Skip to content
2000
Volume 24, Issue 14
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

Thymus plays a crucial role in cellular immunity by acting as a warehouse for proliferating and differentiating lymphocytes. Thymic stromal cells educate T-cells to differentiate self from non-self antigens while nurse cells and thymoproteasome play a major role in the maturation and differentiation of T-cells. The thymic conditions dictate T-cells to cope with the risk of cancer development. A study was designed to demonstrate potential mechanisms behind the failure to eliminate tumors and impaired immune surveillance as well as the impact of delay in thymus regression on cancer and autoimmune disorders. Scientific literature from Pubmed; Scopus; WOS; JSTOR; National Library of Medicine Bethesda, Maryland; The New York Academy of Medicine; Library of Speech Rehabilitation, NY; St. Thomas’ Hospital Library; The Wills Library of Guys Hospital; Repository of Kings College London; and Oxford Academic repository was explored for pathological, physiological, immunological and toxicological studies of thymus. Studies have shown that systemic chemotherapy may lead to micro inflammatory environment within thymus where conventionally and dynamically metastasized dormant cells seek refuge. The malfunctioning of the thymus and defective T and Treg cells, bypassing negative selection, contributes to autoimmune disorders, while AIRE and Fezf2 play significant roles in thymic epithelial cell solidity. Different vitamins, TCM, and live cell therapy are effective therapeutics. Vitamin A, C, D, and E, selenium and zinc, cinobufagin and dietary polysaccharides, and glandular extracts and live cell injections have strong potential to restore immune system function and thymus health. Moreover, the relationship between different ages/stages of thymus and their corresponding T-cell mediated anti-tumor immune response needs further exploration.

Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303283164240126104109
2024-02-12
2025-01-10
Loading full text...

Full text loading...

References

  1. BraytonH.W. Heublein, Enlarged thymus gland in infancy and its treatment by radium.Boston. Med. Surg. J.191918174074310.1056/NEJM191912251812604
    [Google Scholar]
  2. MillerJ.F.A.P. Thymus and immunity-II. The last three decades.Eur. J. Cancer Clin. Oncol.19882481257126210.1016/0277‑5379(88)90212‑X
    [Google Scholar]
  3. HenryG.L.R.S. A Greek-English Lexicon.2023Available from: http://www.perseus.tufts.edu/hopper/text?doc=Perseus:text:1999.04.0057:entry=qhri/on
  4. OmniaC.G.O. Galeni in Hippocrat. de alimento.Cambridge Library Collection - Classics. Vol. Classics. KühnK. CambridgeCambridge University Press2011
    [Google Scholar]
  5. OmniaC.G.O. De tumoribus praeter naturam.Cambridge Library Collection Classics. KühnK. Cambridge University Press2011
    [Google Scholar]
  6. TotelinL. Hippocratic Corpus.Oxford University Press2021
    [Google Scholar]
  7. KowalskiG. De corporis humani partium appellationibus. Hrsg. von GeorgKowalski 1960
    [Google Scholar]
  8. LaviniC. Thymus gland pathology: clinical, diagnostic and therapeutic features.Springer Science & Business Media2009
    [Google Scholar]
  9. PlatterF. PlaterF. Observations, on the majority of man's affections, on the body and mind, on the injury of the functions, on pain, on other discomforts, and insensible vices, three books ... Now the second time of the order to be typed ... to the autograph in many places amended, Medicines not described in the work ... richer; Impensis Ludovici König: Basileae1641912
    [Google Scholar]
  10. PlatterF. BrandmullerJ. KonigJ.L. Observationum Felicis Plateri ... three books with as many practical treatises of his character & corresponding method, and the emotions of the body & narrating graphically the histories of many souls, both faithfully and diligently observed, and the treatments successfully performed; The third time is now the type of commandment, and in addition to the anakephaliosin of drugs, & a list of the most fruitful things, in the second edition, added; purged of innumerable wrongs, which had been omitted in the previous two. New, moreover, Fel. Plater, Fel. from Fr. niece Mantissa selections of observations, enriched; typis & impensis Joh. Ludovici König & Johannis Brandmylleri.: Basileae1680
    [Google Scholar]
  11. HewsonW. The Works of William Hewson, FRS.Sydenham Society1846Vol. 710.5962/bhl.title.23264
    [Google Scholar]
  12. DoyleD. William Hewson (1739–74): The father of haematology.Br. J. Haematol.20061334375381
    [Google Scholar]
  13. SilvermanF.J.R. In search of lost time and the thymus (with apologies to Marcel Proust).Radiology19931862310311
    [Google Scholar]
  14. AstleyC. The anatomy of the thymus gland. ed. R. Longman, Orme, Green, and Brown; Longman, Rees, Orme, Green, and Brown1832.: Wellcome Collection.: 183 Euston Road, London NW1 2BE UK London1832
    [Google Scholar]
  15. SimonJ. A physiological essay on the thymus gland. London Henry Renshaw MDCCCXLV184510.5962/bhl.title.106561
    [Google Scholar]
  16. HassallA.H. A physiological essay on the thymus gland.Med. Chir. Rev.1855231835
    [Google Scholar]
  17. HammarJ.A. The new views at the morphology of the thymus gland and their hearing on the problem of the function of the thymus.Endocrinology192155543573
    [Google Scholar]
  18. HammarJ.A. The new views as to the morphology of the thymus gland and their bearing on the problem of the function of the thymus.Endocrinology.19215554357310.1210/endo‑5‑5‑543
    [Google Scholar]
  19. SelyeH. The general adaptation syndrome and the diseases of adaptation.J. Clin. Endocrinol. Metab.19466211723010.1210/jcem‑6‑2‑117
    [Google Scholar]
  20. SelyeH. The Stress in health and disease; Pacifica Tape Library.McGraw-Hill New York1976
    [Google Scholar]
  21. MillerJ. Immunological function of the thymus.Lancet1961278720574874910.1016/S0140‑6736(61)90693‑6
    [Google Scholar]
  22. MillerJ.F. OsobaD. Current concepts of the immunological function of the thymus.Physiol. Rev.196747343752010.1152/physrev.1967.47.3.437
    [Google Scholar]
  23. PalmerS. AlberganteL. BlackburnC.C. NewmanT.J. Thymic involution and rising disease incidence with age.Proc. Natl. Acad. Sci.201811581883188810.1073/pnas.1714478115
    [Google Scholar]
  24. AndreasenE. ChristensenS. The rate of mitotic activity in the lymphoid organs of the rat.Anat. Rec.1949103340141210.1002/ar.1091030307
    [Google Scholar]
  25. NakamuraK. MetcalfD. Quantitative cytological studies on thymic lymphoid cells in normal, preleukaemic and leukaemic mice.Br. J. Cancer196115230631510.1038/bjc.1961.38
    [Google Scholar]
  26. ThapaP. FarberD.L. The role of the thymus in the immune response.Thorac. Surg. Clin.201929212313110.1016/j.thorsurg.2018.12.001
    [Google Scholar]
  27. SteinmannG. KlausB. Müller‐HermelinkH.K.J.S.j.o.i. The involution of the ageing human thymic epithelium is independent of puberty: A morphometric study.198522556357510.1111/j.1365‑3083.1985.tb01916.x
    [Google Scholar]
  28. BajoghliB. GuoP. AghaallaeiN. HiranoM. StrohmeierC. McCurleyN. BockmanD.E. SchorppM. CooperM.D. BoehmT. A thymus candidate in lampreys.Nature20114707332909410.1038/nature09655
    [Google Scholar]
  29. LitmanG.W. RastJ.P. FugmannS.D. The origins of vertebrate adaptive immunity.Nat. Rev. Immunol.201010854355310.1038/nri2807
    [Google Scholar]
  30. PancerZ. CooperM.D. The evolution of adaptive immunity.Annu. Rev. Immunol.200624149751810.1146/annurev.immunol.24.021605.090542
    [Google Scholar]
  31. GorgollonP. Fine structure of the thymus in the adult cling fish Sicyases sanguineus (Pisces, Gobiesocidae).J. Morphol.19831771254010.1002/jmor.1051770103
    [Google Scholar]
  32. ParrottD.M. EastJ.J.P.R.S.M. The thymus and immnity [abridged] the immunological status of thymectomized animals—.Survey1964572147151
    [Google Scholar]
  33. GowansJ.L. McGREGOR, D.D.; Cowen, D.M.; Ford, C.E. Initiation of immune responses by small lymphocytes.Nature1962196485565165510.1038/196651a0
    [Google Scholar]
  34. MedawarP.B. The croonian lecture: The homograft reaction.Proc. Royal Soc. B1958149935145166
    [Google Scholar]
  35. MillerJ.F.A.P. Immunity in the foetus and the new-born.Br. Med. Bull.1966221212610.1093/oxfordjournals.bmb.a070431
    [Google Scholar]
  36. KennedyJ.C. A transplantation assay for mouse cells responsive to antigenic stimulation by sheep erythrocytes.Proc. Soc. Exp. Biol. Med.1965120386887310.3181/00379727‑120‑30678
    [Google Scholar]
  37. AdamsG.B. ChabnerK.T. FoxallR.B. WeibrechtK.W. RodriguesN.P. DombkowskiD. FallonR. PoznanskyM.C. ScaddenD.T. Heterologous cells cooperate to augment stem cell migration, homing, and engraftment.Blood20031011455110.1182/blood‑2002‑02‑0486
    [Google Scholar]
  38. VosO. Transplantation of homologous and heterologous lymphoid cells in x-irradiated and non-irradiated mice.J. Natl. Cancer Inst.19592315373
    [Google Scholar]
  39. MillerJ.F.A.P. HaddowA. Effect of neonatal thymectomy on the immunological responsiveness of the mouse.Proc. R. Soc. Lond. B.1962156964415428
    [Google Scholar]
  40. MillerJ.F.A.P. Analysis of the thymus influence in leukæmogenesis.Nature1961191478524824910.1038/191248a0
    [Google Scholar]
  41. MillerJ.F.A.P. SprentJ. Thymus-derived cells in mouse thoracic duct lymph.Nat. New Biol.19712301726727110.1038/newbio230267a0
    [Google Scholar]
  42. MooreM.A.S. OwenJ.J.T. Stem-cell migration in developing myeloid and lymphoid systems.Lancet1967290751765865910.1016/S0140‑6736(67)90693‑9
    [Google Scholar]
  43. HofmanL. StankovićV. AllegrettiN. StankovicV. AllegrettiN. The effect of total-body x-irradiation on the thymus and the number of its cells.Radiat. Res.1961151303810.2307/3571064
    [Google Scholar]
  44. MillerJ.F.A.P. Immunological significance of the thymus of the adult mouse.Nature196219548481318131910.1038/1951318a0
    [Google Scholar]
  45. CrossA.M. LeucharsE. MillerJ.F.A.P. Studies on the recovery of the immune response in irradiated mice thymectomized in adult life.J. Exp. Med.1964119583785010.1084/jem.119.5.837
    [Google Scholar]
  46. MillerJ.F.A.P. Effect of thymectomy in adult mice on immunological responsiveness.Nature196520850171337133810.1038/2081337a0
    [Google Scholar]
  47. SperlingB. Thymoma: A review of the clinical and pathological findings in 65 cases.Can. J. Surg.20034613742
    [Google Scholar]
  48. Den BakkerM.A. OosterhuisJ.W. Tumours and tumour-like conditions of the thymus other than thymoma; a practical approach.Histopathology2009541698910.1111/j.1365‑2559.2008.03177.x
    [Google Scholar]
  49. MillerJ.F.A.P. GrantG.A. RoeF.J.C. Effect of thymectomy on the induction of skin tumours by 3,4-benzopyrene.Nature1963199489692092210.1038/199920a0
    [Google Scholar]
  50. GrantG.A. MillerJ.F.A.P. Effect of neonatal thymectomy on the induction of sarcomata in C57BL mice.Nature196520549761124112510.1038/2051124a0
    [Google Scholar]
  51. MillerJ.F.A.P. TingR.C. LawL.W. Influence of thymectomy on tumor induction by polyoma virus in C57BL mice.Proc. Soc. Exp. Biol. Med.196411632332710.3181/00379727‑116‑29237
    [Google Scholar]
  52. FichteliusK.E. LaurellG. PhilipssonL. The influence of thymectomy on antibody formation.Acta Pathol. Microbiol. Scand.1961512818610.1111/j.1699‑0463.1961.tb00346.x
    [Google Scholar]
  53. MartinezC. KerseyJ. PapermasterB.W. GoodR.A. Skin homograft survival in thymectomized mice.Exp. Biol. Med.1962109119319610.3181/00379727‑109‑27149
    [Google Scholar]
  54. DalmassoA. Further studies of suppression of the homograft reaction by thymectomy in the mouse.Proc. Soc. Exp. Biol. Med.1962111114314610.3181/00379727‑111‑27729
    [Google Scholar]
  55. ArnasonB.G. JankovićB.D. WaksmanB.H.J.N. Effect of thymectomy on ‘delayed’hypersensitive reactions.Nature1962194482399100
    [Google Scholar]
  56. McIntireK. SellS. MillerJ.J.N. Pathogenesis of the post-neonatal thymectomy wasting syndrome.Nature196420415115510.1038/204151a0
    [Google Scholar]
  57. WarnerN.J.A.J.o.E.B. ScienceM. The immunological role of different lymphoid organs in the chicken: ii. The immunological competence of thymic cell suspensions.Aust. J. Exp. Biol. Med. Sci.19644240141610.1038/icb.1964.38
    [Google Scholar]
  58. ClamanH.N. ChaperonE.A. TriplettR.F. Thymus-marrow cell combinations. Synergism in antibody production.Exp. Biol. Med.196612241167117110.3181/00379727‑122‑31353
    [Google Scholar]
  59. MillerJ.F. The croonian lecture, 1992. The key role of the thymus in the body’s defence strategies.Philos. Trans. R. Soc. Lond. B Biol. Sci.1992337127910512410.1098/rstb.1992.0087
    [Google Scholar]
  60. DurgeauA. VirkY. CorgnacS. Mami-ChouaibF. Recent advances in targeting CD8 T-cell immunity for more effective cancer immunotherapy.Front. Immunol.201891410.3389/fimmu.2018.00014
    [Google Scholar]
  61. KunzmannV. BauerE. FeurleJ. TonyF.W.H-P. WilhelmM. Stimulation of γδ T cells by aminobisphosphonates and induction of antiplasma cell activity in multiple myeloma.Blood200096238439210.1182/blood.V96.2.384.013k07_384_392
    [Google Scholar]
  62. MinettoP. GuoloF. PesceS. GreppiM. ObinoV. FerrettiE. SivoriS. GenovaC. LemoliR.M. MarcenaroE. Harnessing NK cells for cancer treatment.Front. Immunol.201910283610.3389/fimmu.2019.02836
    [Google Scholar]
  63. GodfreyD.I. KoayH-F. McCluskeyJ. GherardinN.A. The biology and functional importance of MAIT cells.Nat. Immunol.20192091110112810.1038/s41590‑019‑0444‑8
    [Google Scholar]
  64. EiselD. DasK. DickesE. KönigR. OsenW. EichmüllerS.B. Cognate interaction with CD4+ T cells instructs tumor-associated macrophages to acquire M1-like phenotype.Front. Immunol.20191021910.3389/fimmu.2019.00219
    [Google Scholar]
  65. FarhoodB. NajafiM. MortezaeeK. CD8 + cytotoxic T lymphocytes in cancer immunotherapy: A review.J. Cell. Physiol.201923468509852110.1002/jcp.27782
    [Google Scholar]
  66. DunnG.P. OldL.J. SchreiberR.D. The immunobiology of cancer immunosurveillance and immunoediting.Immunity200421213714810.1016/j.immuni.2004.07.017
    [Google Scholar]
  67. KreslavskyT. GleimerM. von BoehmerH. αβ versus γδ lineage choice at the first TCR-controlled checkpoint.Curr. Opin. Immunol.201022218519210.1016/j.coi.2009.12.006
    [Google Scholar]
  68. SambandamA. MaillardI. ZediakV.P. XuL. GersteinR.M. AsterJ.C. PearW.S. BhandoolaA. Notch signaling controls the generation and differentiation of early T lineage progenitors.Nat. Immunol.20056766367010.1038/ni1216
    [Google Scholar]
  69. RothenbergE.V. Programming for T-lymphocyte fates: Modularity and mechanisms.Genes Dev.20193317-181117113510.1101/gad.327163.119
    [Google Scholar]
  70. BoudilA. MateiI.R. ShihH-Y. BogdanoskiG. YuanJ.S. ChangS.G. MontpellierB. KowalskiP.E. VoisinV. BashirS. BaderG.D. KrangelM.S. GuidosC.J. IL-7 coordinates proliferation, differentiation and Tcra recombination during thymocyte β-selection.Nat. Immunol.201516439740510.1038/ni.3122
    [Google Scholar]
  71. KochU. RadtkeF. Mechanisms of T cell development and transformation.Annu. Rev. Cell Dev. Biol.201127153956210.1146/annurev‑cellbio‑092910‑154008
    [Google Scholar]
  72. ColomboM.P. PiconeseS. Regulatory T-cell inhibition versus depletion: The right choice in cancer immunotherapy.Nat. Rev. Cancer200771188088710.1038/nrc2250
    [Google Scholar]
  73. KleinL. RobeyE.A. HsiehC.S. Central CD4+ T cell tolerance: Deletion versus regulatory T cell differentiation.Nat. Rev. Immunol.201919171810.1038/s41577‑018‑0083‑6
    [Google Scholar]
  74. KisielowP. BlüthmannH. StaerzU.D. SteinmetzM. von BoehmerH. Tolerance in T-cell-receptor transgenic mice involves deletion of nonmature CD4+8+ thymocytes.Nature1988333617574274610.1038/333742a0
    [Google Scholar]
  75. KapplerJ.W. RoehmN. MarrackP. T cell tolerance by clonal elimination in the thymus.Cell198749227328010.1016/0092‑8674(87)90568‑X
    [Google Scholar]
  76. OhkiH. MartinC. CorbelC. ColteyM. Le DouarinN.M. Tolerance induced by thymic epithelial grafts in birds.Science198723748181032103510.1126/science.3616623
    [Google Scholar]
  77. ScollayR.G. ButcherE.C. WeissmanI.L. Thymus cell migration: Quantitative aspects of cellular traffic from the thymus to the periphery in mice.Eur. J. Immunol.198010321021810.1002/eji.1830100310
    [Google Scholar]
  78. SurD. BanuS. Role of macrophage in type 2 diabetes mellitus: Macrophage polarization a new paradigm for treatment of type 2 diabetes mellitus.Endocr. Metab. Immune Disord. Drug Targets202323121110.2174/1871530322666220630093359
    [Google Scholar]
  79. DoshiG.M. AnsariA.Z. BhatiaN.Y. GharatS.A. GodadA.P. Exploring cytokines as potential target in peptic ulcer disease: A systematic update.Endocr. Metab. Immune Disord. Drug Targets2023231213410.2174/1871530322666220829142124
    [Google Scholar]
  80. SakaguchiS. SakaguchiN. AsanoM. ItohM. TodaM. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases.J. Immunol.199515531151116410.4049/jimmunol.155.3.1151
    [Google Scholar]
  81. OttI. ScottJ.C. The action of glandular extracts upon the contractions of the uterus.J. Exp. Med.190911232633010.1084/jem.11.2.326
    [Google Scholar]
  82. du VigneaudV. ResslerC. TrippettS. The sequence of amino acids in oxytocin, with a proposal for the structure of oxytocin.J. Biol. Chem.1953205294995710.1016/S0021‑9258(18)49238‑1
    [Google Scholar]
  83. GeenenV. LegrosJ-J. FranchimontP. BaudrihayeM. DefresneM-P. BoniverJ. The neuroendocrine thymus: Coexistence of oxytocin and neurophysin in the human thymus.Science1986232474950851110.1126/science.3961493
    [Google Scholar]
  84. GeenenV. LegrosJ-J. FranchimontP. DefresneM-P. BoniverJ. IvellR. RichterD. The thymus as a neuroendocrine organ. Synthesis of vasopressin and oxytocin in human thymic epithelium.Ann. N. Y. Acad. Sci.19874961566610.1111/j.1749‑6632.1987.tb35746.x
    [Google Scholar]
  85. GeenenV. DefresneM-P. RobertF. LegrosJ-J. FranchimontP. BoniverJ. The neurohormonal thymic microenvironment: Immunocytochemical evidence that thymic nurse cells are neuroendocrine cells.Neuroendocrinology198847436536810.1159/000124938
    [Google Scholar]
  86. NakagawaY. OhigashiI. NittaT. SakataM. TanakaK. MurataS. KanagawaO. TakahamaY. Thymic nurse cells provide microenvironment for secondary T cell receptor α rearrangement in cortical thymocytes.Proc. Natl. Acad. Sci.201210950205722057710.1073/pnas.1213069109
    [Google Scholar]
  87. MarildaM. RosaL. StefanoT. MartaB. AlfonsinaC. FiammettaN. GiuliaP. MarialuisaA. Syndrome of inappropriate antidiuresis and diabetes insipidus as two sides of the same coin in hypothalamic lymphoma: A case report.Endocr. Metab. Immune Disord. Drug Targets202323573273710.2174/1871530323666221124125253
    [Google Scholar]
  88. GeenenV. BodartG. HenryS. MichauxH. DardenneO. Charlet-RenardC. MartensH. HoberD. Programming of neuroendocrine self in the thymus and its defect in the development of neuroendocrine autoimmunity.Front. Neurosci.2013718710.3389/fnins.2013.00187
    [Google Scholar]
  89. HaleJ.S. BoursalianT.E. TurkG.L. FinkP.J. Thymic output in aged mice.Proc. Natl. Acad. Sci.2006103228447845210.1073/pnas.0601040103
    [Google Scholar]
  90. PetrieH.T. Role of thymic organ structure and stromal composition in steady‐state postnatal T‐cell production.Immunol. Rev.2002189182010.1034/j.1600‑065X.2002.18902.x
    [Google Scholar]
  91. EsmaeilzadehH. RezaeiN. AminorroayaA. RayzanE. ShahkaramiS. SeyedpourS. ZoghiS. AryanZ. SomekhI. RohlfsM. KleinC. Novel DNMT3B mutation in a patient with immunodeficiency, centromeric instability, and facial anomalies (ICF) syndrome and a bronchopulmonary collateral artery.Endocr. Metab. Immune Disord. Drug Targets202323341041510.2174/1871530322666220822141722
    [Google Scholar]
  92. HinterbergerM. AichingerM. Prazeres da CostaO. VoehringerD. HoffmannR. KleinL. Autonomous role of medullary thymic epithelial cells in central CD4+ T cell tolerance.Nat. Immunol.201011651251910.1038/ni.1874
    [Google Scholar]
  93. OhJ. WangW. ThomasR. SuD-M. Capacity of tTreg generation is not impaired in the atrophied thymus.PLoS Biol.20171511e200335210.1371/journal.pbio.2003352
    [Google Scholar]
  94. KhanI.S. MouchessM.L. ZhuM-L. ConleyB. FasanoK.J. HouY. FongL. SuM.A. AndersonM.S. Enhancement of an anti-tumor immune response by transient blockade of central T cell tolerance.J. Exp. Med.2014211576176810.1084/jem.20131889
    [Google Scholar]
  95. SuM.A. AndersonM.S. Breaking through the central tolerance ceiling to unleash anticancer immune responses.OncoImmunology201438e95016910.4161/21624011.2014.950169
    [Google Scholar]
  96. ChaudharyR. GuptaS. ChauhanS. Protein uncoupling as an innovative practice in diabetes mellitus treatment: A metabolic disorder.Endocr. Metab. Immune Disord. Drug Targets202323449450210.2174/1871530322666220902143401
    [Google Scholar]
  97. ChougnetC.A. TripathiP. LagesC.S. RaynorJ. ShollA. FinkP. PlasD.R. HildemanD.A. A major role for Bim in regulatory T cell homeostasis.J. Immunol.2011186115616310.4049/jimmunol.1001505
    [Google Scholar]
  98. WhiteM.C. HolmanD.M. BoehmJ.E. PeipinsL.A. GrossmanM. Jane HenleyS. Age and cancer risk: A potentially modifiable relationship.Am. J. Prev. Med.2014463S7S1510.1016/j.amepre.2013.10.029
    [Google Scholar]
  99. TakeuchiY. NishikawaH. Roles of regulatory T cells in cancer immunity.Int. Immunol.201628840140910.1093/intimm/dxw025
    [Google Scholar]
  100. TanakaA. SakaguchiS. Regulatory T cells in cancer immunotherapy.Cell Res.201727110911810.1038/cr.2016.151
    [Google Scholar]
  101. OhmJ.E. GabrilovichD.I. SempowskiG.D. KisselevaE. ParmanK.S. NadafS. CarboneD.P. VEGF inhibits T-cell development and may contribute to tumor-induced immune suppression.Blood2003101124878488610.1182/blood‑2002‑07‑1956
    [Google Scholar]
  102. MandalD. BhattacharyyaA. LahiryL. ChoudhuriT. SaG. DasT. Failure in peripheral immuno-surveillance due to thymic atrophy: Importance of thymocyte maturation and apoptosis in adult tumor-bearer.Life Sci.200577212703271610.1016/j.lfs.2005.05.038
    [Google Scholar]
  103. SizovaO. KuriatnikovD. LiuY. SuD-M. Atrophied thymus, a tumor reservoir for harboring melanoma cells.Mol. Cancer Res.201816111652166410.1158/1541‑7786.MCR‑18‑0308
    [Google Scholar]
  104. BentE.H. GilbertL.A. HemannM.T. A senescence secretory switch mediated by PI3K/AKT/mTOR activation controls chemoprotective endothelial secretory responses.Genes Dev.201630161811182110.1101/gad.284851.116
    [Google Scholar]
  105. ThomasR. WangW. SuD.M. Contributions of age-related thymic involution to immunosenescence and inflammaging.Immun. Ageing2020171210.1186/s12979‑020‑0173‑8
    [Google Scholar]
  106. PawelecG. Age and immunity: What is “immunosenescence”?Exp. Gerontol.20181054910.1016/j.exger.2017.10.024
    [Google Scholar]
  107. HurezV. PadrónÁ. SvatekR.S. CurielT.J. Considerations for successful cancer immunotherapy in aged hosts.Exp. Gerontol.2018107273610.1016/j.exger.2017.10.002
    [Google Scholar]
  108. PawelecG. Does patient age influence anti-cancer immunity?Semin. Immunopathol.201941112513110.1007/s00281‑018‑0697‑6
    [Google Scholar]
  109. BayegiS.N. HamidiehA.A. BehfarM. SaghazadehA. BozorgmehrM. TajikN. DelbandiA.A. DelavariS. ShekarabiM. RezaeiN. The reconstitution of T-cells after allogeneic hematopoietic stem cell transplant in a pediatric patient with congenital amegakaryocytic thrombocytopenia (CAMT).Endocr. Metab. Immune Disord. Drug Targets202424226527210.2174/1871530323666230801100113
    [Google Scholar]
  110. FukushimaY. MinatoN. HattoriM. The impact of senescence-associated T cells on immunosenescence and age-related disorders.Inflamm. Regen.20183812410.1186/s41232‑018‑0082‑9
    [Google Scholar]
  111. CoulieP.G. Van den EyndeB.J. van der BruggenP. BoonT. Tumour antigens recognized by T lymphocytes: At the core of cancer immunotherapy.Nat. Rev. Cancer201414213514610.1038/nrc3670
    [Google Scholar]
  112. ZhangH. LiuL. ZhangJ. ChenJ. YeJ. ShuklaS. QiaoJ. ZhanX. ChenH. WuC.J. FuY-X. LiB. Investigation of antigen-specific t-cell receptor clusters in human cancers.Clin. Cancer Res.20202661359137110.1158/1078‑0432.CCR‑19‑3249
    [Google Scholar]
  113. SchreiberK. KarrisonT.G. WolfS.P. KiyotaniK. SteinerM. LittmannE.R. PamerE.G. KammertoensT. SchreiberH. LeisegangM. Impact of TCR diversity on the development of transplanted or chemically induced tumors.Cancer Immunol. Res.20208219220210.1158/2326‑6066.CIR‑19‑0567
    [Google Scholar]
  114. VallejoA.N. CD28 extinction in human T cells: Altered functions and the program of T‐cell senescence.Immunol. Rev.2005205115816910.1111/j.0105‑2896.2005.00256.x
    [Google Scholar]
  115. ShimataniK. NakashimaY. HattoriM. HamazakiY. MinatoN. PD-1 + memory phenotype CD4 + T cells expressing C/EBPα underlie T cell immunodepression in senescence and leukemia.Proc. Natl. Acad. Sci.200910637158071581210.1073/pnas.0908805106
    [Google Scholar]
  116. SatoK. KatoA. SekaiM. HamazakiY. MinatoN. Physiologic thymic involution underlies age-dependent accumulation of senescence-associated CD4+ T cells.J. Immunol.2017199113814810.4049/jimmunol.1602005
    [Google Scholar]
  117. PardollD.M. The blockade of immune checkpoints in cancer immunotherapy.Nat. Rev. Cancer201212425226410.1038/nrc3239
    [Google Scholar]
  118. MinatoN. HattoriM. HamazakiY. Physiology and pathology of T-cell aging.Int. Immunol.202032422323110.1093/intimm/dxaa006
    [Google Scholar]
  119. RibotJ.C. LopesN. Silva-SantosB. γδ T cells in tissue physiology and surveillance.Nat. Rev. Immunol.202121422123210.1038/s41577‑020‑00452‑4
    [Google Scholar]
  120. JesenakM. Successful treatment of severe allergic asthma with omalizumab in a girl with DiGeorge syndrome.Cent. Eur. J. Immunol.202045336136310.5114/ceji.2020.101269
    [Google Scholar]
  121. ChakravertyR. TeshimaT. Graft-versus-host disease: A disorder of tissue regeneration and repair.Blood2021138181657166510.1182/blood.2021011867
    [Google Scholar]
  122. StrangeC.D. AhujaJ. ShroffG.S. TruongM.T. MaromE.M. Imaging evaluation of thymoma and thymic carcinoma.Front. Oncol.20221181041910.3389/fonc.2021.810419
    [Google Scholar]
  123. BlumT.G. MischD. KollmeierJ. ThielS. BauerT.T. Autoimmune disorders and paraneoplastic syndromes in thymoma.J. Thorac. Dis.202012127571759010.21037/jtd‑2019‑thym‑10
    [Google Scholar]
  124. ShellyS. Agmon-LevinN. AltmanA. ShoenfeldY. Thymoma and autoimmunity.Cell. Mol. Immunol.20118319920210.1038/cmi.2010.74
    [Google Scholar]
  125. IbisB. KonstantinosA. CarolC. SasitornY. VassilikiA.B. Immune-related adverse effects of checkpoint immunotherapy and implications for the treatment of patients with cancer and autoimmune diseases.Front. Immunol.202314119736410.3389/fimmu.2023.1197364
    [Google Scholar]
  126. ChangA. NatarajaR.M. PudelE. StundenR. BaréS. PacilliM. Diagnosis and management of ectopic cervical thymus in children: Systematic review of the literature.J. Pediatr. Surg.202156112062206810.1016/j.jpedsurg.2021.03.003
    [Google Scholar]
  127. KhanG.J. SunL. AbbasM. NaveedM. JamshaidT. BaigM.M.F.A. YuanS. In vitro pre-treatment of cancer cells with TGF-β1: A novel approach of tail vein lung cancer metastasis mouse model for anti-metastatic studies.Curr. Mol. Pharmacol.201912424926010.2174/1874467212666190306165703
    [Google Scholar]
  128. KhanG.J. SunL. KhanS. YuanS. NongyueH. Versatility of cancer associated fibroblasts: Commendable targets for anti-tumor therapy.Curr. Drug Targets201819131573158810.2174/1389450119666180219124439
    [Google Scholar]
  129. PantelK. Alix-PanabièresC. Circulating tumour cells in cancer patients: Challenges and perspectives.Trends Mol. Med.201016939840610.1016/j.molmed.2010.07.001
    [Google Scholar]
  130. BakhshiM.S. RizwanM. KhanG.J. DuanH. ZhaiK. Design of a novel integrated microfluidic chip for continuous separation of circulating tumor cells from peripheral blood cells.Sci. Rep.20221211701610.1038/s41598‑022‑20886‑1
    [Google Scholar]
  131. MarlowR. HonethG. LombardiS. CariatiM. HesseyS. PipiliA. MariottiV. BuchupalliB. FosterK. BonnetD. GrigoriadisA. RameshwarP. PurushothamA. TuttA. DontuG. A novel model of dormancy for bone metastatic breast cancer cells.Cancer Res.201373236886689910.1158/0008‑5472.CAN‑13‑0991
    [Google Scholar]
  132. WangX. HassanW. JabeenQ. KhanG.J. IqbalF. Interdependent and independent multidimensional role of tumor microenvironment on hepatocellular carcinoma.Cytokine201810315015910.1016/j.cyto.2017.09.026
    [Google Scholar]
  133. DuH. HuangY. HouX. YuX. LinS. WeiX. LiR. KhanG.J. YuanS. SunL. DT-13 inhibits cancer cell migration by regulating NMIIA indirectly in the tumor microenvironment.Oncol. Rep.201636272172810.3892/or.2016.4890
    [Google Scholar]
  134. YumotoK. EberM.R. BerryJ.E. TaichmanR.S. ShiozawaY. Molecular pathways: Niches in metastatic dormancy.Clin. Cancer Res.201420133384338910.1158/1078‑0432.CCR‑13‑0897
    [Google Scholar]
  135. SunY. CampisiJ. HiganoC. BeerT.M. PorterP. ColemanI. TrueL. NelsonP.S. Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B.Nat. Med.20121891359136810.1038/nm.2890
    [Google Scholar]
  136. KleinC.A. Framework models of tumor dormancy from patient-derived observations.Curr. Opin. Genet. Dev.2011211424910.1016/j.gde.2010.10.011
    [Google Scholar]
  137. Aguirre-GhisoJ.A. Models, mechanisms and clinical evidence for cancer dormancy.Nat. Rev. Cancer200771183484610.1038/nrc2256
    [Google Scholar]
  138. MalchowS. LeventhalD.S. SavageP.A. Organ-specific regulatory T cells of thymic origin are expanded in murine prostate tumors.OncoImmunology201327e2489810.4161/onci.24898
    [Google Scholar]
  139. BakhruP. ZhuM-L. WangH-H. HongL.K. KhanI. MouchessM. GulatiA.S. StarmerJ. HouY. SailerD. LeeS. ZhaoF. KirkwoodJ.M. MoschosS. FongL. AndersonM.S. SuM.A. Combination central tolerance and peripheral checkpoint blockade unleashes antimelanoma immunity.JCI Insight2017218e9326510.1172/jci.insight.93265
    [Google Scholar]
  140. TrägerU. SierroS. DjordjevicG. BouzoB. KhandwalaS. MeloniA. MortensenM. SimonA.K. The immune response to melanoma is limited by thymic selection of self-antigens.PLoS One201274e3500510.1371/journal.pone.0035005
    [Google Scholar]
  141. DerbinskiJ. Pillars Article: Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral Self. Nat. Immunol. 2001. 2: 1032-1039.J. Immunol.2016196729152922
    [Google Scholar]
  142. DerbinskiJ. SchulteA. KyewskiB. KleinL. Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self.Nat. Immunol.20012111032103910.1038/ni723
    [Google Scholar]
  143. SuM.A. AndersonM.S. Pulling RANK on cancer: Blocking aire-mediated central tolerance to enhance immunotherapy.Cancer Immunol. Res.20197685485910.1158/2326‑6066.CIR‑18‑0912
    [Google Scholar]
  144. CummingsS.R. MartinJ.S. McClungM.R. SirisE.S. EastellR. ReidI.R. DelmasP. ZoogH.B. AustinM. WangA. KutilekS. AdamiS. ZanchettaJ. LibanatiC. SiddhantiS. ChristiansenC. Denosumab for prevention of fractures in postmenopausal women with osteoporosis.N. Engl. J. Med.2009361875676510.1056/NEJMoa0809493
    [Google Scholar]
  145. ZhuM.L. NagavalliA. SuM.A. Aire deficiency promotes TRP-1-specific immune rejection of melanoma.Cancer Res.20137372104211610.1158/0008‑5472.CAN‑12‑3781
    [Google Scholar]
  146. AlexandropoulosK. DanzlN.M. Thymic epithelial cells: Antigen presenting cells that regulate T cell repertoire and tolerance development.Immunol. Res.2012541-317719010.1007/s12026‑012‑8301‑y
    [Google Scholar]
  147. KarimiS. ChattopadhyayS. ChakrabortyN.G. Manipulation of regulatory T cells and antigen‐specific cytotoxic T lymphocyte‐based tumour immunotherapy.Immunology2015144218619610.1111/imm.12387
    [Google Scholar]
  148. TurkM.J. WolchokJ.D. Guevara-PatinoJ.A. GoldbergS.M. HoughtonA.N. Multiple pathways to tumor immunity and concomitant autoimmunity.Immunol. Rev.2002188112213510.1034/j.1600‑065X.2002.18811.x
    [Google Scholar]
  149. TakabaH. MorishitaY. TomofujiY. DanksL. NittaT. KomatsuN. KodamaT. TakayanagiH. Fezf2 orchestrates a thymic program of self-antigen expression for immune tolerance.Cell2015163497598710.1016/j.cell.2015.10.013
    [Google Scholar]
  150. AkiravE.M. RuddleN.H. HeroldK.C. The role of AIRE in human autoimmune disease.Nat. Rev. Endocrinol.201171253310.1038/nrendo.2010.200
    [Google Scholar]
  151. FranzeseO. TorinoF. FuggettaM.P. AquinoA. RoselliM. BonmassarE. GiulianiA. D’AtriS. Tumor immunotherapy: Drug-induced neoantigens (xenogenization) and immune checkpoint inhibitors.Oncotarget2017825416414166910.18632/oncotarget.16335
    [Google Scholar]
  152. BurnetF.M. A reassessment of the forbidden clone hypothesis of autoimmune disease.Immunol. Cell Biol.19725011910.1038/icb.1972.1
    [Google Scholar]
  153. Kecha-KamounO. AchourI. MartensH. ColletteJ. LefebvreP.J. GreinerD.L. GeenenV. Thymic expression of insulin-related genes in an animal model of autoimmune type 1 diabetes.Diabetes Metab. Res. Rev.200117214615210.1002/dmrr.182
    [Google Scholar]
  154. PuglieseA. ZellerM. FernandezA.Jr ZalcbergL.J. BartlettR.J. RicordiC. PietropaoloM. EisenbarthG.S. BennettS.T. PatelD.D. The insulin gene is transcribed in the human thymus and transcription levels correlate with allelic variation at the INS VNTR-IDDM2 susceptibility locus for type 1 diabetes.Nat. Genet.199715329329710.1038/ng0397‑293
    [Google Scholar]
  155. VafiadisP. BennettS.T. ToddJ.A. NadeauJ. GrabsR. GoodyerC.G. WickramasingheS. ColleE. PolychronakosC. Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM2 locus.Nat. Genet.199715328929210.1038/ng0397‑289
    [Google Scholar]
  156. NosoS. KataokaK. KawabataY. BabayaN. HiromineY. YamajiK. FujisawaT. AramataS. KudoT. TakahashiS. IkegamiH. Insulin transactivator MafA regulates intrathymic expression of insulin and affects susceptibility to type 1 diabetes.Diabetes201059102579258710.2337/db10‑0476
    [Google Scholar]
  157. MurakamiM. HosoiY. NegishiT. KamiyaY. MiyashitaK. YamadaM. IriuchijimaT. YokooH. YoshidaI. TsushimaY. MoriM. Thymic hyperplasia in patients with Graves’ disease. Identification of thyrotropin receptors in human thymus.J. Clin. Invest.199698102228223410.1172/JCI119032
    [Google Scholar]
  158. PaschkeR. GeenenV. Messenger RNA expression for a TSH receptor variant in the thymus of a two-year-old child.J. Mol. Med.1995731157758010.1007/BF00195143
    [Google Scholar]
  159. SospedraM. Ferrer-FranceschX. DomínguezO. JuanM. Foz-SalaM. Pujol-BorrellR. Transcription of a broad range of self-antigens in human thymus suggests a role for central mechanisms in tolerance toward peripheral antigens.J. Immunol.1998161115918592910.4049/jimmunol.161.11.5918
    [Google Scholar]
  160. ColobranR. ArmengolM.P. FanerR. GärtnerM. TykocinskiL-O. LucasA. RuizM. JuanM. KyewskiB. Pujol-BorrellR. Association of an SNP with intrathymic transcription of TSHR and Graves’ disease: A role for defective thymic tolerance.Hum. Mol. Genet.201120173415342310.1093/hmg/ddr247
    [Google Scholar]
  161. LvH. HavariE. PintoS. GottumukkalaR.V.S.R.K. CornivelliL. RaddassiK. MatsuiT. RosenzweigA. BronsonR.T. SmithR. FletcherA.L. TurleyS.J. WucherpfennigK. KyewskiB. LipesM.A. Impaired thymic tolerance to α-myosin directs autoimmunity to the heart in mice and humans.J. Clin. Invest.201112141561157310.1172/JCI44583
    [Google Scholar]
  162. HandelA.E. IraniS.R. HolländerG.A. The role of thymic tolerance in CNS autoimmune disease.Nat. Rev. Neurol.2018141272373410.1038/s41582‑018‑0095‑7
    [Google Scholar]
  163. AaltonenJ. BjörsesP. PerheentupaJ. Horelli-KuitunenN. PalotieA. PeltonenL. LeeY.S. FrancisF. HenningS. ThielC. LeharachH. YaspoM-L. An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains.Nat. Genet.199717439940310.1038/ng1297‑399
    [Google Scholar]
  164. NagamineK. PetersonP. ScottH.S. KudohJ. MinoshimaS. HeinoM. KrohnK.J.E. LaliotiM.D. MullisP.E. AntonarakisS.E. KawasakiK. AsakawaS. ItoF. ShimizuN. Positional cloning of the APECED gene.Nat. Genet.199717439339810.1038/ng1297‑393
    [Google Scholar]
  165. IrlaM. HuguesS. GillJ. NittaT. HikosakaY. WilliamsI.R. HubertF-X. ScottH.S. TakahamaY. HolländerG.A. ReithW. Autoantigen-specific interactions with CD4+ thymocytes control mature medullary thymic epithelial cell cellularity.Immunity200829345146310.1016/j.immuni.2008.08.007
    [Google Scholar]
  166. AkiyamaT. ShimoY. YanaiH. QinJ. OhshimaD. MaruyamaY. AsaumiY. KitazawaJ. TakayanagiH. PenningerJ.M. MatsumotoM. NittaT. TakahamaY. InoueJ. The tumor necrosis factor family receptors RANK and CD40 cooperatively establish the thymic medullary microenvironment and self-tolerance.Immunity200829342343710.1016/j.immuni.2008.06.015
    [Google Scholar]
  167. GardnerJ.M. MetzgerT.C. McMahonE.J. Au-YeungB.B. KrawiszA.K. LuW. PriceJ.D. JohannesK.P. SatpathyA.T. MurphyK.M. TarbellK.V. WeissA. AndersonM.S. Extrathymic Aire-expressing cells are a distinct bone marrow-derived population that induce functional inactivation of CD4+ T cells.Immunity201339356057210.1016/j.immuni.2013.08.005
    [Google Scholar]
  168. AndersonM.S. VenanziE.S. KleinL. ChenZ. BerzinsS.P. TurleyS.J. von BoehmerH. BronsonR. DierichA. BenoistC. MathisD. Projection of an immunological self shadow within the thymus by the aire protein.Science200229855971395140110.1126/science.1075958
    [Google Scholar]
  169. HandelA.E. Shikama-DornN. ZhanybekovaS. MaioS. GraedelA.N. ZuklysS. PontingC.P. HolländerG.A. Comprehensively profiling the chromatin architecture of tissue restricted antigen expression in thymic epithelial cells over development.Front. Immunol.20189212010.3389/fimmu.2018.02120
    [Google Scholar]
  170. SansomS.N. Shikama-DornN. ZhanybekovaS. NusspaumerG. MacaulayI.C. DeadmanM.E. HegerA. PontingC.P. HolländerG.A. Population and single-cell genomics reveal the Aire dependency, relief from Polycomb silencing, and distribution of self-antigen expression in thymic epithelia.Genome Res.201424121918193110.1101/gr.171645.113
    [Google Scholar]
  171. TomofujiY. TakabaH. SuzukiH.I. BenlaribiR. MartinezC.D.P. AbeY. MorishitaY. OkamuraT. TaguchiA. KodamaT. TakayanagiH. Chd4 choreographs self-antigen expression for central immune tolerance.Nat. Immunol.202021889290110.1038/s41590‑020‑0717‑2
    [Google Scholar]
  172. EcklerM.J. LarkinK.A. McKennaW.L. KatzmanS. GuoC. RoqueR. ViselA. RubensteinJ.L.L. ChenB. Multiple conserved regulatory domains promote Fezf2 expression in the developing cerebral cortex.Neural Dev.201491610.1186/1749‑8104‑9‑6
    [Google Scholar]
  173. Baran-GaleJ. MorganM.D. MaioS. DhallaF. Calvo-AsensioI. DeadmanM.E. HandelA.E. MaynardA. ChenS. GreenF. SitR.V. NeffN.F. DarmanisS. TanW. MayA.P. MarioniJ.C. PontingC.P. HolländerG.A. Ageing compromises mouse thymus function and remodels epithelial cell differentiation.eLife20209e5622110.7554/eLife.56221
    [Google Scholar]
  174. GreenH.N. MellanbyE. Vitamin A as an anti-infective agent.BMJ19282353769169610.1136/bmj.2.3537.691
    [Google Scholar]
  175. SembaR.D. Vitamin A and immunity to viral, bacterial and protozoan infections.Proc. Nutr. Soc.199958371972710.1017/S0029665199000944
    [Google Scholar]
  176. RaverdeauM. MillsK.H.G. Modulation of T cell and innate immune responses by retinoic Acid.J. Immunol.201419272953295810.4049/jimmunol.1303245
    [Google Scholar]
  177. BernardA. BoumsellL. HillC. Joint Report of the First International Workshop on Human Leucocyte Differentiation Antigens by the Investigators of the Participating LaboratoriesSpringer: Berlin, Heidelberg1984
    [Google Scholar]
  178. SpencerS.P. WilhelmC. YangQ. HallJ.A. BouladouxN. BoydA. NutmanT.B. UrbanJ.F.Jr WangJ. RamalingamT.R. BhandoolaA. WynnT.A. BelkaidY. Adaptation of innate lymphoid cells to a micronutrient deficiency promotes type 2 barrier immunity.Science2014343616943243710.1126/science.1247606
    [Google Scholar]
  179. DongP. TaoY. YangY. WangW. Expression of retinoic acid receptors in intestinal mucosa and the effect of vitamin A on mucosal immunity.Nutrition2010267-874074510.1016/j.nut.2009.08.011
    [Google Scholar]
  180. KramerT.R. Relationship between vitamin a status and t-lymphocyte responsiveness.J. Nutr. Immunol.199641-27785
    [Google Scholar]
  181. CarazoA. MacákováK. MatoušováK. KrčmováL.K. ProttiM. MladěnkaP. Vitamin a update: Forms, sources, kinetics, detection, function, deficiency, therapeutic use and toxicity.Nutrients2021135170310.3390/nu13051703
    [Google Scholar]
  182. LykkesfeldtJ. MichelsA.J. FreiB. VitaminC. Adv. Nutr.201451161810.3945/an.113.005157
    [Google Scholar]
  183. UchioR. HiroseY. MurosakiS. YamamotoY. IshigamiA. High dietary intake of vitamin C suppresses age-related thymic atrophy and contributes to the maintenance of immune cells in vitamin C-deficient senescence marker protein-30 knockout mice.Br. J. Nutr.2015113460360910.1017/S0007114514003857
    [Google Scholar]
  184. HuijskensM.J.A.J. WalczakM. KollerN. BriedéJ.J. Senden-GijsbersB.L.M.G. SchnijderbergM.C. BosG.M.J. GermeraadW.T.V. Technical advance: Ascorbic acid induces development of double-positive T cells from human hematopoietic stem cells in the absence of stromal cells.J. Leukoc. Biol.20149661165117510.1189/jlb.1TA0214‑121RR
    [Google Scholar]
  185. SchmittT.M. Zúñiga-PflückerJ.C. Induction of T cell development from hematopoietic progenitor cells by delta-like-1 in vitro.Immunity200217674975610.1016/S1074‑7613(02)00474‑0
    [Google Scholar]
  186. HuijskensM.J.A.J. WalczakM. SarkarS. AtrafiF. Senden-GijsbersB.L.M.G. TilanusM.G.J. BosG.M.J. WietenL. GermeraadW.T.V. Ascorbic acid promotes proliferation of natural killer cell populations in culture systems applicable for natural killer cell therapy.Cytotherapy201517561362010.1016/j.jcyt.2015.01.004
    [Google Scholar]
  187. ChambialS. DwivediS. ShuklaK.K. JohnP.J. SharmaP. Vitamin C in disease prevention and cure: An overview.Indian J. Clin. Biochem.201328431432810.1007/s12291‑013‑0375‑3
    [Google Scholar]
  188. SibaiiH.M.R. El-ZayatS.R. Abd El-ShaheedA. MahfouzN.N. SallamS.F. El AzmaM.H. The hidden function of vitamin D.Open Access Maced. J. Med. Sci.20164459159510.3889/oamjms.2016.134
    [Google Scholar]
  189. AranowC. Vitamin D and the immune system.J. Investig. Med.201159688188610.2310/JIM.0b013e31821b8755
    [Google Scholar]
  190. KonijetiG.G. AroraP. BoylanM.R. SongY. HuangS. HarrellF. Newton-ChehC. O’NeillD. KorzenikJ. WangT.J. ChanA.T. Vitamin D supplementation modulates t cell–mediated immunity in humans: Results from a randomized control trial.J. Clin. Endocrinol. Metab.2016101253353810.1210/jc.2015‑3599
    [Google Scholar]
  191. DelucaH.F. CantornaM.T. VitaminD. Its role and uses in immunology.FASEB J.200115142579258510.1096/fj.01‑0433rev
    [Google Scholar]
  192. ChenW. WangJ.P. HuangY.Q. Effects of dietary n-6:n-3 polyunsaturated fatty acid ratio on cardiac antioxidative status, T-cell and cytokine mRNA expression in the thymus, and blood T lymphocyte subsets of broilers.Livest. Sci.20121501-311412010.1016/j.livsci.2012.08.008
    [Google Scholar]
  193. MoriguchiS. MiwaH. OkamuraM. MaekawaK. KishinoY. MaedaK. Vitamin E is an important factor in T cell differentiation in thymus of F344 rats.J. Nutr. Sci. Vitaminol.199339545146310.3177/jnsv.39.451
    [Google Scholar]
  194. ChenT. YuanS. WanX. ZhanL. YuX. ZengJ. LiH. ZhangW. HuX. YeY. HuW. Chinese herb cinobufagin-reduced cancer pain is associated with increased peripheral opioids by invaded CD3/4/8 lymphocytes.Oncotarget201787114251144110.18632/oncotarget.14005
    [Google Scholar]
  195. ChenZ. Clinical observation of cinobufacini injection used to treat moderate and advanced primary liver cancer.J. Chin. Integr. Med.20031318418610.3736/jcim20030311
    [Google Scholar]
  196. HeY.L. Effects of Lycium barbarum polysaccharide on tumor microenvironment T-lymphocyte subsets and dendritic cells in H22-bearing mice.J. Chin. Integr. Med.20053537437710.3736/jcim20050511
    [Google Scholar]
  197. ChenJ.R. LiE-Q. DaiC-Q. YuB. WuX-L. HuangC-R. ChenX-Y. The inducible effect of LBP on maturation of dendritic cells and the related immune signaling pathways in hepatocellular carcinoma (HCC).Curr. Drug Deliv.20129441442010.2174/156720112801323107
    [Google Scholar]
  198. PolyakS.J. MorishimaC. ShuhartM.C. WangC.C. LiuY. LeeD.Y-W. Inhibition of T-cell inflammatory cytokines, hepatocyte NF-κB signaling, and HCV infection by standardized silymarin.Gastroenterology200713251925193610.1053/j.gastro.2007.02.038
    [Google Scholar]
  199. WangM. WangH. TangY. KangD. GaoY. KeM. DouJ. XiT. ZhouC. Effective inhibition of a Strongylocentrotus nudus eggs polysaccharide against hepatocellular carcinoma is mediated via immunoregulation in vivo.Immunol. Lett.20111411748210.1016/j.imlet.2011.08.001
    [Google Scholar]
  200. LongS. GuangZhi, Y.; BaoJie, G.; Wei, X.; YanYong, H.; YingLi, W.; Yang, Z.; LiHua, L. Shikonin derivatives protect immune organs from damage and promote immune responses in vivo in tumour‐bearing mice.Phytother. Res.2012261263310.1002/ptr.3503
    [Google Scholar]
  201. ShuG. YangT. WangC. SuH. XiangM. Gastrodin stimulates anticancer immune response and represses transplanted H22 hepatic ascitic tumor cell growth: Involvement of NF-κB signaling activation in CD4+ T cells.Toxicol. Appl. Pharmacol.2013269327027910.1016/j.taap.2013.02.019
    [Google Scholar]
  202. HuangZ. WangY. ChenJ. WangR. ChenQ. Effect of Xiaoaiping injection on advanced hepatocellular carcinoma in patients.J. Tradit. Chin. Med.2013331343810.1016/S0254‑6272(13)60097‑7
    [Google Scholar]
  203. HanL. YaoS. CaoS. MoG. LiJ. CaoY. HuangF. Triterpenoid saponins from anemone flaccida suppress tumor cell proliferation by regulating MAPK, PD1/PDL1, and STAT3 signaling pathways and altering cancer metabolism.OncoTargets Ther.201912109171093010.2147/OTT.S212666
    [Google Scholar]
  204. ZhangQ.B. MengX-T. JiaQ-A. BuY. RenZ-G. ZhangB-H. TangZ-Y. Herbal compound songyou yin and moderate swimming suppress growth and metastasis of liver cancer by enhancing immune function.Integr. Cancer Ther.201615336837510.1177/1534735415622011
    [Google Scholar]
  205. ZhuY.C. Effects of Shiquanyuzhentang on immunologic function of H(22) tumor-bearing mouse.Zhongguo Ying Yong Sheng Li Xue Za Zhi20173315155
    [Google Scholar]
  206. ChenX. CaoZ. ZhangY. LiJ. WangS. DuJ. LiaoL. Fuzheng qingjie granules inhibit growth of hepatoma cells via inducing mitochondria-mediated apoptosis and enhancing immune function.Integr. Cancer Ther.201716332933810.1177/1534735416654761
    [Google Scholar]
  207. FuB. ZhaiX. XiS. YueL. WangY. QiuY. GongY. XuY. QianL. HuangJ. LuD. HuangS. WangJ. ZhouJ. WuD. WangY. Safety evaluation of a new traditional chinese medical formula, ciji-hua’ai-baosheng II formula, in adult rodent models.Evid. Based Complement. Alternat. Med.2019201912110.1155/2019/3659890
    [Google Scholar]
  208. XiS. FuB. LoyG. MinukG.Y. PengY. QiuY. ZhaiX. WangY. LiP. GongY. WangJ. HuangS. LuD. WangY. The effects of Ciji-Hua’ai-Baosheng on immune function of mice with H22 hepatocellular carcinoma receiving chemotherapy.Biomed. Pharmacother.201810189890910.1016/j.biopha.2018.03.027
    [Google Scholar]
  209. ZhouJ.Y. ChenM. WuC-E. ZhuangY-W. ChenY-G. LiuS-L. The modified Si-Jun-Zi Decoction attenuates colon cancer liver metastasis by increasing macrophage cells.BMC Complement. Altern. Med.20191918610.1186/s12906‑019‑2498‑4
    [Google Scholar]
  210. XuH. WenjieW. MuY. ChengweiD. Efficacy and safety of Chinese patent medicine (Jinlong capsule) in the treatment of advanced hepatocellular carcinoma: A meta-analysis.Biosci Rep.2020401BSR20194019
    [Google Scholar]
  211. ZhangH.J. Effects of Jinlong Capsule on expressions of interleukin-2 and soluble interleukin-2 receptor in patients with primary liver cancer after transarterial chemoembolization therapy.J. Chin. Integr. Med.20086990791010.3736/jcim20080906
    [Google Scholar]
  212. RaymanM.P. Selenium and human health.Lancet201237998221256126810.1016/S0140‑6736(11)61452‑9
    [Google Scholar]
  213. ArthurJ.R. McKenzieR.C. BeckettG.J. Selenium in the immune system.J. Nutr.200313351457S1459S10.1093/jn/133.5.1457S
    [Google Scholar]
  214. FerenčíkM. EbringerL. Modulatory effects of selenium and zinc on the immune system.Folia Microbiol.200348341742610.1007/BF02931378
    [Google Scholar]
  215. KieliszekM. Selenium–fascinating microelement, properties and sources in food.Molecules2019247129810.3390/molecules24071298
    [Google Scholar]
  216. RoohaniN. Zinc and its importance for human health: An integrative review.J. Res. Med. Sci.2013182144157
    [Google Scholar]
  217. MocchegianiE. SantarelliL. CostarelliL. CiprianoC. MutiE. GiacconiR. MalavoltaM. Plasticity of neuroendocrine–thymus interactions during ontogeny and ageing: Role of zinc and arginine.Ageing Res. Rev.20065328130910.1016/j.arr.2006.06.001
    [Google Scholar]
  218. NieJ. ZhaoC. DengL. ChenJ. YuB. WuX. PangP. ChenX. Efficacy of traditional Chinese medicine in treating cancer.Biomed. Rep.20164131410.3892/br.2015.537
    [Google Scholar]
  219. HsiaoW. LiuL. The role of traditional Chinese herbal medicines in cancer therapy--from TCM theory to mechanistic insights.Planta Med.201076111118113110.1055/s‑0030‑1250186
    [Google Scholar]
  220. HuY. WangS. WuX. ZhangJ. ChenR. ChenM. WangY. Chinese herbal medicine-derived compounds for cancer therapy: A focus on hepatocellular carcinoma.J. Ethnopharmacol.2013149360161210.1016/j.jep.2013.07.030
    [Google Scholar]
  221. YangL. YongchaoG. JupengG. HuiW. MohamedA.F. Simal-GandaraJ. YonghuaZ. ShaopingN. JianboX. Myricetin ameliorated prediabetes via immunomodulation and gut microbiota interaction.20223474977210.1002/fft2.152
    [Google Scholar]
  222. Del CornòM. GessaniS. ContiL. Shaping the innate immune response by dietary glucans: Any role in the control of cancer?Cancers202012115510.3390/cancers12010155
    [Google Scholar]
  223. CaoC. Effects of lycium barbarum polysaccharides on immunity and metabolic syndrome associated with the modulation of gut microbiota.Review202211203177
    [Google Scholar]
  224. ChenJ. Anti-tumour effects of polysaccharides isolated from Artemisia annua L by inducing cell apoptosis and immunomodulatory anti-hepatoma effects of polysaccharides.Afr. J. Tradit. Complement. Altern. Med.20141111522
    [Google Scholar]
  225. LiY. WangX. MaX. LiuC. WuJ. SunC. Natural polysaccharides and their derivates: A promising natural adjuvant for tumor immunotherapy.Front. Pharmacol.20211262181310.3389/fphar.2021.621813
    [Google Scholar]
  226. WangX.Y. Gastroprotective polysaccharide from natural sources: Review on structure, mechanism, and structure–activity relationship20224456059110.1002/fft2.172
    [Google Scholar]
  227. SohretogluD. HuangS. Ganoderma lucidum polysaccharides as an anti-cancer agent.Anticancer. Agents Med. Chem.201818566767410.2174/1871520617666171113121246
    [Google Scholar]
  228. MirlekarB. Tumor promoting roles of IL-10, TGF-β, IL-4, and IL-35: Its implications in cancer immunotherapy.SAGE Open Med.20221010.1177/20503121211069012
    [Google Scholar]
  229. RezalotfiA. AhmadianE. AazamiH. SolgiG. EbrahimiM. Gastric cancer stem cells effect on Th17/Treg Balance; A bench to beside perspective.Front. Oncol.2019922610.3389/fonc.2019.00226
    [Google Scholar]
  230. DuB. A narrative review on conformational structure characterization of natural polysaccharides.Food Front.20223463164010.1002/fft2.150
    [Google Scholar]
  231. YuanE. Effects of complex extracts of traditional Chinese herbs on gastric mucosal injury in rats and potential underlying mechanism.Food Front.20212330531510.1002/fft2.73
    [Google Scholar]
  232. Some Drugs and Herbal Products.IARC Working Group on the Evaluation of Carcinogenic Risks to Humans.Lyon, FRInternational Agency for Research on Cancer2016
    [Google Scholar]
  233. SinghN. BhallaM. De JagerP. GilcaM. An overview on ashwagandha: A Rasayana (rejuvenator) of Ayurveda.Afr. J. Tradit. Complement. Altern. Med.20118S520821310.4314/ajtcam.v8i5S.9
    [Google Scholar]
  234. TharakanA. Immunomodulatory effect of withania somnifera (ashwagandha) extract-a randomized, double-blind, placebo controlled trial with an open label extension on healthy participants.J. Clin. Med.202110163644
    [Google Scholar]
  235. AlzohairyM.A. Therapeutics role of azadirachta indica (neem) and their active constituents in diseases prevention and treatment.Evid. Based Complement. Alternat. Med.2016201611110.1155/2016/7382506
    [Google Scholar]
  236. GuhaI. BhuniyaA. NandiP. DasguptaS. SarkarA. SahaA. DasJ. GangulyN. GhoshS. GhoshT. SarkarM. GhoshS. MajumdarS. BaralR. BoseA. Neem leaf glycoprotein reverses tumor-induced and age-associated thymic involution to maintain peripheral CD8 + T cell pool.Immunotherapy2020121179981810.2217/imt‑2019‑0168
    [Google Scholar]
  237. SurjusheA. VasaniR. SapleD.G. Aloe vera: A short review.Indian J. Dermatol.200853416316610.4103/0019‑5154.44785
    [Google Scholar]
  238. AkevN. TurkayG. CanA. GurelA. YildizF. YardibiH. EkizE.E. UzunH. Tumour preventive effect of Aloe vera leaf pulp lectin (Aloctin I) on Ehrlich ascites tumours in mice.Phytother. Res.200721111070107510.1002/ptr.2215
    [Google Scholar]
  239. SharmaP. DwivedeeB.P. BishtD. DashA.K. KumarD. The chemical constituents and diverse pharmacological importance of Tinospora cordifolia.Heliyon201959e0243710.1016/j.heliyon.2019.e02437
    [Google Scholar]
  240. SinghN. Mahendra SinghS. Prakash SinghG. Restoration of thymic homeostasis in a tumor-bearing host by in vivo administration of medicinal herb Tinospora cordifolia.Immunopharmacol. Immunotoxicol.200527458559910.1080/08923970500416764
    [Google Scholar]
  241. ButnariuM. CoradiniC.Z. Evaluation of biologically active compounds from calendula officinalis flowers using spectrophotometry.Chem. Cent. J.2012613510.1186/1752‑153X‑6‑35
    [Google Scholar]
  242. Compendium of botanicals reported to contain naturally occuring substances of possible concern for human health when used in food and food supplements.EFSA J.20121052663
    [Google Scholar]
  243. BergesC. FuchsD. OpelzG. DanielV. NaujokatC. Helenalin suppresses essential immune functions of activated CD4+ T cells by multiple mechanisms.Mol. Immunol.200946152892290110.1016/j.molimm.2009.07.004
    [Google Scholar]
  244. YangJ. SunH. MaJ. SongY. LiuY. WangQ. MaS. ChengX. WeiF. New phenolic constituents obtained from Polygonum multiflorum.Chin. Herb. Med.202012334234610.1016/j.chmed.2020.02.001
    [Google Scholar]
  245. HongF. XiaoW. RagupathiG. LauC. LeungP. YeungK. GeorgeC. CassilethB. KennellyE. LivingstonP. The known immunologically active components of Astragalus account for only a small proportion of the immunological adjuvant activity when combined with conjugate vaccines.Planta Med.201177881782410.1055/s‑0030‑1250574
    [Google Scholar]
  246. WeiX. ZhangJ. LiJ. ChenS. Astragalus mongholicus and Polygonum multiflorum’s protective function against cyclophosphamide inhibitory effect on thymus.Am. J. Chin. Med.200432566968010.1142/S0192415X04002338
    [Google Scholar]
  247. ChaudhryM.S. VelardiE. DudakovJ.A. van den BrinkM.R.M. Thymus: The next (re)generation.Immunol. Rev.20162711567110.1111/imr.12418
    [Google Scholar]
  248. WilliamsD.J.E. A healthy thymus enhances immunity to beat infections, prevent cancer, and extend lifespan.2020Available from: https://drjewilliams.com/blog/rejuvenate-your-thymus-gland/
  249. MarvelN. Clinical study of the biologically active peptide bioregulator vladonix.2018Available from: https://naturesmarvels.com/2018/12/13/clinical-study-of-the-biologically-active-peptide-bioregulator-vladonix
  250. GombartA.F. PierreA. MagginiS. A review of micronutrients and the immune system–working in harmony to reduce the risk of infection.Nutrients202012123610.3390/nu12010236
    [Google Scholar]
  251. TeitelbaumJ. The single best immune system supplement available.2023Available from: https://www.rejuvenation-science.com/thymic-protein-a#:~:text=Thymic%20Protein%20A%2C%20the%20active,of%20by%20the%20immune%20system
  252. NusserA. Sagar; Swann, J.B.; Krauth, B.; Diekhoff, D.; Calderon, L.; Happe, C.; Grün, D.; Boehm, T. Developmental dynamics of two bipotent thymic epithelial progenitor types.Nature2022606791216517110.1038/s41586‑022‑04752‑8
    [Google Scholar]
  253. MohtashamiM. LiY.R. LeeC.R. Zúñiga-PflückerJ.C. Thymus reconstitution in young and aged mice is facilitated by in vitro-generated progenitor T cells.Front. Immunol.20221392677310.3389/fimmu.2022.926773
    [Google Scholar]
  254. VargheseJ.E. Therapeutic effects of vitamin D and cancer: An overview.Food Front.20212441742510.1002/fft2.97
    [Google Scholar]
  255. SangeethaV.J. Zinc nutrition and human health: Overview and implications.eFood202235e1710.1002/efd2.17
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303283164240126104109
Loading
/content/journals/emiddt/10.2174/0118715303283164240126104109
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test