus and modulation of susceptibility by a nutritional intervention based on a Mediterranean diet.Front. Endocrinol.202213103608810.3389/fendo.2022.103608836313769
    [Google Scholar]
  30. ErdemN.Z. BayraktaroğluE. SamancıR.A. Geçgil-DemirE. TarakçıN.G. Mert-BiberoğluF. The effect of intermittent fasting diets on body weight and composition.Clin. Nutr. ESPEN20225120721410.1016/j.clnesp.2022.08.03036184206
    [Google Scholar]
  31. MiyagawaN. Dietary intake of manganese in the japanese diet and its association with cardiometabolic and cardiovascular diseases.J. Atheroscler. Thromb.202229101421142210.5551/jat.ED19635283404
    [Google Scholar]
  32. SinghR.B. NabavizadehF. FedackoJ. PellaD. VanovaN. JakabcinP. FatimaG. HoruichiR. TakahashiT. MojtoV. JunejaL. WatanabeS. JakabcinovaA. Dietary approaches to stop hypertension via indo-mediterranean foods, may be superior to DASH diet intervention.Nutrients20221514610.3390/nu1501004636615704
    [Google Scholar]
  33. MomiyamaY. KishimotoY. SaitaE. AoyamaM. OhmoriR. KondoK. Association between the japanese diet and coronary artery disease in patients undergoing coronary angiography.Nutrients20231510240610.3390/nu1510240637242289
    [Google Scholar]
  34. AbeC. ImaiT. SezakiA. MiyamotoK. KawaseF. ShiraiY. SanadaM. IndenA. KatoT. SugiharaN. ShimokataH. Global association between traditional japanese diet score and all-cause, cardiovascular disease, and total cancer mortality: A cross-sectional and longitudinal ecological study.J. Am. Nutr. Assoc.2022111836219452
    [Google Scholar]
  35. NomuraM. YamaguchiM. InadaY. NishiN. Current dietary intake of the Japanese population in reference to the planetary health diet-preliminary assessment.Front. Nutr.202310111610510.3389/fnut.2023.111610537077901
    [Google Scholar]
  36. MiyaguchiK. TsuzukiY. IchikawaY. ShiomiR. OhgoH. NakamotoH. ImaedaH. Positive zinc intake and a Japanese diet rich in n-3 fatty acids induces clinical remission in patients with mild active ulcerative colitis: A randomized interventional pilot study.J. Clin. Biochem. Nutr.2023721828810.3164/jcbn.22‑7236777083
    [Google Scholar]
  37. MiyakeH. KashinoI. NanriA. MizoueT. Development of the scores for traditional and modified japanese diets.Nutrients20231514314610.3390/nu1514314637513565
    [Google Scholar]
  38. ZhangC. KetnawaS. ThuengtungS. CaiY. QinW. OgawaY. Simulated in vitro digestive characteristics of raw yam tubers in japanese diet: Changes in protein profile, starch digestibility, antioxidant capacity and microstructure.Foods20221123389210.3390/foods1123389236496700
    [Google Scholar]
  39. MatsumotoY. FujiiH. HarimaM. OkamuraH. Yukawa-MutoY. OdagiriN. MotoyamaH. KotaniK. KozukaR. KawamuraE. HagiharaA. Uchida-KobayashiS. EnomotoM. YasuiY. HabuD. KawadaN. Severity of liver fibrosis is associated with the japanese diet pattern and skeletal muscle mass in patients with nonalcoholic fatty liver disease.Nutrients2023155117510.3390/nu1505117536904174
    [Google Scholar]
  40. ShimizuA. OkadaK. TomataY. UnoC. KawaseF. MomosakiR. Association of japanese and mediterranean dietary patterns with muscle weakness in japanese community-dwelling middle-aged and older adults: Post hoc cross-sectional analysis.Int. J. Environ. Res. Public Health202219191263610.3390/ijerph19191263636231936
    [Google Scholar]
  41. IslamZ. NanriA. AkterS. KuwaharaK. MikiT. Van HoangD. YamamotoS. FukunagaA. KochiT. EguchiM. KabeI. MizoueT. Relationship of chronotype and social jetlag with adherence to the Japanese dietary guidelines among workers.Chronobiol. Int.20223991195120510.1080/07420528.2022.207951935652313
    [Google Scholar]
  42. HarridenB. D’CunhaN.M. KellettJ. IsbelS. PanagiotakosD.B. NaumovskiN. Are dietary patterns becoming more processed? The effects of different dietary patterns on cognition: A review.Nutr. Health202228334135610.1177/0260106022109412935450490
    [Google Scholar]
  43. OkadaG. MabuchiR. KambaraC. TanimotoS. FujiiT. Association of eating habits and Firmicutes/Bacteroidetes ratio among Japanese female university students: A cross-sectional study.Nutr. Health20220260106022112977110.1177/0260106022112977136177526
    [Google Scholar]
  44. ZhangS. OtsukaR. NishitaY. TangeC. TomidaM. AndoF. ShimokataH. AraiH. Twenty-year prospective cohort study of the association between a Japanese dietary pattern and incident dementia: The NILS-LSA project.Eur. J. Nutr.20236241719172910.1007/s00394‑023‑03107‑x36808562
    [Google Scholar]
  45. Dijck-BrouwerD.A.J. MuskietF.A.J. VerheesenR.H. SchaafsmaG. SchaafsmaA. GeurtsJ.M.W. Thyroidal and extrathyroidal requirements for iodine and selenium: A combined evolutionary and (patho)physiological approach.Nutrients20221419388610.3390/nu1419388636235539
    [Google Scholar]
  46. HudaM.N. SalvadorA.C. BarringtonW.T. GacasanC.A. D’SouzaE.M. Deus RamirezL. ThreadgillD.W. BennettB.J. Gut microbiota and host genetics modulate the effect of diverse diet patterns on metabolic health.Front. Nutr.2022989634810.3389/fnut.2022.89634836061898
    [Google Scholar]
  47. HigurashiS. TsujimoriY. NojiriK. TobaY. NomuraK. UenoH.M. Dietary patterns associated with general health of breastfeeding women 1–2 months postpartum: Data from the japanese human milk study cohort.Curr. Dev. Nutr.20237110000410.1016/j.cdnut.2022.10000437181129
    [Google Scholar]
  48. ShenY. ZhengW. HuJ. NicholH. HaackeE.M. Susceptibility weighted MRI pinpoints spontaneous intracerebral hemorrhage in stroke-prone spontaneously hypertensive rats.Magn. Reson. Imaging20229313514410.1016/j.mri.2022.08.00935973572
    [Google Scholar]
  49. HayashiH. KajitaN. YoshidaK. NaritaM. HatayaH. Food protein-induced enterocolitis syndrome due to rice in a japanese infant: A case report.Keio J. Med.2022713687010.2302/kjm.2021‑0016‑CR35249897
    [Google Scholar]
  50. KitaokaK. MiuraK. TakashimaN. KadotaA. HaradaA. NakamuraY. KitaY. YanoY. TamuraT. NagayoshiM. OkadaR. KuboY. SuzukiS. NishiyamaT. TanoueS. KoriyamaC. KurikiK. ArisawaK. Katsuura-KamanoS. NishidaY. ShimanoeC. OzakiE. MatsuiD. IkezakiH. OtonariJ. OzeI. KoyanagiY.N. NakamuraY. KusakabeM. WakaiK. MatsuoK. Association between dietary patterns and serum low density lipoprotein cholesterol in japanese women and men: The japan multi-institutional collaborative cohort (J-MICC) study.J. Atheroscler. Thromb.202330101427144710.5551/jat.63675
    [Google Scholar]
  51. ShirotaM. WatanabeN. SuzukiM. KoboriM. Japanese-style diet and cardiovascular disease mortality: A systematic review and meta-analysis of prospective cohort studies.Nutrients20221410200810.3390/nu1410200835631146
    [Google Scholar]
  52. MatsuyamaS. ShimazuT. TomataY. ZhangS. AbeS. LuY. TsujiI. Japanese Diet and Mortality, Disability, and Dementia: Evidence from the ohsaki cohort study.Nutrients20221410203410.3390/nu1410203435631172
    [Google Scholar]
  53. SasakiS. For working group 1 of the healthy diet research committee of international life sciences institute, japan. What is the scientific definition of the japanese diet from the viewpoint of nutrition and health?Nutr. Rev.202078182610.1093/nutrit/nuaa09933259625
    [Google Scholar]
  54. SinghR.B. FedackoJ. FatimaG. MagomedovaA. WatanabeS. ElkilanyG. Why and how the indo-mediterranean diet may be superior to other dieds: The role of antioxidants in the diet.Nutrients202214489810.3390/nu1404089835215548
    [Google Scholar]
  55. MigliaccioS. BrasacchioC. PivariF. SalzanoC. BarreaL. MuscogiuriG. SavastanoS. ColaoA. What is the best diet for cardiovascular wellness? A comparison of different nutritional models.Int. J. Obes. Suppl.2020101506110.1038/s41367‑020‑0018‑032714512
    [Google Scholar]
  56. TsuganeS. Why has Japan become the world’s most long-lived country: Insights from a food and nutrition perspective.Eur. J. Clin. Nutr.202175692192810.1038/s41430‑020‑0677‑532661353
    [Google Scholar]
  57. MurakamiM. MizumaK. NakamuraY. WatanabeR. Estimation of water intake from food moisture in the Japanese diet using a cooking‐based conversion factor for water content.J. Food Sci.202186226627510.1111/1750‑3841.1557933438226
    [Google Scholar]
  58. GrayA. DangB.N. MooreT.B. ClemensR. PressmanP. A review of nutrition and dietary interventions in oncology.SAGE Open Med.20208205031212092687710.1177/205031212092687732537159
    [Google Scholar]
  59. DelarueJ. Dietary fatty acids and CHD: from specific recommendations to dietary patterns.Nutr. Res. Rev.202134224025810.1017/S095442242000029333407958
    [Google Scholar]
  60. NagataC. Soy intake and chronic disease risk: Findings from prospective cohort studies in Japan.Eur. J. Clin. Nutr.202175689090110.1038/s41430‑020‑00744‑x32917961
    [Google Scholar]
  61. KushidaM. SugawaraS. AsanoM. YamamotoK. FukudaS. TsudukiT. Effects of the 1975 Japanese diet on the gut microbiota in younger adults.J. Nutr. Biochem.20196412112710.1016/j.jnutbio.2018.10.01130502656
    [Google Scholar]
  62. SugawaraS. KushidaM. IwagakiY. AsanoM. YamamotoK. TomataY. TsujiI. TsudukiT. The 1975 type japanese diet improves lipid metabolic parameters in younger adults: A randomized controlled trial.J. Oleo Sci.201867559960710.5650/jos.ess1725929710042
    [Google Scholar]
  63. AsanoM. KushidaM. YamamotoK. TomataY. TsujiI. TsudukiT. Abdominal fat in individuals with overweight reduced by consumption of a 1975 japanese diet: A randomized controlled trial.Obesity201927689990710.1002/oby.2244830985996
    [Google Scholar]
  64. KogaM. ToyomakiA. KisoY. KusumiI. Impact of a rice-centered diet on the quality of sleep in association with reduced oxidative stress: A randomized, open, parallel-group clinical trial.Nutrients20201210292610.3390/nu1210292632987839
    [Google Scholar]
  65. SawadaR. SatoW. MinemotoK. FushikiT. Hunger promotes the detection of high-fat food.Appetite201914210437710.1016/j.appet.2019.10437731326438
    [Google Scholar]
  66. MaruyamaC. ShijoY. KameyamaN. UmezawaA. SatoA. NishitaniA. AyaoriM. IkewakiK. WakiM. TeramotoT. Effects of nutrition education program for the japan diet on serum LDL-cholesterol concentration in patients with dyslipidemia: A randomized controlled trial.J. Atheroscler. Thromb.202128101035105110.5551/jat.6037633455975
    [Google Scholar]
  67. OkudaN. OkayamaA. MiuraK. YoshitaK. MiyagawaN. SaitohS. NakagawaH. SakataK. ChanQ. ElliottP. UeshimaH. StamlerJ. Food sources of dietary potassium in the adult japanese population: The International Study of Macro-/Micronutrients and Blood Pressure (INTERMAP).Nutrients202012378710.3390/nu1203078732192157
    [Google Scholar]
  68. YoshinagaK. MitamuraR. Effects of undaria pinnatifida (Wakame) on postprandial glycemia and insulin levels in humans: A randomized crossover trial.Plant Foods Hum. Nutr.201974446146710.1007/s11130‑019‑00763‑531418121
    [Google Scholar]
  69. SakaneN. OsakiN. TakaseH. SuzukiJ. SuzukamoC. NirengiS. SuganumaA. ShimotoyodomeA. The study of metabolic improvement by nutritional intervention controlling endogenous GIP (Mini Egg study): A randomized, cross-over study.Nutr. J.20191815210.1186/s12937‑019‑0472‑031477157
    [Google Scholar]
  70. FanR. XuM. WangJ. ZhangZ. ChenQ. LiY. GuJ. CaiX. GuoQ. BaoL. LiY. Sustaining effect of intensive nutritional intervention combined with health education on dietary behavior and plasma glucose in type 2 diabetes mellitus patients.Nutrients20168956010.3390/nu809056027649232
    [Google Scholar]
  71. ManoF. IkedaK. JooE. FujitaY. YamaneS. HaradaN. InagakiN. The effect of white rice and white bread as staple foods on gut microbiota and host metabolism.Nutrients2018109132310.3390/nu1009132330231542
    [Google Scholar]
  72. YamamotoK. ShuangE. HatakeyamaY. SakamotoY. HonmaT. JibuY. KawakamiY. TsudukiT. The Japanese diet from 1975 delays senescence and prolongs life span in SAMP8 mice.Nutrition201632112212810.1016/j.nut.2015.07.00226431631
    [Google Scholar]
  73. AsanoM. NakanoF. NakatsukasaE. TsudukiT. The 1975 type Japanese diet improves the gut microbial flora and inhibits visceral fat accumulation in mice.Biosci. Biotechnol. Biochem.20208471475148510.1080/09168451.2020.174797332255390
    [Google Scholar]
  74. WidmerR.J. FlammerA.J. LermanL.O. LermanA. The Mediterranean diet, its components, and cardiovascular disease.Am. J. Med.2015128322923810.1016/j.amjmed.2014.10.01425447615
    [Google Scholar]
  75. SuzukiN. GotoY. OtaH. KitoK. ManoF. JooE. IkedaK. InagakiN. NakayamaT. Characteristics of the japanese diet described in epidemiologic publications: A qualitative systematic review.J. Nutr. Sci. Vitaminol.201864212913710.3177/jnsv.64.12929710030
    [Google Scholar]
  76. SuttonC. HerbertM. Five fruit and vegetables and five praises a day: The case for a proactive approach.Community Pract.2008814192218497224
    [Google Scholar]
  77. NilsenL. HopstockL.A. GrimsgaardS. CarlsenM.H. LundbladM.W. Intake of vegetables, fruits and berries and compliance to “Five-a-Day” in a general norwegian population-the tromsø study 2015-2016.Nutrients2021137245610.3390/nu1307245634371965
    [Google Scholar]
  78. ScarboroughP. ClarkM. CobiacL. PapierK. KnuppelA. LynchJ. HarringtonR. KeyT. SpringmannM. Vegans, vegetarians, fish-eaters and meat-eaters in the UK show discrepant environmental impacts.Nat. Food20234756557410.1038/s43016‑023‑00795‑w37474804
    [Google Scholar]
  79. RochaD.M. CaldasA.P. OliveiraL.L. BressanJ. HermsdorffH.H. Saturated fatty acids trigger TLR4-mediated inflammatory response.Atherosclerosis201624421121510.1016/j.atherosclerosis.2015.11.01526687466
    [Google Scholar]
  80. SantaK. Grape Phytochemicals and Vitamin D in the Alleviation of Lung Disorders.Endocr. Metab. Immune Disord. Drug Targets202222131276129210.2174/187153032266622040700293635388768
    [Google Scholar]
  81. MaS.R. TongQ. LinY. PanL.B. FuJ. PengR. ZhangX.F. ZhaoZ.X. LiY. YuJ.B. CongL. HanP. ZhangZ.W. YuH. WangY. JiangJ.D. Berberine treats atherosclerosis via a vitamine-like effect down-regulating Choline-TMA-TMAO production pathway in gut microbiota.Signal Transduct. Target. Ther.20227120710.1038/s41392‑022‑01027‑635794102
    [Google Scholar]
  82. VissersE. WellensJ. SabinoJ. Ultra-processed foods as a possible culprit for the rising prevalence of inflammatory bowel diseases.Front. Med.20229105837310.3389/fmed.2022.105837336419796
    [Google Scholar]
  83. RatajczakA.E. FestaS. AratariA. PapiC. DobrowolskaA. Krela-KaźmierczakI. Should the Mediterranean diet be recommended for inflammatory bowel diseases patients? A narrative review.Front. Nutr.20239108869310.3389/fnut.2022.108869336704787
    [Google Scholar]
  84. YanS.F. RamasamyR. SchmidtA.M. Mechanisms of Disease: advanced glycation end-products and their receptor in inflammation and diabetes complications.Nat. Clin. Pract. Endocrinol. Metab.20084528529310.1038/ncpendmet078618332897
    [Google Scholar]
  85. BaynesJ.W. ThorpeS.R. Glycoxidation and lipoxidation in atherogenesis.Free Radic. Biol. Med.200028121708171610.1016/S0891‑5849(00)00228‑810946212
    [Google Scholar]
  86. BrettJ. SchmidtA.M. YanS.D. ZouY.S. WeidmanE. PinskyD. NowygrodR. NeeperM. PrzysieckiC. ShawA. MigheliA. SternD. Survey of the distribution of a newly characterized receptor for advanced glycation end products in tissues.Am. J. Pathol.19931436169917128256857
    [Google Scholar]
  87. Tóbon-VelascoJ. CuevasE. Torres-RamosM. Receptor for AGEs (RAGE) as mediator of NF-kB pathway activation in neuroinflammation and oxidative stress.CNS Neurol. Disord. Drug Targets20141391615162610.2174/187152731366614080614483125106630
    [Google Scholar]
  88. SandersT.A.B. Polyunsaturated fatty acids in the food chain in Europe.Am. J. Clin. Nutr.2000711176S178S10.1093/ajcn/71.1.176S10617968
    [Google Scholar]
  89. SuganoM. HiraharaF. Polyunsaturated fatty acids in the food chain in Japan.Am. J. Clin. Nutr.2000711189S196S10.1093/ajcn/71.1.189S10617970
    [Google Scholar]
  90. TakemuraY. OkamotoM. HasegawaM. HatanakaK. KubotaS. Protamine may have anti-atherogenic potential by inhibiting the binding of oxidized-low density lipoprotein to LOX-1.Biosci. Biotechnol. Biochem.20198361094110110.1080/09168451.2019.158809630871430
    [Google Scholar]
  91. ArumugamM. RaesJ. PelletierE. Le PaslierD. YamadaT. MendeD.R. FernandesG.R. TapJ. BrulsT. BattoJ.M. BertalanM. BorruelN. CasellasF. FernandezL. GautierL. HansenT. HattoriM. HayashiT. KleerebezemM. KurokawaK. LeclercM. LevenezF. ManichanhC. NielsenH.B. NielsenT. PonsN. PoulainJ. QinJ. Sicheritz-PontenT. TimsS. TorrentsD. UgarteE. ZoetendalE.G. WangJ. GuarnerF. PedersenO. de VosW.M. BrunakS. DoréJ. WeissenbachJ. EhrlichS.D. BorkP. AlmeidaM. BrechotC. CaraC. ChervauxC. CultroneA. DelormeC. DenariazG. DervynR. FoerstnerK.U. FrissC. van de GuchteM. GuedonE. HaimetF. HuberW. van Hylckama-VliegJ. JametA. JusteC. KaciG. KnolJ. LakhdariO. LayecS. Le RouxK. MaguinE. MérieuxA. Melo MinardiR. M’riniC. MullerJ. OozeerR. ParkhillJ. RenaultP. RescignoM. SanchezN. SunagawaS. TorrejonA. TurnerK. VandemeulebrouckG. VarelaE. WinogradskyY. ZellerG. WeissenbachJ. EhrlichS.D. BorkP. Enterotypes of the human gut microbiome.Nature2011473734617418010.1038/nature0994421508958
    [Google Scholar]
  92. LeyR.E. TurnbaughP.J. KleinS. GordonJ.I. Human gut microbes associated with obesity.Nature200644471221022102310.1038/4441022a17183309
    [Google Scholar]
  93. TakagiT. InoueR. OshimaA. SakazumeH. OgawaK. TominagaT. MiharaY. SugayaT. MizushimaK. UchiyamaK. ItohY. NaitoY. Typing of the gut microbiota community in japanese subjects.Microorganisms202210366410.3390/microorganisms1003066435336239
    [Google Scholar]
  94. YoshimotoS. LooT.M. AtarashiK. KandaH. SatoS. OyadomariS. IwakuraY. OshimaK. MoritaH. HattoriM. HondaK. IshikawaY. HaraE. OhtaniN. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome.Nature201349974569710110.1038/nature1234723803760
    [Google Scholar]
  95. SonnenburgE.D. SonnenburgJ.L. Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates.Cell Metab.201420577978610.1016/j.cmet.2014.07.00325156449
    [Google Scholar]
  96. GibsonG.R. RoberfroidM.B. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics.J. Nutr.199512561401141210.1093/jn/125.6.14017782892
    [Google Scholar]
  97. NagatsukaN. HaradaK. AndoM. NagaoK. Measurement of the radical scavenging activity of chicken jelly soup, a part of the medicated diet, ‘Yakuzen’, made from gelatin gel food ‘Nikogori’, using chemiluminescence and electron spin resonance methods.Int. J. Mol. Med.200618110711110.3892/ijmm.18.1.10716786161
    [Google Scholar]
  98. WillcoxD.C. ScapagniniG. WillcoxB.J. Healthy aging diets other than the Mediterranean: A focus on the Okinawan diet.Mech. Ageing Dev.2014136-13714816210.1016/j.mad.2014.01.00224462788
    [Google Scholar]
  99. MiyagiS. IwamaN. KawabataT. HasegawaK. Longevity and diet in Okinawa, Japan: The past, present and future.Asia Pac. J. Public Health2003151_supplS3S910.1177/101053950301500S0318924533
    [Google Scholar]
  100. DasD. KabirM.E. SarkarS. WannS.B. KalitaJ. MannaP. Antidiabetic potential of soy protein/peptide: A therapeutic insight.Int. J. Biol. Macromol.202219427628810.1016/j.ijbiomac.2021.11.13134848240
    [Google Scholar]
  101. SekikawaA. WhartonW. ButtsB. VelikyC.V. GarfeinJ. LiJ. GoonS. FortA. LiM. HughesT.M. Potential protective mechanisms of S-equol, a metabolite of soy isoflavone by the gut microbiome, on cognitive decline and dementia.Int. J. Mol. Sci.202223191192110.3390/ijms23191192136233223
    [Google Scholar]
  102. YangX. NakamotoM. ShutoE. HataA. AkiN. ShikamaY. BandoY. IchiharaT. MinamigawaT. KuwamuraY. TamuraA. UemuraH. ArisawaK. FunakiM. SakaiT. Associations between intake of dietary fermented soy food and concentrations of inflammatory markers: A cross‐sectional study in Japanese workers.J. Med. Invest.2018651.2748010.2152/jmi.65.7429593198
    [Google Scholar]
  103. StiemsmaL.T. NakamuraR.E. NguyenJ.G. MichelsK.B. Does consumption of fermented foods modify the human gut microbiota?J. Nutr.202015071680169210.1093/jn/nxaa07732232406
    [Google Scholar]
  104. AraiS. MorinagaY. YoshikawaT. IchiishiE. KisoY. YamazakiM. MorotomiM. ShimizuM. KuwataT. KaminogawaS. Recent trends in functional food science and the industry in Japan.Biosci. Biotechnol. Biochem.200266102017202910.1271/bbb.66.201712450110
    [Google Scholar]
  105. SantaK. KumazawaY. NagaokaI. The potential use of grape phytochemicals for preventing the development of intestine-related and subsequent inflammatory diseases.Endocr. Metab. Immune Disord. Drug Targets201919679480210.2174/187153031966619052910522631142251
    [Google Scholar]
  106. SantaK. KumazawaY. NagaokaI. Prevention of metabolic syndrome by phytochemicals and Vitamin D.Int. J. Mol. Sci.2023243262710.3390/ijms2403262736768946
    [Google Scholar]
  107. KawaguchiK. KikuchiS. HasunumaR. MaruyamaH. YoshikawaT. KumazawaY. A citrus flavonoid hesperidin suppresses infection-induced endotoxin shock in mice.Biol. Pharm. Bull.200427567968310.1248/bpb.27.67915133244
    [Google Scholar]
  108. MahomoodallyM.F. AumeeruddyM.Z. LegoabeL.J. Dall’AcquaS. ZenginG. Plants’ bioactive secondary metabolites in the management of sepsis: Recent findings on their mechanism of action.Front. Pharmacol.202213104652310.3389/fphar.2022.104652336588685
    [Google Scholar]
  109. LiscoG. TriggianiD. GiagulliV.A. De PergolaG. GuastamacchiaE. PiazzollaG. JirilloE. TriggianiV. Endocrine, metabolic, and immune pathogenesis of postmenopausal osteoporosis. Is there a therapeutic role in natural products?Endocr. Metab. Immune Disord. Drug Targets202323101278129010.2174/187153032366623033012130137005529
    [Google Scholar]
  110. ArpaiaN. CampbellC. FanX. DikiyS. van der VeekenJ. deRoosP. LiuH. CrossJ.R. PfefferK. CofferP.J. RudenskyA.Y. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation.Nature2013504748045145510.1038/nature1272624226773
    [Google Scholar]
  111. SuzukiK. NakamuraK. ShimizuY. YokoiY. OhiraS. HagiwaraM. WangY. SongY. AizawaT. AyabeT. Decrease of α-defensin impairs intestinal metabolite homeostasis via dysbiosis in mouse chronic social defeat stress model.Sci. Rep.2021111991510.1038/s41598‑021‑89308‑y33972646
    [Google Scholar]
  112. YamagishiS. MatsuiT. IshibashiY. IsamiF. AbeY. SakaguchiT. HigashimotoY. Phytochemicals against Advanced Glycation End Products (AGEs) and the receptor system.Curr. Pharm. Des.20172381135114110.2174/138161282266616102115550227774900
    [Google Scholar]
  113. TominagaT. KawaguchiK. KanesakaM. KawauchiH. JirilloE. KumazawaY. Suppression of type-I allergic responses by oral administration of grape marc fermented with Lactobacillus plantarum.Immunopharmacol. Immunotoxicol.201032459359910.3109/0892397100360478620136581
    [Google Scholar]
  114. KumazawaY. TakimotoH. MatsumotoT. KawaguchiK. Potential use of dietary natural products, especially polyphenols, for improving type-1 allergic symptoms.Curr. Pharm. Des.201420685786310.2174/13816128200614022012034423701564
    [Google Scholar]
  115. KawaiY. NishikawaT. ShibaY. SaitoS. MurotaK. ShibataN. KobayashiM. KanayamaM. UchidaK. TeraoJ. Macrophage as a target of quercetin glucuronides in human atherosclerotic arteries: Implication in the anti-atherosclerotic mechanism of dietary flavonoids.J. Biol. Chem.2008283149424943410.1074/jbc.M70657120018199750
    [Google Scholar]
  116. ShaiI. SchwarzfuchsD. HenkinY. ShaharD.R. WitkowS. GreenbergI. GolanR. FraserD. BolotinA. VardiH. Tangi-RozentalO. Zuk-RamotR. SarusiB. BricknerD. SchwartzZ. SheinerE. MarkoR. KatorzaE. ThieryJ. FiedlerG.M. BlüherM. StumvollM. StampferM.J. Weight loss with a low-carbohydrate, Mediterranean, or low-fat diet.N. Engl. J. Med.2008359322924110.1056/NEJMoa070868118635428
    [Google Scholar]
  117. ImaiS. ArmstrongC.M. KaeberleinM. GuarenteL. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase.Nature2000403677179580010.1038/3500162210693811
    [Google Scholar]
  118. GaoJ. WangW.Y. MaoY.W. GräffJ. GuanJ.S. PanL. MakG. KimD. SuS.C. TsaiL.H. A novel pathway regulates memory and plasticity via SIRT1 and miR-134.Nature201046673101105110910.1038/nature0927120622856
    [Google Scholar]
  119. OpieR.S. ItsiopoulosC. ParlettaN. Sanchez-VillegasA. AkbaralyT.N. RuusunenA. JackaF.N. Dietary recommendations for the prevention of depression.Nutr. Neurosci.201720316117110.1179/1476830515Y.000000004326317148
    [Google Scholar]
  120. CharitosI.A. TopiS. Gagliano-CandelaR. De NittoE. PolimenoL. MontagnaniM. SantacroceL. The Toxic Effects of Endocrine Disrupting Chemicals (EDCs) on Gut Microbiota: Bisphenol A (BPA) A Review.Endocr. Metab. Immune Disord. Drug Targets202222771672710.2174/187153032266622032511404535339192
    [Google Scholar]
  121. PingetG. TanJ. JanacB. KaakoushN.O. AngelatosA.S. O’SullivanJ. KoayY.C. SierroF. DavisJ. DivakarlaS.K. KhanalD. MooreR.J. StanleyD. ChrzanowskiW. MaciaL. Impact of the food additive titanium dioxide (E171) on gut microbiota-host interaction.Front. Nutr.201965710.3389/fnut.2019.0005731165072
    [Google Scholar]
  122. BalliniA. CharitosI.A. CantoreS. TopiS. BottalicoL. SantacroceL. About functional foods: The probiotics and prebiotics state of art.Antibiotics202312463510.3390/antibiotics1204063537106999
    [Google Scholar]
  123. ShinozakiN. MurakamiK. AsakuraK. MasayasuS. SasakiS. Consumption of highly processed foods in relation to overall diet quality among Japanese adults: A nationwide study.Public Health Nutr.20232691784179710.1017/S136898002300072137092752
    [Google Scholar]
  124. ElliottM.L. CaspiA. HoutsR.M. AmblerA. BroadbentJ.M. HancoxR.J. HarringtonH. HoganS. KeenanR. KnodtA. LeungJ.H. MelzerT.R. PurdyS.C. RamrakhaS. Richmond-RakerdL.S. RighartsA. SugdenK. ThomsonW.M. ThorneP.R. WilliamsB.S. WilsonG. HaririA.R. PoultonR. MoffittT.E. Disparities in the pace of biological aging among midlife adults of the same chronological age have implications for future frailty risk and policy.Nature Aging20211329530810.1038/s43587‑021‑00044‑433796868
    [Google Scholar]
  125. MurakamiK. ShinozakiN. LivingstoneM.B.E. YuanX. TajimaR. MatsumotoM. MasayasuS. SasakiS. Associations of food choice values and food literacy with overall diet quality: A nationwide cross-sectional study in Japanese adults.Br. J. Nutr.2023130101795180510.1017/S000711452300082X37017207
    [Google Scholar]
  126. KondoY. AokiH. MasudaM. NishiH. NodaY. HakunoF. TakahashiS.I. ChibaT. IshigamiA. Moderate protein intake percentage in mice for maintaining metabolic health during approach to old age.Geroscience20234542707272610.1007/s11357‑023‑00797‑337118349
    [Google Scholar]
  127. YoshikoA. TomitaA. AndoR. OgawaM. KondoS. SaitoA. TanakaN.I. KoikeT. OshidaY. AkimaH. Effects of 10-week walking and walking with home-based resistance training on muscle quality, muscle size, and physical functional tests in healthy older individuals.Eur. Rev. Aging Phys. Act.20181511310.1186/s11556‑018‑0201‑230473735
    [Google Scholar]
  128. ShahS. MuC. MoossaviS. Shen-TuG. SchlichtK. RohmannN. GeislerC. LaudesM. FrankeA. ZülligT. KöfelerH. ShearerJ. Physical ACTIVITY‐INDUCED alterations of the gut microbiota are BMI dependent.FASEB J.2023374e2288210.1096/fj.202201571R36943402
    [Google Scholar]
  129. HiraikeY. SaitoK. OguchiM. WadaT. TodaG. TsutsumiS. BandoK. SagawaJ. NaganoG. OhnoH. KubotaN. KubotaT. AburataniH. KadowakiT. WakiH. YanagimotoS. YamauchiT. NFIA in adipocytes reciprocally regulates mitochondrial and inflammatory gene program to improve glucose homeostasis.Proc. Natl. Acad. Sci.202312031e230875012010.1073/pnas.230875012037487068
    [Google Scholar]
  130. OhsawaS. SatoY. EnomotoM. NakamuraM. BetsumiyaA. IgakiT. Mitochondrial defect drives non-autonomous tumour progression through Hippo signalling in Drosophila.Nature2012490742154755110.1038/nature1145223023132
    [Google Scholar]
  131. NakamuraM. OhsawaS. IgakiT. Mitochondrial defects trigger proliferation of neighbouring cells via a senescence-associated secretory phenotype in Drosophila.Nat. Commun.201451526410.1038/ncomms626425345385
    [Google Scholar]
  132. IshikawaK. TakenagaK. AkimotoM. KoshikawaN. YamaguchiA. ImanishiH. NakadaK. HonmaY. HayashiJ.I. ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis.Science2008320587666166410.1126/science.115690618388260
    [Google Scholar]
  133. TokudomeS. NagayaT. OkuyamaH. TokudomeY. ImaedaN. KitagawaI. FujiwaraN. IkedaM. GotoC. IchikawaH. KurikiK. TakekumaK. ShimodaA. HiroseK. UsuiT. Japanese versus mediterranean diets and cancer.Asian Pac. J. Cancer Prev.200011616612718690
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303280097240130072031
Loading
/content/journals/emiddt/10.2174/0118715303280097240130072031
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): chronic inflammation; japanese diet; ME-BYO; Mediterranean diet; obesity; phytochemicals
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test