Skip to content
2000
Volume 24, Issue 15
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

Longevity has been associated with healthy lifestyles, including some dietary regimens, such as the Mediterranean diet (MedDiet) and the Blue Zone (BZ) diets. MedDiet relies on a large consumption of fruit, vegetables, cereals, and extra-virgin olive oil, with less red meat and fat intake. Four major BZ have been recognized in the world, namely, Ogliastra in Sardinia (Italy), Ikaria (Greece), the Peninsula of Nicoya (Costa Rica), and Okinawa (Japan). Extreme longevity in these areas has been associated with correct lifestyles and dietary regimens. Fibers, polyphenols, beta-glucans, and unsaturated fatty acids represent the major constituents of both MedDiet and BZ diets, given their anti-inflammatory and antioxidant activities. Particularly, inhibition of the NF-kB pathway, with a reduced release of pro-inflammatory cytokines, and induction of T regulatory cells, with the production of the anti-inflammatory cytokine, interleukin-10, are the main mechanisms that prevent or attenuate the “inflammaging.” Notably, consistent physical activity, intense social interactions, and an optimistic attitude contribute to longevity in BZD areas. Commonalities and differences between MedDIet and BZ diets will be outlined, with special reference to microbiota and food components, which may contribute to longevity.

Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303271634240319054728
2024-04-02
2024-11-16
Loading full text...

Full text loading...

References

  1. TrichopoulouA. Diversity v. globalization: Traditional foods at the epicentre.Public Health Nutr.201215695195410.1017/S136898001200030423418631
    [Google Scholar]
  2. FanH. WangY. RenZ. LiuX. ZhaoJ. YuanY. FeiX. SongX. WangF. LiangB. Mediterranean diet lowers all-cause and cardiovascular mortality for patients with metabolic syndrome.Diabetol. Metab. Syndr.202315110710.1186/s13098‑023‑01052‑737221569
    [Google Scholar]
  3. DominguezL.J. VeroneseN. BellaG.D. CusumanoC. ParisiA. TagliaferriF. CiriminnaS. BarbagalloM. Mediterranean diet in the management and prevention of obesity.Exp. Gerontol.202317411212110.1016/j.exger.2023.112121
    [Google Scholar]
  4. LorenzoD. The Mediterranean diet: Culture, health and science.Br. J. Nutr.2015113S2S1S310.1017/S0007114515001087
    [Google Scholar]
  5. Sotos-PrietoM. Moreno-FrancoB. OrdovásJ.M. LeónM. CasasnovasJ.A. PeñalvoJ.L. Design and development of an instrument to measure overall lifestyle habits for epidemiological research: the Mediterranean Lifestyle (MEDLIFE) index.Public Health Nutr.201518695996710.1017/S136898001400136025025396
    [Google Scholar]
  6. DivellaR. MarinoG. InfusinoS. LanotteL. Gadaleta-CaldarolaG. Gadaleta-CaldarolaG. The mediterranean lifestyle to contrast low-grade inflammation behavior in cancer.Nutrients2023157166710.3390/nu1507166737049508
    [Google Scholar]
  7. KeysA.B. Seven Countries: A Multivariate Analysis of Death and Coronary Heart Disease.Harvard University Press, Cambridge198010.4159/harvard.9780674497887
    [Google Scholar]
  8. TrichopoulouA. CostacouT. BamiaC. TrichopoulosD. Adherence to a mediterranean diet and survival in a greek population.N. Engl. J. Med.2003348262599260810.1056/NEJMoa02503912826634
    [Google Scholar]
  9. EstruchR. RosE. Salas-SalvadóJ. CovasM.I. CorellaD. ArósF. Gómez-GraciaE. Ruiz-GutiérrezV. FiolM. LapetraJ. Lamuela-RaventosR.M. Serra-MajemL. PintóX. BasoraJ. MuñozM.A. SorlíJ.V. MartínezJ.A. FitóM. GeaA. HernánM.A. Martínez-GonzálezM.A. Primary prevention of cardiovascular disease with a mediterranean diet supplemented with extra-virgin olive oil or nuts.N. Engl. J. Med.201837825e3410.1056/NEJMoa180038929897866
    [Google Scholar]
  10. WillettW.C. SacksF. TrichopoulouA. DrescherG. Ferro-LuzziA. HelsingE. TrichopoulosD. Mediterranean diet pyramid: A cultural model for healthy eating.Am. J. Clin. Nutr.199561S61402S1406S10.1093/ajcn/61.6.1402S7754995
    [Google Scholar]
  11. VillaniA. SultanaJ. DoeckeJ. MantziorisE. Differences in the interpretation of a modernized Mediterranean diet prescribed in intervention studies for the management of type 2 diabetes: how closely does this align with a traditional Mediterranean diet?Eur. J. Nutr.20195841369138010.1007/s00394‑018‑1757‑329943276
    [Google Scholar]
  12. SofiF. MacchiC. AbbateR. GensiniG.F. CasiniA. Mediterranean diet and health status: An updated meta-analysis and a proposal for a literature-based adherence score.Public Health Nutr.201417122769278210.1017/S136898001300316924476641
    [Google Scholar]
  13. ToledoE. Salas-SalvadóJ. Donat-VargasC. Buil-CosialesP. EstruchR. RosE. CorellaD. FitóM. HuF.B. ArósF. Gómez-GraciaE. RomagueraD. Ortega-CalvoM. Serra-MajemL. PintóX. SchröderH. BasoraJ. SorlíJ.V. BullóM. Serra-MirM. Martínez-GonzálezM.A. Mediterranean diet and invasive breast cancer risk among women at high cardiovascular risk in the PREDIMED trial.JAMA Intern. Med.2015175111752176010.1001/jamainternmed.2015.483826365989
    [Google Scholar]
  14. WanD. DehghanM. de SouzaR.J. RamasundarahettigeC. EikelboomJ.W. BoschJ. MaggioniA.P. BhattD.L. YusufS. AnandS.S. Dietary intake and cardiovascular outcomes in patients with chronic vascular disease: Insights from the COMPASS trial cohort.Eur. J. Prev. Cardiol.2023308zwad06210.1093/eurjpc/zwad06237080912
    [Google Scholar]
  15. RoweJ.W. KahnR.L. Successful aging.Gerontologist199737443344010.1093/geront/37.4.4339279031
    [Google Scholar]
  16. ThomasA. BelskyD.W. GuY. Healthy lifestyle behaviors and biological aging in the US National Health and Nutrition Examination Surveys 1999-2018.J. Gerontol. A Biol. Sci. Med. Sci.202378915351542Epub ahead of print10.1093/gerona/glad08236896965
    [Google Scholar]
  17. LegrandR. ManckoundiaP. NuemiG. PoulainM. Assessment of the health status of the oldest olds living on the greek island of Ikaria: A population based-study in a blue zone.Curr. Gerontol. Geriatr. Res.201920191810.1155/2019/819431031885554
    [Google Scholar]
  18. PesG.M. DoreM.P. TsofliouF. PoulainM. Diet and longevity in the blue zones: A set-and-forget issue?Maturitas2022164313710.1016/j.maturitas.2022.06.00435780634
    [Google Scholar]
  19. PoulainM. PesG.M. GraslandC. CarruC. FerrucciL. BaggioG. FranceschiC. DeianaL. Identification of a geographic area characterized by extreme longevity in the Sardinia island: The AKEA study.Exp. Gerontol.20043991423142910.1016/j.exger.2004.06.01615489066
    [Google Scholar]
  20. PesG.M. ToluF. PoulainM. ErrigoA. MasalaS. PietrobelliA. BattistiniN.C. MaioliM. Lifestyle and nutrition related to male longevity in Sardinia: An ecological study.Nutr. Metab. Cardiovasc. Dis.201323321221910.1016/j.numecd.2011.05.00421958760
    [Google Scholar]
  21. TrichopoulouA. Traditional Mediterranean diet and longevity in the elderly: A review.Public Health Nutr.20047794394710.1079/PHN200455815482622
    [Google Scholar]
  22. MirzaeiH. SuarezJ.A. LongoV.D. Protein and amino acid restriction, aging and disease: From yeast to humans.Trends Endocrinol. Metab.2014251155856610.1016/j.tem.2014.07.00225153840
    [Google Scholar]
  23. WillcoxB.J. WillcoxD.C. TodorikiH. FujiyoshiA. YanoK. HeQ. CurbJ.D. SuzukiM. Caloric restriction, the traditional Okinawan diet, and healthy aging: The diet of the world’s longest-lived people and its potential impact on morbidity and life span.Ann. N. Y. Acad. Sci.20071114143445510.1196/annals.1396.03717986602
    [Google Scholar]
  24. PintiM. GibelliniL. Lo TartaroD. De BiasiS. NasiM. BorellaR. FidanzaL. NeroniA. TroianoL. FranceschiC. CossarizzaA. A comprehensive analysis of cytokine network in centenarians.Int. J. Mol. Sci.2023243271910.3390/ijms2403271936769039
    [Google Scholar]
  25. FranceschiC. CapriM. MontiD. GiuntaS. OlivieriF. SeviniF. PanourgiaM.P. InvidiaL. CelaniL. ScurtiM. CeveniniE. CastellaniG.C. SalvioliS. Inflammaging and anti-inflammaging: A systemic perspective on aging and longevity emerged from studies in humans.Mech. Ageing Dev.200712819210510.1016/j.mad.2006.11.01617116321
    [Google Scholar]
  26. CarusoC. PucaA.A. Special issue “centenarians—a model to study the molecular basis of lifespan and healthspan”.Int. J. Mol. Sci.2021224204410.3390/ijms2204204433669501
    [Google Scholar]
  27. MagroneT. MagroneM. RussoM.A. JirilloE. Peripheral immunosenescence and central neuroinflammation: A dangerous liaison - a dietary approach.Endocr. Metab. Immune Disord. Drug Targets20202091391141110.2174/187153032066620040612373432250234
    [Google Scholar]
  28. CavazosA. Gonzalez de MejiaE. Identification of bioactive peptides from cereal storage proteins and their potential role in prevention of chronic diseases.Compr. Rev. Food Sci. Food Saf.201312436438010.1111/1541‑4337.1201733412684
    [Google Scholar]
  29. RuggieroE. BonaccioM. Di CastelnuovoA. BonanniA. CostanzoS. PersichilloM. BraconeF. CerlettiC. DonatiM.B. de GaetanoG. IacovielloL. Consumption of whole grain food and its determinants in a general Italian population: Results from the INHES study.Nutr. Metab. Cardiovasc. Dis.201929661162010.1016/j.numecd.2019.03.00130956028
    [Google Scholar]
  30. SealC.J. BrownleeI.A. Whole-grain foods and chronic disease: Evidence from epidemiological and intervention studies.Proc. Nutr. Soc.201574331331910.1017/S002966511500210426062574
    [Google Scholar]
  31. CostabileA. KlinderA. FavaF. NapolitanoA. FoglianoV. LeonardC. GibsonG.R. TuohyK.M. Whole-grain wheat breakfast cereal has a prebiotic effect on the human gut microbiota: A double-blind, placebo-controlled, crossover study.Br. J. Nutr.200899111012010.1017/S000711450779392317761020
    [Google Scholar]
  32. KellyS.A.M. HartleyL. LovemanE. ColquittJ.L. JonesH.M. Al-KhudairyL. ClarC. GermanòR. LunnH.R. FrostG. ReesK. Whole grain cereals for the primary or secondary prevention of cardiovascular disease.Cochrane Libr.201720215CD00505110.1002/14651858.CD005051.pub328836672
    [Google Scholar]
  33. ShewryP.R. HawkesfordM.J. PiironenV. LampiA.M. GebruersK. BorosD. AnderssonA.A.M. ÅmanP. RakszegiM. BedoZ. WardJ.L. Natural variation in grain composition of wheat and related cereals.J. Agric. Food Chem.201361358295830310.1021/jf305409223414336
    [Google Scholar]
  34. Stone, B.Wheat: Chemistry and Technology4th ed; Khan, K.; Shewzy, P.R., Eds.; AACC: St Paul, MN, USA, 2009, pp. 299-362.10.1094/9781891127557.009
    [Google Scholar]
  35. Nutrition value.Available from: www.Nutrtionvalue.org 2023
  36. AdomK.K. SorrellsM.E. LiuR.H. Phytochemicals and antioxidant activity of milled fractions of different wheat varieties.J. Agric. Food Chem.20055362297230610.1021/jf048456d15769171
    [Google Scholar]
  37. QuH. MadlR.L. TakemotoD.J. BaybuttR.C. WangW. Lignans are involved in the antitumor activity of wheat bran in colon cancer SW480 cells.J. Nutr.2005135359860210.1093/jn/135.3.59815735100
    [Google Scholar]
  38. HuiS. LiuK. LangH. LiuY. WangX. ZhuX. DoucetteS. YiL. MiM. Comparative effects of different whole grains and brans on blood lipid: A network meta-analysis.Eur. J. Nutr.20195872779278710.1007/s00394‑018‑1827‑630244379
    [Google Scholar]
  39. MalungaL.N. AmesN. ZhouyaoH. BlewettH. ThandapillyS.J. Beta-glucan from barley attenuates post-prandial glycemic response by inhibiting the activities of glucose transporters but not intestinal brush border enzymes and amylolysis of starch.Front. Nutr.2021862857110.3389/fnut.2021.62857133937305
    [Google Scholar]
  40. ToshS.M. BordenaveN. Emerging science on benefits of whole grain oat and barley and their soluble dietary fibers for heart health, glycemic response, and gut microbiota.Nutr. Rev.202078S1132010.1093/nutrit/nuz08532728756
    [Google Scholar]
  41. HenrionM. FranceyC. LêK.A. LamotheL. Cereal B-glucans: The impact of processing and how it affects physiological responses.Nutrients2019118172910.3390/nu1108172931357461
    [Google Scholar]
  42. Di DomenicoM. BalliniA. BoccellinoM. ScaccoS. LoveroR. CharitosI.A. SantacroceL. The intestinal microbiota may be a potential theranostic tool for personalized medicine.J. Pers. Med.202212452310.3390/jpm1204052335455639
    [Google Scholar]
  43. NovakM. VetvickaV. Beta-glucans, history, and the present: Immunomodulatory aspects and mechanisms of action.J. Immunotoxicol.200851475710.1080/1547691080201904518382858
    [Google Scholar]
  44. ZhangY. LiuX. ZhaoJ. WangJ. SongQ. ZhaoC. The phagocytic receptors of β-glucan.Int. J. Biol. Macromol.202220543044110.1016/j.ijbiomac.2022.02.11135202631
    [Google Scholar]
  45. ŻyłaE. DziendzikowskaK. KamolaD. WilczakJ. SapierzyńskiR. HarasymJ. Gromadzka-OstrowskaJ. Anti-inflammatory activity of oat beta-glucans in a crohn’s disease model: Time- and molar mass-dependent effects.Int. J. Mol. Sci.2021229448510.3390/ijms2209448533923129
    [Google Scholar]
  46. AhujaI. KissenR. BonesA.M. Phytoalexins in defense against pathogens.Trends Plant Sci.2012172739010.1016/j.tplants.2011.11.00222209038
    [Google Scholar]
  47. JoukarF. YeganehS. ShafaghiA. Mahjoub-JalaliM.R. HassanipourS. SantacroceL. MavaddatiS. Mansour-GhanaeiF. The seroprevalence of celiac disease in patients with symptoms of irritable bowel syndrome: A cross-sectional study in the north of Iran.Hum. Antibodies20223029710310.3233/HAB‑21151635342083
    [Google Scholar]
  48. MagroneT. MagroneM. RussoM.A. JirilloE. Taking advantage of plant defense mechanisms to promote human health. Exploitation of plant natural products for preventing or treating human disease: Second of two parts.Endocr. Metab. Immune Disord. Drug Targets202121111961197310.2174/187153032166620122912540033372886
    [Google Scholar]
  49. GutiErrez-GrijalvaE.P. Ambriz-PereD.L. Leyva-LopezN. Castillo-LopezR.I. HeiediaJ.B. Review: dietary phenolic compounds, health benefits and bioaccessibility.Arch. Latinoam. Nutr.20166628710029737665
    [Google Scholar]
  50. NicholsJ.A. KatiyarS.K. Skin photoprotection by natural polyphenols: Anti-inflammatory, antioxidant and DNA repair mechanisms.Arch. Dermatol. Res.20103022718310.1007/s00403‑009‑1001‑319898857
    [Google Scholar]
  51. DunawayS. OdinR. ZhouL. JiL. ZhangY. KadekaroA.L. Natural antioxidants: Multiple mechanisms to protect skin from solar radiation.Front. Pharmacol.2018939210.3389/fphar.2018.0039229740318
    [Google Scholar]
  52. BarbosaM. ValentãoP. AndradeP.B. Polyphenols from brown seaweeds (Ochrophyta, Phaeophyceae): Phlorotannins in the pursuit of natural alternatives to tackle neurodegeneration.Mar. Drugs2020181265410.3390/md1812065433353007
    [Google Scholar]
  53. MagroneT. MagroneM. RussoM.A. JirilloE. Recent advances on the anti-inflammatory and antioxidant properties of red grape polyphenols: In vitro and in vivo studies.Antioxidants2019913510.3390/antiox901003531906123
    [Google Scholar]
  54. YahfoufiN. AlsadiN. JambiM. MatarC. The immunomodulatory and anti-inflammatory role of polyphenols.Nutrients20181011161810.3390/nu1011161830400131
    [Google Scholar]
  55. TiliE. MichailleJ.J. AdairB. AlderH. LimagneE. TaccioliC. FerracinM. DelmasD. LatruffeN. CroceC.M. Resveratrol decreases the levels of miR-155 by upregulating miR-663, a microRNA targeting JunB and JunD.Carcinogenesis20103191561156610.1093/carcin/bgq14320622002
    [Google Scholar]
  56. OngA.L.C. RamasamyT.S. Role of Sirtuin1-p53 regulatory axis in aging, cancer and cellular reprogramming.Ageing Res. Rev.201843648010.1016/j.arr.2018.02.00429476819
    [Google Scholar]
  57. ZouP. LiuX. LiG. WangY. Resveratrol pretreatment attenuates traumatic brain injury in rats by suppressing NLRP3 inflammasome activation via SIRT1.Mol. Med. Rep.20171723212321710.3892/mmr.2017.824129257276
    [Google Scholar]
  58. GomesE.C. SilvaA.N. OliveiraM.R. Oxidants, antioxidants, and the beneficial roles of exercise-induced production of reactive species.Oxid. Med. Cell. Longev.2012201211210.1155/2012/75613222701757
    [Google Scholar]
  59. HorvathS. DNA methylation age of human tissues and cell types.Genome Biol.20131410R11510.1186/gb‑2013‑14‑10‑r11524138928
    [Google Scholar]
  60. PengK. TaoY. ZhangJ. WangJ. YeF. DanG. ZhaoY. CaiY. ZhaoJ. WuQ. ZouZ. CaoJ. SaiY. Resveratrol regulates mitochondrial biogenesis and fission/fusion to attenuate rotenone-induced neurotoxicity.Oxid. Med. Cell. Longev.2016201611210.1155/2016/670562126770656
    [Google Scholar]
  61. ShiJ. YuJ. PohorlyJ.E. KakudaY. Polyphenolics in grape seeds-biochemistry and functionality.J. Med. Food20036429129910.1089/10966200377251983114977436
    [Google Scholar]
  62. LiW. ZhuS. LiJ. AssaA. JundoriaA. XuJ. FanS. EissaN.T. TraceyK.J. SamaA.E. WangH. EGCG stimulates autophagy and reduces cytoplasmic HMGB1 levels in endotoxin-stimulated macrophages.Biochem. Pharmacol.20118191152116310.1016/j.bcp.2011.02.01521371444
    [Google Scholar]
  63. EgglerA.L. SavinovS.N. Chemical and biological mechanisms of phytochemical activation of Nrf2 and importance in disease prevention.Recent Adv. Phytochem.20134312115510.1007/978‑3‑319‑00581‑2_726855455
    [Google Scholar]
  64. KimE.N. LimJ.H. KimM.Y. BanT.H. JangI.A. YoonH.E. ParkC.W. ChangY.S. ChoiB.S. Resveratrol, an Nrf2 activator, ameliorates aging-related progressive renal injury.Aging2018101839910.18632/aging.10136129326403
    [Google Scholar]
  65. KlaipsC.L. JayarajG.G. HartlF.U. Pathways of cellular proteostasis in aging and disease.J. Cell Biol.20182171516310.1083/jcb.20170907229127110
    [Google Scholar]
  66. HippM.S. KasturiP. HartlF.U. The proteostasis network and its decline in ageing.Nat. Rev. Mol. Cell Biol.201920742143510.1038/s41580‑019‑0101‑y30733602
    [Google Scholar]
  67. MedzhitovR. Inflammation 2010: New adventures of an old flame.Cell2010140677177610.1016/j.cell.2010.03.00620303867
    [Google Scholar]
  68. MurphyK.J. DyerK.A. HydeB. DavisC.R. BracciE.L. WoodmanR.J. HodgsonJ.M. Long-term adherence to a mediterranean diet 1-year after completion of the medley study.Nutrients20221415309810.3390/nu1415309835956274
    [Google Scholar]
  69. ConiglioS. ShumskayaM. VassiliouE. Unsaturated fatty acids and their immunomodulatory properties.Biology202312227910.3390/biology1202027936829556
    [Google Scholar]
  70. MantziorisE. MuhlhauslerB.S. VillaniA. Impact of the mediterranean dietary pattern on n-3 fatty acid tissue levels–a systematic review.Prostaglandins Leukot. Essent. Fatty Acids202217610238710.1016/j.plefa.2021.10238734929617
    [Google Scholar]
  71. LopezS. BermudezB. Montserrat-de la PazS. JaramilloS. VarelaL.M. Ortega-GomezA. AbiaR. MurianaF.J.G. Membrane composition and dynamics: A target of bioactive virgin olive oil constituents.Biochim. Biophys. Acta Biomembr.2014183861638165610.1016/j.bbamem.2014.01.00724440426
    [Google Scholar]
  72. SantacroceL. ManA. CharitosI.A. HaxhirexhaK. TopiS. Current knowledge about the connection between health status and gut microbiota from birth to elderly. A narrative review.Front. Biosci.202126613514810.52586/493034162042
    [Google Scholar]
  73. BhattacharjeeB. PalP.K. ChattopadhyayA. BandyopadhyayD. Oleic acid protects against cadmium induced cardiac and hepatic tissue injury in male Wistar rats: A mechanistic study.Life Sci.202024411732410.1016/j.lfs.2020.11732431958420
    [Google Scholar]
  74. SantacroceL. CagianoR. Del PreteR. BottalicoL. SabatiniR. CarlaioR.G. PrejbeanuR. VermesanH. DragulescuS.I. VermesanD. MotocA. LosaccoT. Helicobacter pylori infection and gastric MALTomas: An up-to-date and therapy highlight.Clin. Ter.2008159645746219169609
    [Google Scholar]
  75. YangZ.H. NillK. Takechi-HarayaY. PlayfordM.P. NguyenD. YuZ.X. PryorM. TangJ. RojulpoteK.V. MehtaN.N. WenH. RemaleyA.T. Differential effect of dietary supplementation with a soybean oil enriched in oleic acid versus linoleic acid on plasma lipids and atherosclerosis in LDLR-deficient mice.Int. J. Mol. Sci.20222315838510.3390/ijms2315838535955518
    [Google Scholar]
  76. OhY.T. LeeJ.Y. LeeJ. KimH. YoonK.S. ChoeW. KangI. Oleic acid reduces lipopolysaccharide-induced expression of iNOS and COX-2 in BV2 murine microglial cells: Possible involvement of reactive oxygen species, p38 MAPK, and IKK/NF-κB signaling pathways.Neurosci. Lett.20094642939710.1016/j.neulet.2009.08.04019699266
    [Google Scholar]
  77. HidalgoM.A. NahuelpanC. ManosalvaC. JaraE. CarrettaM.D. ConejerosI. LoaizaA. ChihuailafR. BurgosR.A. Oleic acid induces intracellular calcium mobilization, MAPK phosphorylation, superoxide production and granule release in bovine neutrophils.Biochem. Biophys. Res. Commun.2011409228028610.1016/j.bbrc.2011.04.14421575602
    [Google Scholar]
  78. HalperinS.T. ’t HartB.A. LuchicchiA. SchenkG.J. The forgotten brother: The innate-like B1 cell in multiple sclerosis.Biomedicines202210360610.3390/biomedicines1003060635327408
    [Google Scholar]
  79. ParackovaZ. VrabcovaP. ZentsovaI. SedivaA. BloomfieldM. Neutrophils in STAT1 Gain-Of-function have a pro-inflammatory signature which is not rescued by JAK inhibition.J. Clin. Immunol.202343716401659Epub ahead of print10.1007/s10875‑023‑01528‑137358695
    [Google Scholar]
  80. YangY. LiuY. WangY. ChaoY. ZhangJ. JiaY. TieJ. HuD. Regulation of SIRT1 and its roles in inflammation.Front. Immunol.20221383116810.3389/fimmu.2022.83116835359990
    [Google Scholar]
  81. TopiS. BottalicoL. CharitosI.A. ColellaM. Di DomenicoM. PalmirottaR. SantacroceL. Biomolecular mechanisms of autoimmune diseases and their relationship with the resident microbiota: Friend or foe?Pathophysiology202229350753610.3390/pathophysiology2903004136136068
    [Google Scholar]
  82. CharletR. Le DanvicC. SendidB. Nagnan-Le MeillourP. JawharaS. Oleic acid and palmitic acid from Bacteroides thetaiotaomicron and lactobacillus johnsonii exhibit anti-inflammatory and antifungal properties.Microorganisms2022109180310.3390/microorganisms1009180336144406
    [Google Scholar]
  83. HanR. YuY. ZhaoK. WeiJ. HuiY. GaoJ.M. Lignans from eucommia ulmoides oliver leaves exhibit neuroprotective effects via activation of the PI3K/Akt/GSK-3β/Nrf2 signaling pathways in H2O2-treated PC-12 cells.Phytomedicine202210115412410.1016/j.phymed.2022.15412435487038
    [Google Scholar]
  84. SinghV. UbaidS. Role of silent information regulator 1 (SIRT1) in regulating oxidative stress and inflammation.Inflammation20204351589159810.1007/s10753‑020‑01242‑932410071
    [Google Scholar]
  85. LiJ. YanD. ChenL. ZhangY. SongY. ZhuS. JiT. ZhouW. GanF. WangX. HongM. GuanL. ShiY. WuG. XuW. Multiple genotypes of Echovirus 11 circulated in mainland China between 1994 and 2017.Sci. Rep.2019911058310.1038/s41598‑019‑46870‑w31332200
    [Google Scholar]
  86. CharitosI.A. TopiS. Gagliano-CandelaR. De NittoE. PolimenoL. MontagnaniM. SantacroceL. The toxic effects of endocrine disrupting chemicals (EDCs) on gut microbiota: Bisphenol A (BPA) A review.Endocr. Metab. Immune Disord. Drug Targets202222771672710.2174/187153032266622032511404535339192
    [Google Scholar]
  87. PauwelsE.K.J. The protective effect of the Mediterranean diet: Focus on cancer and cardiovascular risk.Med. Princ. Pract.201120210311110.1159/00032119721252562
    [Google Scholar]
  88. PonnappanS. PonnappanU. Aging and immune function: Molecular mechanisms to interventions.Antioxid. Redox Signal.20111481551158510.1089/ars.2010.322820812785
    [Google Scholar]
  89. BuettnerD. PesG.M. Blue Zones. Encyclopedia of Biomedical GerontologyRattan, SIS Elsevier. vol. 1, Academic Press2020
    [Google Scholar]
  90. FranceschiC. BezrukovV. BlanchéH. BolundL. ChristensenK. BenedictisG.D. DeianaL. GonosE. HervonenA. YangH. JeuneB. KirkwoodB.L. KristensenP. LeonA. PelicciP.G. PeltonenL. PoulainM. ReaI.M. RemacleJ. RobineJ.M. SchreiberS. SikoraE. SlagboomP.E. SpazzafumoL. StaziM.A. ToussaintO. VaupelJ.W. Genetics of healthy aging in Europe: The EU-integrated project GEHA (GEnetics of Healthy Aging).Ann. N. Y. Acad. Sci.200711001214510.1196/annals.1395.00317460163
    [Google Scholar]
  91. CeveniniE. CotichiniR. StaziM.A. ToccaceliV. PalmasM.G. CapriM. De RangoF. DatoS. PassarinoG. JeuneB. FranceschiC. Health status and 6 years survival of 552 90+ Italian sib-ships recruited within the EU Project GEHA (GEnetics of Healthy Ageing).Age201436294996610.1007/s11357‑013‑9604‑124323371
    [Google Scholar]
  92. ArrigoniR. BalliniA. TopiS. BottalicoL. JirilloE. SantacroceL. Antibiotic resistance to Mycobacterium tuberculosis and potential use of natural and biological products as alternative anti-mycobacterial agents.Antibiotics20221110143110.3390/antibiotics1110143136290089
    [Google Scholar]
  93. PesG.M. TognottiE. PoulainM. ChambreD. DoreM.P. Why were Sardinians the shortest Europeans? A journey through genes, infections, nutrition, and sex.Am. J. Phys. Anthropol.2017163131310.1002/ajpa.2317728138956
    [Google Scholar]
  94. MaioliM. PesG.M. SannaM. CherchiS. DettoriM. MancaE. FarrisG.A. Sourdough-leavened bread improves postprandial glucose and insulin plasma levels in subjects with impaired glucose tolerance.Acta Diabetol.2008452919610.1007/s00592‑008‑0029‑818317680
    [Google Scholar]
  95. LevineM.E. SuarezJ.A. BrandhorstS. BalasubramanianP. ChengC.W. MadiaF. FontanaL. MirisolaM.G. Guevara-AguirreJ. WanJ. PassarinoG. KennedyB.K. WeiM. CohenP. CrimminsE.M. LongoV.D. Low protein intake is associated with a major reduction in IGF-1, cancer, and overall mortality in the 65 and younger but not older population.Cell Metab.201419340741710.1016/j.cmet.2014.02.00624606898
    [Google Scholar]
  96. GundogduA. NalbantogluO.U. The role of the Mediterranean diet in modulating the gut microbiome: A review of current evidence.Nutrition202311411211810.1016/j.nut.2023.11211837437419
    [Google Scholar]
  97. Garcia-MantranaI. Selma-RoyoM. AlcantaraC. ColladoM.C. Shifts on gut microbiota associated to mediterranean diet adherence and specific dietary intakes on general adult population.Front. Microbiol.2018989010.3389/fmicb.2018.0089029867803
    [Google Scholar]
  98. CorderR. MullenW. KhanN.Q. MarksS.C. WoodE.G. CarrierM.J. CrozierA. Red wine procyanidins and vascular health.Nature2006444711956610.1038/444566a17136085
    [Google Scholar]
  99. Merinas-AmoT. Tasset-CuevasI. Díaz-CarreteroA.M. Alonso-MoragaÁ. CalahorroF. Role of choline in the modulation of degenerative processes: In vivo and in vitro studies.J. Med. Food201720322323410.1089/jmf.2016.007528103133
    [Google Scholar]
  100. AngelinoD. PietrangeliF. SerafiniM. Early dinner time and caloric restriction lapse contribute to the longevity of nonagenarians and centenarians of the italian abruzzo region: A cross-sectional study.Front. Nutr.2022986310610.3389/fnut.2022.86310635392292
    [Google Scholar]
  101. MontagnaniM. BottalicoL. PotenzaM.A. CharitosI.A. TopiS. ColellaM. SantacroceL. The crosstalk between gut microbiota and nervous system: A bidirectional interaction between microorganisms and metabolome.Int. J. Mol. Sci.202324121032210.3390/ijms24121032237373470
    [Google Scholar]
  102. WegierskaA.E. CharitosI.A. TopiS. PotenzaM.A. MontagnaniM. SantacroceL. The connection between physical exercise and gut microbiota: Implications for competitive sports athletes.Sports Med.202252102355236910.1007/s40279‑022‑01696‑x35596883
    [Google Scholar]
  103. FoscolouA. PolychronopoulosE. PakaE. TyrovolasS. BountzioukaV. ZeimbekisA. TyrovolaD. UralD. PanagiotakosD. Lifestyle and health determinants of cardiovascular disease among Greek older adults living in Eastern Aegean Islands: An adventure within the MEDIS study.Hellenic J. Cardiol.201657640741410.1016/j.hjc.2016.11.02128202216
    [Google Scholar]
  104. ZhuG. MaF. WangG. WangY. ZhaoJ. ZhangH. ChenW. Bifidobacteria attenuate the development of metabolic disorders, with inter- and intra-species differences.Food Funct.2018963509352210.1039/C8FO00100F29892745
    [Google Scholar]
  105. de Koning GansJ.M. UiterwaalC.S.P.M. van der SchouwY.T. BoerJ.M.A. GrobbeeD.E. VerschurenW.M.M. BeulensJ.W.J. Tea and coffee consumption and cardiovascular morbidity and mortality.Arterioscler. Thromb. Vasc. Biol.20103081665167110.1161/ATVBAHA.109.20193920562351
    [Google Scholar]
  106. Rosero-BixbyL. DowW.H. RehkopfD.H. The nicoya region of costa rica: A high longevity island for elderly males.Vienna Yearb. Popul. Res.20141110913610.1553/populationyearbook2013s10925426140
    [Google Scholar]
  107. MatteiJ. HuF.B. CamposH. A higher ratio of beans to white rice is associated with lower cardiometabolic risk factors in Costa Rican adults.Am. J. Clin. Nutr.201194386987210.3945/ajcn.111.01321921813808
    [Google Scholar]
  108. Ruiz-NarváezE.A. BaylinA. AzofeifaJ. LealA. Rosero-BixbyL. Diet and leukocyte telomere length in a population with extended longevity: The costa rican longevity and healthy aging study (CRELES).Nutrients2021138258510.3390/nu1308258534444746
    [Google Scholar]
  109. Mora-AlvaradoD.A. Portuguez-BarqueroC.F. Alfaro-HerreraN. Hernandez-MiraulthM. Differences in water hardness and longevity rates in the nicoya peninsula and the other districts of guanacaste.Revista Tecnología en Marcha.201528331410.18845/tm.v28i3.2407
    [Google Scholar]
  110. WillcoxBJ WillcoxDC SuzukiM Demographic, phenotypic, and genetic characteristics of centenarians in Okinawa and Japan: Part 1-centenarians in Okinawa.Mech Ageing Dev.2017165Pt B757910.1016/j.mad.2016.11.001
    [Google Scholar]
  111. WillcoxD.C. WillcoxB.J. TodorikiH. SuzukiM. The Okinawan diet: health implications of a low-calorie, nutrient-dense, antioxidant-rich dietary pattern low in glycemic load.J. Am. Coll. Nutr.200928S4500S516S10.1080/07315724.2009.1071811720234038
    [Google Scholar]
  112. IsaccoC.G. BalliniA. De VitoD. NguyenK.C.D. CantoreS. BottalicoL. QuagliuoloL. BoccellinoM. Di DomenicoM. SantacroceL. ArrigoniR. DipalmaG. InchingoloF. Rebalancing the oral microbiota as an efficient tool in endocrine, metabolic and immune disorders.Endocr. Metab. Immune Disord. Drug Targets202121577778410.2174/187153032066620072914250432727337
    [Google Scholar]
  113. SittipoP. LobiondaS. LeeY.K. MaynardC.L. Intestinal microbiota and the immune system in metabolic diseases.J. Microbiol.201856315416210.1007/s12275‑018‑7548‑y29492872
    [Google Scholar]
  114. FennemanA.C. RampanelliE. YinY.S. AmesJ. BlaserM.J. FliersE. NieuwdorpM. Gut microbiota and metabolites in the pathogenesis of endocrine disease.Biochem. Soc. Trans.202048391593110.1042/BST2019068632412045
    [Google Scholar]
  115. GuptaV.K. ScheunemannL. EisenbergT. MertelS. BhukelA. KoemansT.S. KramerJ.M. LiuK.S.Y. SchroederS. StunnenbergH.G. SinnerF. MagnesC. PieberT.R. DiptS. FialaA. SchenckA. SchwaerzelM. MadeoF. SigristS.J. Restoring polyamines protects from age-induced memory impairment in an autophagy-dependent manner.Nat. Neurosci.201316101453146010.1038/nn.351223995066
    [Google Scholar]
  116. MarinhoG. HoldtS. JacobsenC. AngelidakiI. Lipids and composition of fatty acids of saccharina latissima cultivated year-round in integrated multi-trophic aquaculture.Mar. Drugs20151374357437410.3390/md1307435726184241
    [Google Scholar]
  117. SuzukiM. WuS. OotawaT. SmithH. ShiraishiM. MiyamotoA. MatsuokaY. SawaS. MoriM. MoriH. YamoriY. Relationship between regional distribution of centenarians and drinking water hardness in the amami islands, kagoshima prefecture, Japan.Nutrients2023157156910.3390/nu1507156937049410
    [Google Scholar]
  118. CatlingL.A. AbubakarI. LakeI.R. SwiftL. HunterP.R. A systematic review of analytical observational studies investigating the association between cardiovascular disease and drinking water hardness.J. Water Health20086443344210.2166/wh.2008.05418401109
    [Google Scholar]
  119. FastameM.C. RuiuM. MulasI. Mental health and religiosity in the sardinian blue zone: Life satisfaction and optimism for aging well.J. Relig. Health20216042450246210.1007/s10943‑021‑01261‑233881687
    [Google Scholar]
  120. Ben-ZurH. Loneliness, optimism, and well-being among married, divorced, and widowed individuals.J. Psychol.20121461-2233610.1080/00223980.2010.54841422303610
    [Google Scholar]
  121. RendallM.S. WedenM.M. FavreaultM.M. WaldronH. The protective effect of marriage for survival: A review and update.Demography201148248150610.1007/s13524‑011‑0032‑521526396
    [Google Scholar]
  122. SoloskiM.J. PoulainM. PesG.M. Does the trained immune system play an important role in the extreme longevity that is seen in the Sardinian blue zone?Front. Aging20223106941510.3389/fragi.2022.106941536601618
    [Google Scholar]
  123. Vázquez-PalaciosF.R. Tovar-CabañasR. Natural and cultural longevity zones from an anthropological and geographical viewpoint.J. Popul. Ageing202215370772310.1007/s12062‑022‑09370‑w35965639
    [Google Scholar]
  124. PopkinB.M. The nutrition transition in low-income countries: An emerging crisis.Nutr. Rev.199452928529810.1111/j.1753‑4887.1994.tb01460.x7984344
    [Google Scholar]
  125. DominguezL.J. Di BellaG. VeroneseN. BarbagalloM. Impact of mediterranean diet on chronic non-communicable diseases and longevity.Nutrients2021136202810.3390/nu1306202834204683
    [Google Scholar]
  126. PolimenoL. BaroneM. MoscaA. ViggianiM.T. Di LeoA. DebellisL. TroisiM. DanieleA. SantacroceL. Gut microbiota imbalance is related to sporadic colorectal neoplasms. A pilot study.Appl. Sci.2019924549110.3390/app9245491
    [Google Scholar]
  127. TsuganeS. Why has Japan become the world’s most long-lived country: Insights from a food and nutrition perspective.Eur. J. Clin. Nutr.202175692192810.1038/s41430‑020‑0677‑532661353
    [Google Scholar]
  128. SekikawaA. DoyleM.F. KullerL.H. Recent findings of long-chain n-3 polyunsaturated fatty acids (LCn-3 PUFAs) on atherosclerosis and coronary heart disease (CHD) contrasting studies in Western countries to Japan.Trends Cardiovasc. Med.201525871772310.1016/j.tcm.2015.03.00125850978
    [Google Scholar]
  129. YuE. HuF.B. Dairy products, dairy fatty acids, and the prevention of cardiometabolic disease: A review of recent evidence.Curr. Atheroscler. Rep.20182052410.1007/s11883‑018‑0724‑z29564646
    [Google Scholar]
  130. TsuganeS. Salt, salted food intake, and risk of gastric cancer: Epidemiologic evidence.Cancer Sci.20059611610.1111/j.1349‑7006.2005.00006.x15649247
    [Google Scholar]
  131. RehkopfD.H. DowW.H. Rosero-BixbyL. LinJ. EpelE.S. BlackburnE.H. Longer leukocyte telomere length in Costa Rica’s Nicoya Peninsula: A population-based study.Exp. Gerontol.201348111266127310.1016/j.exger.2013.08.00523988653
    [Google Scholar]
  132. AraiY. Martin-RuizC.M. TakayamaM. AbeY. TakebayashiT. KoyasuS. SuematsuM. HiroseN. von ZglinickiT. Inflammation, but not telomere length, predicts successful ageing at extreme old age: A longitudinal study of semi-supercentenarians.EBioMedicine20152101549155810.1016/j.ebiom.2015.07.02926629551
    [Google Scholar]
  133. BostockE.L. MorseC.I. WinwoodK. McEwanI.M. Onambélé-PearsonG.L. Omega-3 fatty acids and vitamin D in immobilisation: Part B- Modulation of muscle functional, vascular and activation profiles.J. Nutr. Health Aging2017211596610.1007/s12603‑016‑0711‑427999851
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303271634240319054728
Loading
/content/journals/emiddt/10.2174/0118715303271634240319054728
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test