Skip to content
2000
Volume 24, Issue 15
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

Milk is a food enriched in essential components for human health. Especially, in the Mediterranean area, besides cow’s milk, milk from goats, sheep, and donkeys, is largely used. The consumption of animal milk is an important component of the Mediterranean (MED) diet, even if in moderate amounts. Milk is a complete food since it contains proteins, carbohydrates, and fats, as well as micronutrients (minerals and vitamins). Milk-fermented products are largely consumed in the MED diet, such as cheese and yogurt, which are rich in essential metabolites, bioactive compounds, vitamins, minerals, and exopolysaccharides. A large body of evidence suggests that consumption of milk and dairy products does not increase the risk of all-cause mortality, type 2 diabetes, and cardiovascular disease, even if some earlier studies have reported harmful effects associated with their higher consumption. Also, in Japan, despite the lower consumption of milk than in Western countries, intake of bovine milk is associated with healthy effects. The present review describes the effects of the various constituents of animal milk on human health, with special reference to the Mediterranean area and Japan. Experimental data and clinical trials support the ability of milk and dairy products to lower the risk of chronic diseases.

Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303289711240703080701
2024-07-11
2025-01-18
Loading full text...

Full text loading...

References

  1. NaureenZ. BonettiG. MedoriM.C. AquilantiB. VellutiV. MateraG. IaconelliA. BertelliM. Foods of the Mediterranean diet: lacto-fermented food, the food pyramid and food combinations.Prev Med Hyg202263Suppl. 3E28E35
    [Google Scholar]
  2. JirilloF. MartemucciG. D’AlessandroA. PanaroM. CianciulliA. SuperboM. JirilloE. MagroneT. Ability of goat milk to modulate healthy human peripheral blood lymphomonocyte and polymorphonuclear cell function: in vitro effects and clinical implications.Curr. Pharm. Des.201016787087610.2174/138161210790883534 20388100
    [Google Scholar]
  3. TrincheseG. CavaliereG. CananiR.B. MatamorosS. BergamoP. De FilippoC. AcetoS. GaitaM. CerinoP. NegriR. GrecoL. CaniP.D. MollicaM.P. Human, donkey and cow milk differently affects energy efficiency and inflammatory state by modulating mitochondrial function and gut microbiota.J. Nutr. Biochem.201526111136114610.1016/j.jnutbio.2015.05.003 26118693
    [Google Scholar]
  4. MartinC. LingP.R. BlackburnG. Review of infant feeding: Key features of breast milk and infant formula.Nutrients20168527910.3390/nu8050279 27187450
    [Google Scholar]
  5. KipferS. GoldmanR.D. Formula choices in infants with cow’s milk allergy.Can. Fam. Physician202167318018210.46747/cfp.6703180 33727377
    [Google Scholar]
  6. OzsoyS. SultanogluN. SanlidagT. The role of Mediterranean diet and gut microbiota in type-2 diabetes mellitus associated with obesity (diabesity).J. Prev. Med. Hyg.2022632Suppl. 3E87E92 36479504
    [Google Scholar]
  7. ŞanlierN. GökcenB.B. SezginA.C. Health benefits of fermented foods.Crit. Rev. Food Sci. Nutr.201959350652710.1080/10408398.2017.1383355 28945458
    [Google Scholar]
  8. JanG. TarnaudF. Rosa do CarmoF.L. IllikoudN. CanonF. JardinJ. Briard-BionV. Guyomarc’hF. GagnaireV. The stressing life of Lactobacillus delbrueckii subsp. bulgaricus in soy milk.Food Microbiol.202210610404210.1016/j.fm.2022.104042 35690436
    [Google Scholar]
  9. GivensD.I. Dairy foods and cardiometabolic diseases: An update and a reassessment of the impact of SFA.Proc. Nutr. Soc.202382332934510.1017/S0029665123000083 36740241
    [Google Scholar]
  10. FernandezM.A. PanahiS. DanielN. TremblayA. MaretteA. Yogurt and cardiometabolic diseases: A critical review of potential mechanisms.Adv. Nutr.20178681282910.3945/an.116.013946 29141967
    [Google Scholar]
  11. DehghanM. MenteA. RangarajanS. SheridanP. MohanV. IqbalR. GuptaR. LearS. Wentzel-ViljoenE. AvezumA. Lopez-JaramilloP. MonyP. VarmaR.P. KumarR. ChifambaJ. AlhabibK.F. MohammadifardN. OguzA. LanasF. RozanskaD. BostromK.B. YusoffK. TsolkileL.P. Dans, A.; Yusufali, A.; Orlandini, A.; Poirier, P.; Khatib, R.; Hu, B.; Wei, L.; Yin, L.; Deeraili, A.; Yeates, K.; Yusuf, R.; Ismail, N.; Mozaffarian, D.; Teo, K.; Anand, S.S.; Yusuf, S. Association of dairy intake with cardiovascular disease and mortality in 21 countries from five continents (PURE): A prospective cohort study.Lancet2018392101612288229710.1016/S0140‑6736(18)31812‑9 30217460
    [Google Scholar]
  12. SellemL. FlourakisM. JacksonK.G. JorisP.J. LumleyJ. LohnerS. MensinkR.P. Soedamah-MuthuS.S. LovegroveJ.A. Impact of replacement of individual dietary SFAs on circulating lipids and other biomarkers of cardiometabolic health: A systematic review and meta-analysis of randomized controlled trials in humans.Adv. Nutr.20221341200122510.1093/advances/nmab143 34849532
    [Google Scholar]
  13. TamangJ.P. CotterP.D. EndoA. HanN.S. KortR. LiuS.Q. MayoB. WesterikN. HutkinsR. Fermented foods in a global age: East meets West.Compr. Rev. Food Sci. Food Saf.202019118421710.1111/1541‑4337.12520 33319517
    [Google Scholar]
  14. YokoJ. NanriA. EguchiM. KochiT. KabeI. MizoueT. Total, low-fat, and full-fat dairy consumption and risk of metabolic syndrome among workers.Clin. Nutr. ESPEN20214635035510.1016/j.clnesp.2021.09.733 34857219
    [Google Scholar]
  15. NakanishiA. HommaE. OsakiT. ShoR. SouriM. SatoH. WatanabeM. IshizawaK. UenoY. KayamaT. KontaT. Association between milk and yogurt intake and mortality: A community-based cohort study (Yamagata study).BMC Nutr.2021713310.1186/s40795‑021‑00435‑1 34256873
    [Google Scholar]
  16. LuY. SugawaraY. MatsuyamaS. FukaoA. TsujiI. Association of dairy intake with all-cause, cancer, and cardiovascular disease mortality in Japanese adults: A 25-year population-based cohort.Eur. J. Nutr.20226131285129710.1007/s00394‑021‑02734‑6 34750640
    [Google Scholar]
  17. Serra-MajemL. TomainoL. DerniniS. BerryE.M. LaironD. Ngo de la CruzJ. Bach-FaigA. DoniniL.M. MedinaF.X. BelahsenR. PiscopoS. CaponeR. Aranceta-BartrinaJ. La VecchiaC. TrichopoulouA. Updating the mediterranean diet pyramid towards sustainability: Focus on environmental concerns.Int. J. Environ. Res. Public Health20201723875810.3390/ijerph17238758 33255721
    [Google Scholar]
  18. den HartighL. Conjugated linoleic acid effects on cancer, obesity, and atherosclerosis: A review of pre-clinical and human trials with current perspectives.Nutrients201911237010.3390/nu11020370 30754681
    [Google Scholar]
  19. KongC.Y. LiZ.M. HanB. ZhangZ.Y. ChenH.L. ZhangS.L. XuJ.Q. MaoY.Q. ZhaoY.P. WangL.S. KongC.Y. Diet consisting of balanced yogurt, fruit, and vegetables modifies the gut microbiota and protects mice against nonalcoholic fatty liver disease.Mol. Nutr. Food Res.20196319190024910.1002/mnfr.201900249 31271251
    [Google Scholar]
  20. GuoX. LongR. KreuzerM. DingL. ShangZ. ZhangY. YangY. CuiG. Importance of functional ingredients in yak milk-derived food on health of Tibetan nomads living under high-altitude stress: A review.Crit. Rev. Food Sci. Nutr.201454329230210.1080/10408398.2011.584134 24188303
    [Google Scholar]
  21. LuoM. XiaoJ. SunS. CuiF. LiuG. LiW. LiY. CaoY. Deciphering calcium-binding behaviors of casein phosphopeptides by experimental approaches and molecular simulation.Food Funct.20201165284529210.1039/D0FO00844C
    [Google Scholar]
  22. KimD.H. JeongD. KimH. SeoK.H. Modern perspectives on the health benefits of kefir in next generation sequencing era: Improvement of the host gut microbiota.Crit. Rev. Food Sci. Nutr.201959111782179310.1080/10408398.2018.1428168 29336590
    [Google Scholar]
  23. OliveiraD.L. CostabileA. WilbeyR.A. GrandisonA.S. DuarteL.C. RoseiroL.B. In vitro evaluation of the fermentation properties and potential prebiotic activity of caprine cheese whey oligosaccharides in batch culture systems.Biofactors201238644044910.1002/biof.1043 22996438
    [Google Scholar]
  24. MarcoM.L. HeeneyD. BindaS. CifelliC.J. CotterP.D. FolignéB. GänzleM. KortR. PasinG. PihlantoA. SmidE.J. HutkinsR. Health benefits of fermented foods: Microbiota and beyond.Curr. Opin. Biotechnol.20174494102
    [Google Scholar]
  25. ChiaJ.S.J. McRaeJ.L. KukuljanS. WoodfordK. ElliottR.B. SwinburnB. DwyerK.M. A1 beta-casein milk protein and other environmental pre-disposing factors for type 1 diabetes.Nutr. Diabetes201775e27410.1038/nutd.2017.16 28504710
    [Google Scholar]
  26. PereiraM.A. JacobsD.R.Jr Van HornL. SlatteryM.L. KartashovA.I. LudwigD.S. Dairy consumption, obesity, and the insulin resistance syndrome in young adults: The CARDIA Study.JAMA2002287162081208910.1001/jama.287.16.2081 11966382
    [Google Scholar]
  27. ThorningT.K. RabenA. TholstrupT. Soedamah-MuthuS.S. GivensI. AstrupA. Milk and dairy products: Good or bad for human health? An assessment of the totality of scientific evidence.Food Nutr. Res.20166013252710.3402/fnr.v60.32527 27882862
    [Google Scholar]
  28. PoppittS.D. Cow’s milk and dairy consumption: Is there now consensus for cardiometabolic health?Front. Nutr.2020757472510.3389/fnut.2020.574725 33364249
    [Google Scholar]
  29. MollicaM.P. TrincheseG. CimminoF. PennaE. CavaliereG. TudiscoR. MuscoN. MancaC. CatapanoA. MondaM. BergamoP. BanniS. InfascelliF. LombardiP. Milk fatty acid profiles in different animal species: focus on the potential effect of selected PUFAs on metabolism and brain functions.Nutrients20211341111
    [Google Scholar]
  30. PereiraP.C. Milk nutritional composition and its role in human health.Nutrition201430661962710.1016/j.nut.2013.10.011 24800664
    [Google Scholar]
  31. TrincheseG. CavaliereG. PennaE. De FilippoC. CimminoF. CatapanoA. MuscoN. TudiscoR. LombardiP. InfascelliF. MessinaG. MureddaL. BanniS. MondaM. CrispinoM. MollicaM.P. Milk from cow fed with high forage/concentrate ratio diet: Beneficial effect on rat skeletal muscle inflammatory state and oxidative stress through modulation of mitochondrial functions and AMPK activity.Front. Physiol.20199196910.3389/fphys.2018.01969 30705640
    [Google Scholar]
  32. BenoitB. PlaisanciéP. GéloënA. EstienneM. DebardC. MeugnierE. LoizonE. DairaP. BodennecJ. CousinO. VidalH. LaugeretteF. MichalskiM.C. Pasture v. standard dairy cream in high-fat diet-fed mice: improved metabolic outcomes and stronger intestinal barrier.Br. J. Nutr.2014112452053510.1017/S0007114514001172 24932525
    [Google Scholar]
  33. ItanY. JonesB.L. IngramC.J.E. SwallowD.M. ThomasM.G. A worldwide correlation of lactase persistence phenotype and genotypes.BMC Evol. Biol.20101013610.1186/1471‑2148‑10‑36 20144208
    [Google Scholar]
  34. PenhaliganJ. PoppittS.D. Miles-ChanJ.L. The role of bovine and non-bovine milk in cardiometabolic health: Should we raise the “Baa”?Nutrients202214229010.3390/nu14020290 35057470
    [Google Scholar]
  35. AndersonG.H. MooreS.E. Dietary proteins in the regulation of food intake and body weight in humans.J. Nutr.20041344974S979S10.1093/jn/134.4.974S 15051857
    [Google Scholar]
  36. DhasmanaS. DasS. ShrivastavaS. KhanS. HaqueS. JaggiM. YallapuM.M. ChauhanS.C. Potential nutraceuticals from the casein fraction of goat’s milk.J. Food Biochem.2022466e1398210.1111/jfbc.13982 34716606
    [Google Scholar]
  37. RecioI. VisserS. Two ion-exchange chromatographic methods for the isolation of antibacterial peptides from lactoferrin.J. Chromatogr. A1999831219120110.1016/S0021‑9673(98)00950‑9 10070763
    [Google Scholar]
  38. ParkY.W. NamM.S. Korean two ion-exchange chromatographic methods for the isolation of antibacterial peptides from lactoferrin. In situ enzymatic hydrolysis on an ion-exchange membrane.J. Food. Sci. Animal Resources20153583184010.5851/kosfa.2015.35.6.831
    [Google Scholar]
  39. RangelA.H.N. ZarosL.G. LimaT.C. BorbaL.H.F. NovaesL.P. MotaL.F.M. SilvaM.S. Polymorphism in the beta casein gene and analysis of milk characteristicsin Gir and Guzerá dairy cattle.Genet. Mol. Res.20171621910.4238/gmr16029592 28549202
    [Google Scholar]
  40. PistroschF. NataliA. HanefeldM. Is hyperglycemia a cardiovascular risk factor?Diabetes Care201134Suppl. 2S128S131
    [Google Scholar]
  41. ZhangY. LimaC.F. RodriguesL.R. Anticancer effects of lactoferrin: Underlying mechanisms and future trends in cancer therapy.Nutr. Rev.2014721276377310.1111/nure.12155 25406879
    [Google Scholar]
  42. D’AlessandroA.G. MartemucciG. JirilloE. LeoV.D. Major whey proteins in donkey’s milk: Effect of season and lactation stage. Implications for potential dietary interventions in human diseases.Immunopharmacol. Immunotoxicol.201133225926510.3109/08923973.2010.499365 20624015
    [Google Scholar]
  43. SánchezL. CalvoM. BrockJ.H. Biological role of lactoferrin.Arch. Dis. Child.199267565766110.1136/adc.67.5.657 1599309
    [Google Scholar]
  44. JiloK. Medicinal values of camel milk.Int. Sci. Vet. Res.201621825
    [Google Scholar]
  45. LiH. TongY. BaiL. YeL. ZhongL. DuanX. ZhuY. Lactoferrin functionalized PEG-PLGA nanoparticles of shikonin for brain targeting therapy of glioma.Int. J. Biol. Macromol.2018107Pt A20421110.1016/j.ijbiomac.2017.08.15528863897
    [Google Scholar]
  46. FlisZ. MolikE. Importance of bioactive substances in sheep’s milk in human health.Int. J. Mol. Sci.2021229436410.3390/ijms22094364
    [Google Scholar]
  47. JanuszM. WoszczynaM. LisowskiM. KubisA. MacałaJ. GotszalkT. LisowskiJ. Ovine colostrum nanopeptide affects amyloid beta aggregation.FEBS Lett.2009583119019610.1016/j.febslet.2008.11.053 19084010
    [Google Scholar]
  48. LordanR. VidalN.P. Huong PhamT. TsouprasA. ThomasR.H. ZabetakisI. Yoghurt fermentation alters the composition and antiplatelet properties of milk polar lipids.Food Chem.202033212738410.1016/j.foodchem.2020.127384 32615384
    [Google Scholar]
  49. BenjaminS. SpenerF. Conjugated linoleic acids as functional food: An insight into their health benefits.Nutr. Metab.2009613610.1186/1743‑7075‑6‑36 19761624
    [Google Scholar]
  50. BruenR. FitzsimonsS. BeltonO. Atheroprotective effects of conjugated linoleic acid.Br. J. Clin. Pharmacol.2017831465310.1111/bcp.12948 27037767
    [Google Scholar]
  51. ParkY.W. JuárezM. RamosM. HaenleinG.F.W. Physico-chemical characteristics of goat and sheep milk.Small Rumin. Res.2007681-28811310.1016/j.smallrumres.2006.09.013
    [Google Scholar]
  52. DerdakR. SakouiS. PopO.L. MuresanC.I. VodnarD.C. AddoumB. VulturarR. ChisA. SuharoschiR. SoukriA. El KhalfiB. Insights on health and food applications of Equus asinus (Donkey) milk bioactive proteins and peptides—an overview.Foods202099130210.3390/foods9091302 32942687
    [Google Scholar]
  53. RubioC. The natural antimicrobial enzyme lysozyme is up-regulated in gastrointestinal inflammatory conditions.Pathogens201431739210.3390/pathogens3010073 25437608
    [Google Scholar]
  54. AdkinsY. KelleyD.S. Mechanisms underlying the cardioprotective effects of omega-3 polyunsaturated fatty acids.J. Nutr. Biochem.201021978179210.1016/j.jnutbio.2009.12.004 20382009
    [Google Scholar]
  55. Van de WaterJ. KeenC.L. GershwinM.E. The influence of chronic yogurt consumption on immunity.J. Nutr.19991297Suppl.1492S1495S10.1093/jn/129.7.1492S 10395628
    [Google Scholar]
  56. Murrieta-AguttesM. MichelenV. LeynadierF. Duarte-RisselinC. HalpernG.M. DryJ. J Asthma. Systemic allergic reactions to corticosteroids.Int. J. Immunother.1991285329339
    [Google Scholar]
  57. MeyerA.L. MickscheM. HerbacekI. ElmadfaI. Daily intake of probiotic as well as conventional yogurt has a stimulating effect on cellular immunity in young healthy women.Ann. Nutr. Metab.200650328228910.1159/000091687 16508257
    [Google Scholar]
  58. MarcosA. WärnbergJ. NovaE. GómezS. AlvarezA. AlvarezR. MateosJ.A. CoboJ.M. The effect of milk fermented by yogurt cultures plus Lactobacillus casei DN-114001 on the immune response of subjects under academic examination stress.Eur. J. Nutr.200443638138910.1007/s00394‑004‑0517‑8 15309418
    [Google Scholar]
  59. FülöpT. LarbiA. HirokawaK. MocchegianiE. LesourdsB. CastleS. WikbyA. FranceschiC. PawelecG. Immunosupportive therapies in aging.Clin. Interv. Aging2007213354
    [Google Scholar]
  60. AmatiL. MarzulliG. MartulliM. PuglieseV. CarusoC. CandoreG. VastoS. JirilloE. Administration of a synbiotic to free-living elderly and evaluation of serum cytokines. A pilot study.Curr. Pharm. Des.201016785485810.2174/138161210790883633 20388097
    [Google Scholar]
  61. de WitJ.N. Marschall rhône-poulenc award lecture. Nutritional and functional characteristics of whey proteins in food products.J. Dairy Sci.199881359760810.3168/jds.S0022‑0302(98)75613‑9 9565865
    [Google Scholar]
  62. WangN. RenD. ZhangL. HanN. ZhaoY. YangX. Effects of sheep whey protein combined with Fu brick tea polysaccharides and stachyose on immune function and intestinal metabolites of cyclophosphamide‐treated mice.J. Sci. Food Agric.202310373402341310.1002/jsfa.12477 36722467
    [Google Scholar]
  63. KaoH.F. WangY.C. TsengH.Y. WuL.S.H. TsaiH.J. HsiehM.H. ChenP.C. KuoW.S. LiuL.F. LiuZ.G. WangJ.Y. Goat milk consumption enhances innate and adaptive immunities and alleviates allergen-induced airway inflammation in offspring mice.Front. Immunol.20201118410.3389/fimmu.2020.00184 32132998
    [Google Scholar]
  64. DaddaouaA. PuertaV. RequenaP. Martínez-FérezA. GuadixE. de MedinaF.S. ZarzueloA. SuárezM.D. BozaJ.J. Martínez-AugustinO. Goat milk oligosaccharides are anti-inflammatory in rats with hapten-induced colitis.J. Nutr.2006136367267610.1093/jn/136.3.672
    [Google Scholar]
  65. Lara-VillosladaF. DebrasE. NietoA. ConchaA. GálvezJ. López-HuertasE. BozaJ. ObledC. XausJ. Oligosaccharides isolated from goat milk reduce intestinal inflammation in a rat model of dextran sodium sulfate-induced colitis.Clin. Nutr.200625347748810.1016/j.clnu.2005.11.004 16375993
    [Google Scholar]
  66. JirilloF. MagroneT. Anti-inflammatory and anti-allergic properties of donkey’s and goat’s milk.Endocr. Metab. Immune Disord. Drug Targets2014141273710.2174/1871530314666140121143747 24450455
    [Google Scholar]
  67. ChiofaloB. DugoP. BonaccorsiI.L. MondelloL. Comparison of major lipid components in human and donkey milk: New perspectives for a hypoallergenic diet in humans.Immunopharmacol. Immunotoxicol.201133463364410.3109/08923973.2011.555409 21428711
    [Google Scholar]
  68. AmatiL. MarzulliG. MartulliM. TafaroA. JirilloF. PuglieseV. MartemucciG. D’AlessandroA. JirilloE. Donkey and goat milk intake and modulation of the human aged immune response.Curr. Pharm. Des.201016786486910.2174/138161210790883651 20388099
    [Google Scholar]
  69. YvonS. OlierM. LevequeM. JardG. TormoH. Haimoud-LekhalD.A. PeterM. EutamèneH. Donkey milk consumption exerts anti-inflammatory properties by normalizing antimicrobial peptides levels in Paneth’s cells in a model of ileitis in mice.Eur. J. Nutr.201857155166
    [Google Scholar]
  70. SinghP. Hernandez-RaudaR. Peña-RodasO. Preventative and therapeutic potential of animal milk components against COVID‐19: A comprehensive review.Food Sci. Nutr.20231162547257910.1002/fsn3.3314 37324885
    [Google Scholar]
  71. MaoX. Anti-proliferative and anti-tumor effect of active components in Donkey’s milk on A549 human lung cancer cells.Int. Dairy J.200919703708
    [Google Scholar]
  72. M. LuoJ. XiaoS. SunF. CuiG. LiuW. LiY. Li CaoY. Deciphering calcium-binding behaviors of casein phosphopeptides by experimental approaches and molecular simulation.Food Funct.2020115284
    [Google Scholar]
  73. BaroneG. Calcium fortification of a model infant milk formula system using soluble and insoluble calcium salts.Int. Dairy J.2021117104951
    [Google Scholar]
  74. VerduciE. D’EliosS. CerratoL. ComberiatiP. CalvaniM. PalazzoS. MartelliA. LandiM. TrikamjeeT. PeroniD.G. Cow’s milk substitutes for children: Nutritional aspects of milk from different mammalian species, special formula and plant-based beverages.Nutrients2019118173910.3390/nu11081739 31357608
    [Google Scholar]
  75. LiuX.B. MurrayK.D. Neuronal excitability and calcium/calmodulin‐dependent protein kinase type II: Location, location, location.Epilepsia201253s1Suppl. 1455210.1111/j.1528‑1167.2012.03474.x 22612808
    [Google Scholar]
  76. WaegeneersN. ThiryC. De TemmermanL. Ruttens, A Predicted dietary intake of selenium by the general adult population in Belgium.Food Addit Contam: Part A2013302278285
    [Google Scholar]
  77. PieczynkaJ. The role of selenium in human conception and pregnancy Trace Elements.Med. Biol.2015293138
    [Google Scholar]
  78. LaurbergP. CerqueiraC. OvesenL. RasmussenL.B. PerrildH. AndersenS. PedersenI.B. CarléA. Iodine intake as a determinant of thyroid disorders in populations.Best Pract. Res. Clin. Endocrinol. Metab.2010241132710.1016/j.beem.2009.08.013 20172467
    [Google Scholar]
  79. IsmailovaA. WhiteJ.H. Vitamin D, infections and immunity.Rev. Endocr. Metab. Disord.202223226527710.1007/s11154‑021‑09679‑5 34322844
    [Google Scholar]
  80. NikiE. NoguchiN. Dynamics of antioxidant action of vitamin E.Acc. Chem. Res.2004371455110.1021/ar030069m 14730993
    [Google Scholar]
  81. AllenL.H. Vitamin B-12.Adv. Nutr.201231545510.3945/an.111.001370 22332101
    [Google Scholar]
  82. Soedamah-MuthuS.S. de GoedeJ. Dairy consumption and cardiometabolic diseases: Systematic review and updated meta-analyses of prospective cohort studies.Curr. Nutr. Rep.20187417118210.1007/s13668‑018‑0253‑y 30406514
    [Google Scholar]
  83. CompanysJ. Pla-PagàL. Calderón-PérezL. LlauradóE. SolàR. PedretA. VallsR.M. Fermented dairy products, probiotic supplementation, and cardiometabolic diseases: A systematic review and meta-analysis.Adv. Nutr.202011483486310.1093/advances/nmaa030 32277831
    [Google Scholar]
  84. SchmidtK.A. CromerG. BurhansM.S. KuzmaJ.N. HagmanD.K. FernandoI. MurrayM. UtzschneiderK.M. HolteS. KraftJ. KratzM. Impact of low-fat and full-fat dairy foods on fasting lipid profile and blood pressure: exploratory endpoints of a randomized controlled trial.Am. J. Clin. Nutr.2021114388289210.1093/ajcn/nqab131 34258627
    [Google Scholar]
  85. KingD.G. WalkerM. CampbellM.D. BreenL. StevensonE.J. WestD.J. A small dose of whey protein co-ingested with mixed-macronutrient breakfast and lunch meals improves postprandial glycemia and suppresses appetite in men with type 2 diabetes: A randomized controlled trial.Am. J. Clin. Nutr.2018107455055710.1093/ajcn/nqy019 29635505
    [Google Scholar]
  86. van LoonL.J.C. SarisW.H.M. VerhagenH. WagenmakersA.J.M. Plasma insulin responses after ingestion of different amino acid or protein mixtures with carbohydrate.Am. J. Clin. Nutr.20007219610510.1093/ajcn/72.1.96 10871567
    [Google Scholar]
  87. BjørnshaveA. HermansenK. Effects of dairy protein and fat on the metabolic syndrome and type 2 diabetes.Rev. Diabet. Stud.201411215316610.1900/RDS.2014.11.153 25396403
    [Google Scholar]
  88. DuBroffR. MalhotraA. de LorgerilM. Hit or miss: The new cholesterol targets.BMJ Evid. Based Med.202126627127810.1136/bmjebm‑2020‑111413 32747335
    [Google Scholar]
  89. PalS. EllisV. The chronic effects of whey proteins on blood pressure, vascular function, and inflammatory markers in overweight individuals.Obesity20101871354135910.1038/oby.2009.397 19893505
    [Google Scholar]
  90. Sánchez-MoyaT. López-NicolásR. PlanesD. González-BermúdezC.A. Ros-BerruezoG. Frontela-SasetaC. In vitro modulation of gut microbiota by whey protein to preserve intestinal health.Food Funct.2017893053306310.1039/C7FO00197E 28636003
    [Google Scholar]
  91. HesseltineC.W. WangH.L. The importance of traditional fermented foods.Bioscience198030640240410.2307/1308003
    [Google Scholar]
  92. LarssonS. CrippaA. OrsiniN. WolkA. MichaëlssonK. Milk consumption and mortality from all causes, cardiovascular disease, and cancer: A systematic review and meta-analysis.Nutrients2015797749776310.3390/nu7095363 26378576
    [Google Scholar]
  93. GeS. ZhaL. SobueT. KitamuraT. IsoH. IshiharaJ. KitoK. IwasakiM. InoueM. YamajiT. TsuganeS. SawadaN. Associations between dairy intake and mortality due to all-cause and cardiovascular disease: The Japan Public Health Center-based prospective study.Eur. J. Nutr.20236252087210410.1007/s00394‑023‑03116‑w 36943492
    [Google Scholar]
  94. Siri-TarinoP.W. SunQ. HuF.B. KraussR.M. Saturated fat, carbohydrate, and cardiovascular disease.Am. J. Clin. Nutr.201091350250910.3945/ajcn.2008.26285 20089734
    [Google Scholar]
  95. YamagishiK. IsoH. KokuboY. SaitoI. YatsuyaH. IshiharaJ. InoueM. TsuganeS. SobueT. HanaokaT. OgataJ. BabaS. MannamiT. OkayamaA. K, Y.; Miyakawa, K.; Saito, F.; Koizumi, A.; Sano, Y.; Hashimoto, I.; Ikuta, T.; Tanaba, Y.; Miyajima, Y.; Suzuki, N.; Nagasawa, S.; Furusugi, Y.; Nagai, N.; Sanada, H.; Hatayama, Y.; Kobayashi, F.; Uchino, H.; Shirai, Y.; Kondo, T.; Sasaki, R.; Watanabe, Y.; Miyagawa, Y.; Kobayashi, Y.; Machida, M.; Kishimoto, Y.; Takara, E.; Fukuyama, T.; Kinjo, M.; Irei, M.; Sakiyama, H.; Imoto, K.; Yazawa, H.; Seo, T.; Seiko, A.; Ito, F.; Shoji, F.; Saito, R.; Murata, A.; Minato, K.; Motegi, K.; Fujieda, T.; Abe, T.; Katagiri, M.; Suzuki, M.; Matsui, K.; Doi, M.; Terao, A.; Ishikawa, Y.; Tagami, T.; Doi, H.; Urata, M.; Okamoto, N.; Ide, F.; Sueta, H.; Sakiyama, H.; Onga, N.; Takaesu, H.; Uehara, M.; Horii, F.; Asano, I.; Yamaguchi, H.; Aoki, K.; Maruyama, S.; Ichii, M.; Takano, M.; Matsushima, S.; Natsukawa, S.; Akabane, M.; Konishi, M.; Okada, K.; Honda, Y.; Sakurai, K.Y.S.; Tsuchiya, N.; Sugimura, H.; Tsubono, Y.; Kabuto, M.; Tominaga, S.; Iida, M.; Ajiki, W.; Ioka, A.; Sato, S.; Yasuda, N.; Nakamura, K.; Kono, S.; Suzuki, K.; Takashima, Y.; Yoshida, M.; Maruyama, E.; Yamaguchi, M.; Matsumura, Y.; Sasaki, S.; Watanabe, S.; Kadowaki, T.; Noda, M.; Mizoue, T.; Kawaguchi, Y.; Shimizu, H. Dietary intake of saturated fatty acids and incident stroke and coronary heart disease in Japanese communities: The JPHC Study.Eur. Heart J.201334161225123210.1093/eurheartj/eht043 23404536
    [Google Scholar]
  96. TanitameM. SugawaraY. LuY. MatsuyamaS. KanemuraS. FukaoA. TsujiI. Dairy consumption and incident risk of thyroid cancer in Japan: A pooled analysis of the miyagi cohort study and the ohsaki cohort study.Eur. J. Nutr.202362125125910.1007/s00394‑022‑02979‑9 35951088
    [Google Scholar]
  97. The National Health and Nutrition Survey in Japan.Tokyo, JapanNational Institute of Health and Nutrition2019
    [Google Scholar]
  98. MaNguyenMQ. Arakawa mternal consumption of dairy products during pregnancy is associated with decreased risk of emotional problems in 5-year-olds: The kyushu okinawa maternal and child health study.Nutrients20221422471310.3390/nu14224713 36432404
    [Google Scholar]
  99. TimbyN. DomellöfE. HernellO. LönnerdalB. DomellöfM. Neurodevelopment, nutrition, and growth until 12 mo of age in infants fed a low-energy, low-protein formula supplemented with bovine milk fat globule membranes: A randomized controlled trial.Am. J. Clin. Nutr.201499486086810.3945/ajcn.113.064295 24500150
    [Google Scholar]
  100. ChenY. ZhengZ. ZhuX. ShiY. TianD. ZhaoF. LiuN. HüppiP.S. TroyF.A.II WangB. Lactoferrin promotes early neurodevelopment and cognition in postnatal piglets by upregulating the BDNF signaling pathway and polysialylation.Mol. Neurobiol.201552125626910.1007/s12035‑014‑8856‑9 25146846
    [Google Scholar]
  101. JoungJ.Y. SongJ.G. KimH.W. OhN.S. Protective effects of milk casein on the brain function and behavior in a mouse model of chronic stress.J. Agric. Food Chem.20216961936194110.1021/acs.jafc.0c07292 33496183
    [Google Scholar]
  102. LiuY. HettingaK. LiuD. ZhangL. ZhouP. Current progress of emerging technologies in human and animals’ milk processing: Retention of immune‐active components and microbial safety.Compr. Rev. Food Sci. Food Saf.20222154327435310.1111/1541‑4337.13019 36036722
    [Google Scholar]
  103. D’AlessandroA.G. CasamassimaD. JirilloF. MartemucciG. Effects of verbascoside administration on the blood parameters and oxidative status in jennies and their suckling foals: Potential improvement of milk for human use.Endocr. Metab. Immune Disord. Drug Targets201414210211210.2174/1871530314666140407152347
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303289711240703080701
Loading
/content/journals/emiddt/10.2174/0118715303289711240703080701
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test