Skip to content
2000
Volume 24, Issue 14
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

Background

Gestational diabetes mellitus (GDM) is considered a risk factor for heart metabolic disorder in future mothers and offspring. Ferroptosis is a new type of programmed cell death, which may participate in the occurrence and development of GDM.

Objective

This study aims to identify ferroptosis-related genes in GDM by bioinformatics methods and to explore their clinical diagnostic value.

Methods

The dataset GSE103552 was analyzed using the Gene Expression Omnibus (GEO) database to screen for differentially expressed genes (DEGs) in GDM. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and protein-protein interaction (PPI) network were performed. Gene sets for ferroptosis were retrieved in MSigDB and GSVA gene set analysis was performed on the database. Finally, logistic regression was performed to differentiate between GDM patients and controls to screen for diagnostic markers.

Results

A total of 179 DEGs were identified in the expression profile of GDM. GO and KEGG enrichment analysis revealed significant enrichment in the TGF-β, p53 signaling pathway, platelet activation, glutathione metabolism, sensory perception of taste, and leukocyte and vascular endothelial cell migration regulation. DEGs (n = 107) associated with the ferroptosis gene set were screened by GSVA analysis. The screened DEGs for disease and DEGs for ferroptosis scores were intersected and 35 intersected genes were identified. PPI identified two key genes associated with GDM as CCNB2 and CDK1. Wilcox-test showed low expression of CCNB2 and CDK1 in GDM. The area under the ROC curve (AUC) of the CCNB2 and CDK1 prognostic model was 0.822.

Conclusion

The genes associated with ferroptosis in GDM were CCNB2 and CDK1, which can be used as valid indicators for the diagnosis of GDM.

Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303275367240103102801
2024-02-12
2025-01-10
Loading full text...

Full text loading...

References

  1. MoonJ.H. JangH.C. Gestational diabetes mellitus: Diagnostic approaches and maternal-offspring complications.Diabetes Metab. J.202246131410.4093/dmj.2021.033535135076
    [Google Scholar]
  2. SweetingA. WongJ. MurphyH.R. RossG.P. A clinical update on gestational diabetes mellitus.Endocr. Rev.202243576379310.1210/endrev/bnac00335041752
    [Google Scholar]
  3. MeyrueixL.P. GharaibehR. XueJ. BrouwerC. JonesC. AdairL. NorrisS.A. IderaabdullahF. Gestational diabetes mellitus placentas exhibit epimutations at placental development genes.Epigenetics202217132157217710.1080/15592294.2022.211175135993304
    [Google Scholar]
  4. KouhkanA. NajafiL. MalekM. Reza BaradaranH. HosseiniR. KhajaviA. Ebrahim KhamsehM. Gestational diabetes mellitus: Major risk factors and pregnancy-related outcomes: A cohort study.Int. J. Reprod. Biomed.202119982783610.18502/ijrm.v19i9.971534723062
    [Google Scholar]
  5. BandayM.Z. SameerA.S. NissarS. Pathophysiology of diabetes: An overview.Avicenna J. Med.202010417418810.4103/ajm.ajm_53_2033437689
    [Google Scholar]
  6. PlowsJ. StanleyJ. BakerP. ReynoldsC. VickersM. The pathophysiology of gestational diabetes mellitus.Int. J. Mol. Sci.20181911334210.3390/ijms1911334230373146
    [Google Scholar]
  7. BlumA.K. Insulin use in pregnancy: An update.Diabetes Spectr.2016292929710.2337/diaspect.29.2.9227182178
    [Google Scholar]
  8. KühlC. Serum proinsulin in normal and gestational diabetic pregnancy.Diabetologia197612429530010.1007/BF00420971964507
    [Google Scholar]
  9. RetnakaranR. HanleyA.J.G. SermerM. ZinmanB. The impact of insulin resistance on proinsulin secretion in pregnancy: hyperproinsulinemia is not a feature of gestational diabetes.Diabetes Care200528112710271510.2337/diacare.28.11.271016249544
    [Google Scholar]
  10. NadalA. Alonso-MagdalenaP. SorianoS. RoperoA.B. QuesadaI. The role of oestrogens in the adaptation of islets to insulin resistance.J. Physiol.2009587215031503710.1113/jphysiol.2009.17718819687125
    [Google Scholar]
  11. QiX. GongB. YuJ. ShenL. JinW. WuZ. WangJ. WangJ. LiZ. Decreased cord blood estradiol levels in related to mothers with gestational diabetes.Medicine20179621e696210.1097/MD.000000000000696228538390
    [Google Scholar]
  12. JosephJ.J. GoldenS.H. Cortisol dysregulation: The bidirectional link between stress, depression, and type 2 diabetes mellitus.Ann. N. Y. Acad. Sci.201713911203410.1111/nyas.1321727750377
    [Google Scholar]
  13. WhitticarN.B. NunemakerC.S. Reducing glucokinase activity to enhance insulin secretion: A counterintuitive theory to preserve cellular function and glucose homeostasis.Front. Endocrinol.20201137810.3389/fendo.2020.00378
    [Google Scholar]
  14. BonnetF. DucluzeauP.H. GastaldelliA. LavilleM. AnderwaldC.H. KonradT. MariA. BalkauB. Liver enzymes are associated with hepatic insulin resistance, insulin secretion, and glucagon concentration in healthy men and women.Diabetes20116061660166710.2337/db10‑180621521874
    [Google Scholar]
  15. ChenX. ShiC. WangY. YuH. ZhangY. ZhangJ. LiP. GaoJ. The mechanisms of glycolipid metabolism disorder on vascular injury in type 2 diabetes.Front. Physiol.20221395244510.3389/fphys.2022.952445
    [Google Scholar]
  16. ShenJ. SanW. ZhengY. ZhangS. CaoD. ChenY. MengG. Different types of cell death in diabetic endothelial dysfunction.Biomed. Pharmacother.2023168115802
    [Google Scholar]
  17. HanC. LiuY. DaiR. IsmailN. SuW. LiB. Ferroptosis and its potential role in human diseases.Front. Pharmacol.20201123910.3389/fphar.2020.0023932256352
    [Google Scholar]
  18. LiangD. MinikesA.M. JiangX. Ferroptosis at the intersection of lipid metabolism and cellular signaling.Mol. Cell202282122215222710.1016/j.molcel.2022.03.02235390277
    [Google Scholar]
  19. YuY. YanY. NiuF. WangY. ChenX. SuG. LiuY. ZhaoX. QianL. LiuP. XiongY. Ferroptosis: A cell death connecting oxidative stress, inflammation and cardiovascular diseases.Cell Death Discov.20217119310.1038/s41420‑021‑00579‑w34312370
    [Google Scholar]
  20. SchootsM.H. GordijnS.J. ScherjonS.A. van GoorH. HillebrandsJ.L. Oxidative stress in placental pathology.Placenta20186915316110.1016/j.placenta.2018.03.00329622278
    [Google Scholar]
  21. ShenX. OboreN. WangY. YuT. YuH. The role of ferroptosis in placental-related diseases.Reprod. Sci.20233072079208610.1007/s43032‑023‑01193‑036930425
    [Google Scholar]
  22. ZhangD. ZhaoY. WangS. WangX. SunY. A prognostic model of angiogenesis and neutrophil extracellular traps related genes manipulating tumor microenvironment in colon cancer.J. Cancer202314112109212710.7150/jca.8577837497410
    [Google Scholar]
  23. OrgahJ.O. HeS. WangY. JiangM. WangY. OrgahE.A. DuanY. ZhaoB. ZhangB. HanJ. ZhuY. Pharmacological potential of the combination of Salvia miltiorrhiza (Danshen) and Carthamus tinctorius (Honghua) for diabetes mellitus and its cardiovascular complications.Pharmacol. Res.202015310465410.1016/j.phrs.2020.10465431945473
    [Google Scholar]
  24. YingX. CheX. WangJ. ZouG. YuQ. ZhangX. CDK1 serves as a novel therapeutic target for endometrioid endometrial cancer.J. Cancer20211282206221510.7150/jca.5113933758599
    [Google Scholar]
  25. JadhavA. KhaireA. JoshiS. Exploring the role of oxidative stress, fatty acids and neurotrophins in gestational diabetes mellitus.Growth Factors2020383-422623410.1080/08977194.2021.189514333703982
    [Google Scholar]
  26. LiuM. WuK. WuY.J.B. The emerging role of ferroptosis in female reproductive disorders.Biomed. Pharmacother.2023166115415
    [Google Scholar]
  27. van DamS. VõsaU. van der GraafA. FrankeL. de MagalhãesJ.P. Gene co-expression analysis for functional classification and gene-disease predictions.Brief. Bioinform.201819457559228077403
    [Google Scholar]
  28. LangfelderP. HorvathS. WGCNA: An R package for weighted correlation network analysis.BMC Bioinformatics20089155910.1186/1471‑2105‑9‑55919114008
    [Google Scholar]
  29. LiM. HeF. ZhangZ. XiangZ. HuD. CDK1 serves as a potential prognostic biomarker and target for lung cancer.J. Int. Med. Res.202048210.1177/030006051989750832020821
    [Google Scholar]
  30. ChinC.H. ChenS.H. WuH.H. HoC.W. KoM.T. LinC.Y. CytoHubba: Identifying hub objects and sub-networks from complex interactome.BMC Syst. Biol.20148S4S11
    [Google Scholar]
  31. LealC. CostaL. FerreiraG. FerreiraA. ReisF. SimõesE. Renin-angiotensin system in normal pregnancy and in preeclampsia: A comprehensive review.Pregnancy Hypertens.2022281520
    [Google Scholar]
  32. ElhagD. Al KhodorS.J.J.o.t.m. Exploring the potential of microRNA as a diagnostic tool for gestational diabetes.J. Transl. Med.202321139210.1186/s12967‑023‑04269‑2
    [Google Scholar]
  33. WestR.C. BoumaG.J. WingerQ.A. Shifting perspectives from “oncogenic” to oncofetal proteins; how these factors drive placental development.Reprod. Biol. Endocrinol.201816110110.1186/s12958‑018‑0421‑330340501
    [Google Scholar]
  34. FangL. YanY. GaoY. WuZ. WangZ. YangS. ChengJ.C. SunY.P. TGF-β1 inhibits human trophoblast cell invasion by upregulating kisspeptin expression through ERK1/2 but not SMAD signaling pathway.Reprod. Biol. Endocrinol.20222012210.1186/s12958‑022‑00902‑935101033
    [Google Scholar]
  35. SharpA.N. HeazellA.E.P. BaczykD. DunkC.E. LaceyH.A. JonesC.J.P. PerkinsJ.E. KingdomJ.C.P. BakerP.N. CrockerI.P. Preeclampsia is associated with alterations in the p53-pathway in villous trophoblast.PLoS One201491e8762110.1371/journal.pone.008762124498154
    [Google Scholar]
  36. MoserG. GuettlerJ. ForstnerD. GausterM. Maternal platelets-friend or foe of the human placenta?Int. J. Mol. Sci.20192022563910.3390/ijms2022563931718032
    [Google Scholar]
  37. HerringC.M. BazerF.W. JohnsonG.A. WuG. Impacts of maternal dietary protein intake on fetal survival, growth, and development.Exp. Biol. Med.2018243652553310.1177/153537021875827529466875
    [Google Scholar]
  38. Toboła-WróbelK. PietrygaM. DydowiczP. NapierałaM. BrązertJ. FlorekE. Association of oxidative stress on pregnancy.Oxid. Med. Cell. Longev.2020202011210.1155/2020/639852033014274
    [Google Scholar]
  39. GuillouxG. GibeauxR. Mechanisms of spindle assembly and size control.Biol. Cell20201121236938210.1111/boc.20200006532762076
    [Google Scholar]
  40. WangQ. MoleyK.H. Maternal diabetes and oocyte quality.Mitochondrion201010540341010.1016/j.mito.2010.03.00220226883
    [Google Scholar]
  41. ZhaoX. LiW.J.M.g. Gene coexpression network analysis identified potential biomarkers in gestational diabetes mellitus progression.Mol. Genet. Genomic Med.201971e00515
    [Google Scholar]
  42. ZouY. RuanS. JinL. ChenZ. HanH. ZhangY. JianZ. LinY. ShiN. JinH. CDK1, CCNB1, and CCNB2 are prognostic biomarkers and correlated with immune infiltration in hepatocellular carcinoma.Med. Sci. Monit.202026e92528910.12659/MSM.92528932863381
    [Google Scholar]
  43. NagyT. FisiV. FrankD. KátaiE. NagyZ. MisetaA. Hyperglycemia-induced aberrant cell proliferation; a metabolic challenge mediated by protein O-GlcNAc modification.Cells201989999
    [Google Scholar]
  44. YeW. LuoC. HuangJ. LiC. LiuZ. LiuF. Gestational diabetes mellitus and adverse pregnancy outcomes: systematic review and meta-analysis.BMJ2022377e06794610.1136/bmj‑2021‑06794635613728
    [Google Scholar]
  45. DengB. SongA. ZhangC. Cell-cycle dysregulation in the pathogenesis of diabetic kidney disease: An update.Int. J. Mol. Sci.2023243213310.3390/ijms2403213336768457
    [Google Scholar]
  46. LiuY. WangY. WangY. LvY. ZhangY. WangH.J.G. Gene expression changes in arterial and venous endothelial cells exposed to gestational diabetes mellitus.Gynecol. Endocrinol.202036979179510.1080/09513590.2020.1712696
    [Google Scholar]
  47. ZhengL. YangX. FanQ. LiuB. HuW. CuiY. Transcriptomic profiling identifies differentially expressed genes and related pathways associated with wound healing and cuproptosis-related genes in Ganxi goats.Front. Vet. Sci.202310114933310.3389/fvets.2023.114933337313229
    [Google Scholar]
  48. ZhaoY. GaoQ. LiB. WangY. WangY.J.F.i.e. Ferroptosis and its potential role in gestational diabetes mellitus: Updated evidence from pathogenesis to therapy.Front. Endocrinol.202314117754710.3389/fendo.2023.1177547
    [Google Scholar]
  49. WangY. ZhangH. WangM. HeJ. GuoH. LiL. WangJ. CCNB2/SASP/Cathepsin B & PGE2 axis induce cell senescence mediated malignant transformation.Int. J. Biol. Sci.202117133538355310.7150/ijbs.6343034512164
    [Google Scholar]
  50. XiaoY. MaJ. GuoC. LiuD. PanJ. HuangX. Cyclin B2 overexpression promotes tumour growth by regulating jagged 1 in hepatocellular carcinoma.Aging20221462855286710.18632/aging.20397935349480
    [Google Scholar]
  51. WangD. SunH. LiX. WangG. YanG. RenH. HouB. CCNB2 is a novel prognostic factor and a potential therapeutic target in low-grade glioma.Biosci. Rep.2022421BSR2021193910.1042/BSR2021193934908101
    [Google Scholar]
  52. QianD. ZhengW. ChenC. JingG. HuangJ. Roles of CCNB2 and NKX3-1 in nasopharyngeal carcinoma.Cancer Biother. Radiopharm.202035320821310.1089/cbr.2019.301632202926
    [Google Scholar]
  53. DirilM.K. RatnacaramC.K. PadmakumarV.C. DuT. WasserM. CoppolaV. TessarolloL. KaldisP. Cyclin-dependent kinase 1 (Cdk1) is essential for cell division and suppression of DNA re-replication but not for liver regeneration.Proc. Natl. Acad. Sci.2012109103826383110.1073/pnas.111520110922355113
    [Google Scholar]
  54. XieB. WangS. JiangN. LiJ.J. Cyclin B1/CDK1-regulated mitochondrial bioenergetics in cell cycle progression and tumor resistance.Cancer Lett.2019443566610.1016/j.canlet.2018.11.01930481564
    [Google Scholar]
  55. SunadaS. SaitoH. ZhangD. XuZ. MikiY. CDK1 inhibitor controls G2/M phase transition and reverses DNA damage sensitivity.Biochem. Biophys. Res. Commun.2021550566110.1016/j.bbrc.2021.02.11733684621
    [Google Scholar]
  56. ChenS. WuW. LiQ. XieB. ShenF. DuY. ZongZ. WangL. WeiX. ZhaoY. Circ-NOLC1 promotes epithelial ovarian cancer tumorigenesis and progression by binding ESRP1 and modulating CDK1 and RhoA expression.Cell Death Discov.2021712210.1038/s41420‑020‑00381‑033483472
    [Google Scholar]
  57. AsfahaJ.B. ÖrdM. CarlsonC.R. FaustovaI. LoogM. MorganD.O. Multisite phosphorylation by Cdk1 initiates delayed negative feedback to control mitotic transcription.Curr. Biol.2022321256263.e410.1016/j.cub.2021.11.00134818519
    [Google Scholar]
  58. YiY.C. LiangR. ChenX.Y. FanH.N. ChenM. ZhangJ. ZhuJ.S. Dihydroartemisinin suppresses the tumorigenesis and cycle progression of colorectal cancer by targeting CDK1/CCNB1/PLK1 signaling.Front. Oncol.20211176887910.3389/fonc.2021.76887934796115
    [Google Scholar]
  59. LiJ. CaoF. YinH. HuangZ. LinZ. MaoN. SunB. WangG. Ferroptosis: Past, present and future.Cell Death Dis.20201128810.1038/s41419‑020‑2298‑232015325
    [Google Scholar]
  60. ZhouK. XiaoJ. WangH. NiB. HuangJ. LongX.J.H. Estradiol regulates oxidative stress and angiogenesis of myocardial microvascular endothelial cells via the CDK1/CDK2 pathway.Heliyon202393e14305
    [Google Scholar]
  61. ArmisteadB. JohnsonE. VanderKampR. Kula-EversoleE. KadamL. DrewloS. Kohan-GhadrH.R. Placental regulation of energy homeostasis during human pregnancy.Endocrinology20201617bqaa07610.1210/endocr/bqaa07632417921
    [Google Scholar]
  62. O’NeillB.T. BhardwajG. PennimanC.M. KrumpochM.T. Suarez BeltranP.A. KlausK. PoroK. LiM. PanH. DreyfussJ.M. NairK.S. KahnC.R. FoxO. FoxO transcription factors are critical regulators of diabetes-related muscle atrophy.Diabetes201968355657010.2337/db18‑041630523026
    [Google Scholar]
  63. DingY. WuQ. 1,25D/VDR inhibits pancreatic β cell ferroptosis by downregulating FOXO1 expression in diabetes mellitus.Cell. Signal.202310510511056410.1016/j.cellsig.2022.11056436581217
    [Google Scholar]
  64. YuG. LuoH. ZhangN. WangY. LiY. HuangH. LiuY. HuY. LiuH. ZhangJ. TangY. HuangY. Loss of p53 sensitizes cells to palmitic acid-induced apoptosis by reactive oxygen species accumulation.Int. J. Mol. Sci.20192024626810.3390/ijms2024626831842349
    [Google Scholar]
  65. WangC.Y. ChaoC.H. p53-mediated indirect regulation on cellular metabolism: From the mechanism of pathogenesis to the development of cancer therapeutics.Front. Oncol.20221289511210.3389/fonc.2022.89511235707366
    [Google Scholar]
  66. HuJ. CaoJ. TopatanaW. JuengpanichS. LiS. ZhangB. ShenJ. CaiL. CaiX. ChenM. Targeting mutant p53 for cancer therapy: Direct and indirect strategies.J. Hematol. Oncol.202114115710.1186/s13045‑021‑01169‑034583722
    [Google Scholar]
  67. LiuJ. ZhangC. WangJ. HuW. FengZ. The regulation of ferroptosis by tumor suppressor p53 and its pathway.Int. J. Mol. Sci.20202121838710.3390/ijms2121838733182266
    [Google Scholar]
  68. BaoD. ZhuangC. JiaoY. YangL. The possible involvement of circRNA DMNT1/p53/JAK/STAT in gestational diabetes mellitus and preeclampsia.Cell Death Discov.20228112110.1038/s41420‑022‑00913‑w35296654
    [Google Scholar]
  69. JiangL. KonN. LiT. WangS.J. SuT. HibshooshH. BaerR. GuW. Ferroptosis as a p53-mediated activity during tumour suppression.Nature20155207545576210.1038/nature1434425799988
    [Google Scholar]
  70. WangY. LuoW. WangY. PARP-1 and its associated nucleases in DNA damage response.DNA Repair20198110265110.1016/j.dnarep.2019.10265131302005
    [Google Scholar]
  71. YingY. PadanilamB.J. Regulation of necrotic cell death: P53, PARP1 and cyclophilin D-overlapping pathways of regulated necrosis?Cell. Mol. Life Sci.20167311-122309232410.1007/s00018‑016‑2202‑527048819
    [Google Scholar]
  72. DeményM.A. VirágL. The PARP enzyme family and the hallmarks of cancer Part 2: Hallmarks related to cancer host interactions.Cancers2021139205710.3390/cancers1309205733923319
    [Google Scholar]
  73. ZhangY. WangW.J.E.c.r. Bidirectional regulation role of PARP-1 in high glucose-induced endothelial injury.Exp. Cell Res.2022421211340010.1016/j.yexcr.2022.113400
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303275367240103102801
Loading
/content/journals/emiddt/10.2174/0118715303275367240103102801
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test