Skip to content
2000
Volume 24, Issue 15
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

is one of the most important remedies in ancient Eastern medicine. In the modern Western world, its reputation started to grow towards the end of the XIX century, but the rather approximate understanding of action mechanisms did not provide sufficient information for an appropriate use. Nowadays, is frequently used in some pathological conditions, but the comprehension of its potential beneficial effects is still incomplete. The purpose of this study is to highlight the most recent knowledge on mechanisms and effects of ginseng active ingredients on the intestinal microbiota. The human microbiota takes part in the immune and metabolic balance and serves as the most important regulator for the control of local pathogens. This delicate role requires a complex interaction and reflects the interconnection with the brain- and the liver-axes. Thus, by exerting their beneficial effects through the intestinal microbiota, the active ingredients of (glycosides and their metabolites) might help to ameliorate both specific intestinal conditions as well as the whole organism's homeostasis.

Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303270923240307120117
2024-03-19
2025-01-18
Loading full text...

Full text loading...

References

  1. LeungK. WongA. Pharmacology of ginsenosides: A literature review.Chin. Med.2010512010.1186/1749‑8546‑5‑20 20537195
    [Google Scholar]
  2. PotenzaM.A. MontagnaniM. SantacroceL. CharitosI.A. BottalicoL. Ancient herbal therapy: A brief history of Panax ginseng.J. Ginseng Res.202347335936510.1016/j.jgr.2022.03.004 37252279
    [Google Scholar]
  3. BaegI.H. SoS.H. The world ginseng market and the ginseng (Korea).J. Ginseng Res.20133711710.5142/jgr.2013.37.1 23717152
    [Google Scholar]
  4. ZhangH. AbidS. AhnJ.C. MathiyalaganR. KimY.J. YangD.C. WangY. Characteristics of Panax ginseng cultivars in Korea and China.Molecules20202511263510.3390/molecules25112635 32517049
    [Google Scholar]
  5. WeiX. WangX. CaoP. GaoZ. ChenA.J. HanJ. Microbial community changes in the rhizosphere soil of healthy and rusty panax ginseng and discovery of pivotal fungal genera associated with rusty roots.BioMed Res. Int.2020202011310.1155/2020/8018525 32016120
    [Google Scholar]
  6. JiaoX.L. ZhangX.S. LuX.H. QinR. BiY.M. GaoW.W. Effects of maize rotation on the physicochemical properties and microbial communities of American ginseng cultivated soil.Sci. Rep.201991861510.1038/s41598‑019‑44530‑7 31197229
    [Google Scholar]
  7. HouJ.P. The chemical constituents of ginseng plants.Comp. Med. East West197752123145 608333
    [Google Scholar]
  8. QiL.W. WangC.Z. YuanC.S. Ginsenosides from American ginseng: Chemical and pharmacological diversity.Phytochemistry201172868969910.1016/j.phytochem.2011.02.012 21396670
    [Google Scholar]
  9. YangW. HuY. WuW. YeM. GuoD. Saponins in the genus Panax L. (Araliaceae): A systematic review of their chemical diversity.Phytochemistry201410672410.1016/j.phytochem.2014.07.012 25108743
    [Google Scholar]
  10. HeM. HuangX. LiuS. GuoC. XieY. MeijerA.H. WangM. The difference between white and red ginseng: Variations in ginsenosides and immunomodulation.Planta Med.20188412/1384585410.1055/a‑0641‑6240 29925101
    [Google Scholar]
  11. ZhengM. XuF. LiY. XiX. CuiX. HanC. ZhangX. Study on transformation of ginsenosides in different methods.Bio.Med. Res. Int.2017201711010.1155/2017/8601027 29387726
    [Google Scholar]
  12. QiL.W. WangC.Z. DuG.J. ZhangZ.Y. CalwayT. YuanC.S. Metabolism of ginseng and its interactions with drugs.Curr. Drug Metab.201112981882210.2174/138920011797470128 21619519
    [Google Scholar]
  13. YuK. ChenF. LiC. Absorption, disposition, and pharmacokinetics of saponins from Chinese medicinal herbs: What do we know and what do we need to know more?Curr. Drug Metab.201213557759810.2174/1389200211209050577 22292787
    [Google Scholar]
  14. QiL.W. WangC.Z. YuanC.S. Isolation and analysis of ginseng: Advances and challenges.Nat. Prod. Rep.201128346749510.1039/c0np00057d 21258738
    [Google Scholar]
  15. PanossianA.G. EfferthT. ShikovA.N. PozharitskayaO.N. KuchtaK. MukherjeeP.K. BanerjeeS. HeinrichM. WuW. GuoD. WagnerH. Evolution of the adaptogenic concept from traditional use to medical systems: Pharmacology of stress‐ and aging‐related diseases.Med. Res. Rev.202141163070310.1002/med.21743 33103257
    [Google Scholar]
  16. ArringN.M. MillstineD. MarksL.A. NailL.M. Ginseng as a treatment for fatigue: A systematic review.J. Altern. Complement. Med.201824762463310.1089/acm.2017.0361 29624410
    [Google Scholar]
  17. GoodwinJ.S. AtluruD. SierakowskiS. LianosE.A. Mechanism of action of glucocorticosteroids. Inhibition of T cell proliferation and interleukin 2 production by hydrocortisone is reversed by leukotriene B4.J. Clin. Invest.19867741244125010.1172/JCI112427 3007577
    [Google Scholar]
  18. ScaglioneF. CattaneoG. AlessandriaM. CogoR. Efficacy and safety of the standardised Ginseng extract G115 for potentiating vaccination against the influenza syndrome and protection against the common cold.Drugs Exp. Clin. Res.19962226572 8879982
    [Google Scholar]
  19. KangS.W. MinH.Y. Ginseng, the ‘Immunity Boost’: The effects of panax ginseng on immune system.J. Ginseng Res.201236435436810.5142/jgr.2012.36.4.354 23717137
    [Google Scholar]
  20. XueC.C. ShergisJ.L. ZhangA.L. WorsnopC. FongH. StoryD. Da CostaC. ThienF.C.K. Panax ginseng C.A Meyer root extract for moderate chronic obstructive pulmonary disease (COPD): Study protocol for a randomised controlled trial.Trials201112116410.1186/1745‑6215‑12‑164 21718484
    [Google Scholar]
  21. ChenZ.Y. DuT.M. ChenS.C. Effects of ginsenoside Rg1 on learning and memory function and morphology of hippocampal neurons of rats with electrical hippocampal injuries.Nan Fang Yi Ke Da Xue Xue Bao201131610391042 21690064
    [Google Scholar]
  22. HouW. WangY. ZhengP. CuiR. Effects of ginseng on neurological disorders.Front. Cell. Neurosci.2020145510.3389/fncel.2020.00055 32265659
    [Google Scholar]
  23. OngW.Y. FarooquiT. KohH.L. FarooquiA.A. LingE.A. Protective effects of ginseng on neurological disorders.Front. Aging Neurosci.2015712910.3389/fnagi.2015.00129 26236231
    [Google Scholar]
  24. WangY. LiX. WangX. LauW. WangY. XingY. ZhangX. MaX. GaoF. Ginsenoside Rd attenuates myocardial ischemia/reperfusion injury via Akt/GSK-3β signaling and inhibition of the mitochondria-dependent apoptotic pathway.PLoS One201388e7095610.1371/journal.pone.0070956 23976968
    [Google Scholar]
  25. SunJ. SunG. MengX. WangH. WangM. QinM. MaB. LuoY. YuY. ChenR. AiQ. SunX. Ginsenoside RK3 prevents hypoxia-reoxygenation induced apoptosis in H9c2 cardiomyocytes via AKT and MAPK pathway.Evid. Based Complement. Alternat. Med.2013201311210.1155/2013/690190 23935671
    [Google Scholar]
  26. ChenX. Cardiovascular protection by ginsenosides and their nitric oxide releasing action.Clin. Exp. Pharmacol. Physiol.199623872873210.1111/j.1440‑1681.1996.tb01767.x 8886498
    [Google Scholar]
  27. TsaiS.C. ChiaoY.C. LuC.C. WangP.S. Stimulation of the secretion of luteinizing hormone by ginsenoside-Rb1 in male rats.Chin. J. Physiol.200346117 12817698
    [Google Scholar]
  28. WangX. ChuS. QianT. ChenJ. ZhangJ. Ginsenoside Rg1 improves male copulatory behavior via nitric oxide/cyclic guanosine monophosphate pathway.J. Sex. Med.20107274375010.1111/j.1743‑6109.2009.01482.x 19751391
    [Google Scholar]
  29. ShangW. YangY. ZhouL. JiangB. JinH. ChenM. Ginsenoside Rb1 stimulates glucose uptake through insulin-like signaling pathway in 3T3-L1 adipocytes.J. Endocrinol.2008198356156910.1677/JOE‑08‑0104 18550785
    [Google Scholar]
  30. BangH. KwakJ.H. AhnH.Y. ShinD.Y. LeeJ.H. Korean red ginseng improves glucose control in subjects with impaired fasting glucose, impaired glucose tolerance, or newly diagnosed type 2 diabetes mellitus.J. Med. Food201417112813410.1089/jmf.2013.2889 24456363
    [Google Scholar]
  31. SotaniemiE.A. HaapakoskiE. RautioA. Ginseng therapy in non-insulin-dependent diabetic patients: Effects on psychophysical performance, glucose homeostasis, serum lipids, serum aminoterminalpropeptide concentration, and body weight.Diabetes Care199518101373137510.2337/diacare.18.10.1373 8721940
    [Google Scholar]
  32. VuksanV. StavroM.P. SievenpiperJ.L. KooV.Y.Y. WongE. Beljan-ZdravkovicU. FrancisT. JenkinsA.L. LeiterL.A. JosseR.G. XuZ. American ginseng improves glycemia in individuals with normal glucose tolerance: Effect of dose and time escalation.J. Am. Coll. Nutr.200019673874410.1080/07315724.2000.10718073 11194526
    [Google Scholar]
  33. PaikD.J. LeeC.H. Review of cases of patient risk associated with ginseng abuse and misuse.J. Ginseng Res.2015392899310.1016/j.jgr.2014.11.005 26045681
    [Google Scholar]
  34. ThursbyE. JugeN. Introduction to the human gut microbiota.Biochem. J.2017474111823183610.1042/BCJ20160510 28512250
    [Google Scholar]
  35. VarroE. Tyler. Herbs of Choice: The Therapeutic Use of Phytomedicinals.Haworth Pr Inc1994
    [Google Scholar]
  36. CoonJ.T. ErnstE. Panax ginseng.Drug Saf.200225532334410.2165/00002018‑200225050‑00003 12020172
    [Google Scholar]
  37. SeelyD. DugouaJ.J. PerriD. MillsE. KorenG. Safety and efficacy of panax ginseng during pregnancy and lactation.J. Popul. Ther. Clin. Pharmacol.2008151e87e94 18204104
    [Google Scholar]
  38. LiuY. ZhangJ.W. LiW. MaH. SunJ. DengM.C. YangL. Ginsenoside metabolites, rather than naturally occurring ginsenosides, lead to inhibition of human cytochrome P450 enzymes.Toxicol. Sci.200691235636410.1093/toxsci/kfj164 16547074
    [Google Scholar]
  39. WangF. LiY. ZhangY.J. ZhouY. LiS. LiH.B. Natural products for the prevention and treatment of hangover and alcohol use disorder.Molecules20162116410.3390/molecules21010064 26751438
    [Google Scholar]
  40. KimY.S. WooJ.Y. HanC.K. ChangI.M. Safety analysis of panax ginseng in randomized clinical trials: A systematic review.Medicines20152210612610.3390/medicines2020106 28930204
    [Google Scholar]
  41. AL ShabanahO.A. AlotaibiM.R. Al RejaieS.S. AlhoshaniA.R. AlmutairiM.M. AlshammariM.A. HafezM.M. Inhibitory effect of ginseng on breast cancer cell line growth via up-regulation of cyclin dependent kinase inhibitor, p21 and p53.Asian Pac. J. Cancer Prev.2016171149654971 28032724
    [Google Scholar]
  42. DograA. KumarJ. Biosynthesis of anticancer phytochemical compounds and their chemistry.Front. Pharmacol.202314113677910.3389/fphar.2023.1136779 36969868
    [Google Scholar]
  43. VuksanV. SungM.K. SievenpiperJ.L. StavroP.M. JenkinsA.L. Di BuonoM. LeeK.S. LeiterL.A. NamK.Y. ArnasonJ.T. ChoiM. NaeemA. Korean red ginseng (Panax ginseng) improves glucose and insulin regulation in well-controlled, type 2 diabetes: Results of a randomized, double-blind, placebo-controlled study of efficacy and safety.Nutr. Metab. Cardiovasc. Dis.2008181465610.1016/j.numecd.2006.04.003 16860976
    [Google Scholar]
  44. JonesB.D. RunikisA.M. Interaction of ginseng with phenelzine.J. Clin. Psychopharmacol.19877320120210.1097/00004714‑198706000‑00030 3597812
    [Google Scholar]
  45. MyersA.P. WatsonT.A. StrockS.B. Drug reaction with eosinophilia and systemic symptoms syndrome probably induced by a lamotrigine-ginseng drug interaction.Pharmacotherapy2015353e9e1210.1002/phar.1550 25756365
    [Google Scholar]
  46. Ong Lai TeikD. LeeX.S. LimC.J. LowC.M. MuslimaM. AquiliL. Ginseng and ginkgo biloba effects on cognition as modulated by cardiovascular reactivity: A randomised trial.PLoS One2016113e015044710.1371/journal.pone.0150447 26938637
    [Google Scholar]
  47. KimY. JoJ.J. ChoP. ShresthaR. KimK.M. KiS.H. SongK.S. LiuK.H. SongI.S. KimJ.H. LeeJ.M. LeeS. Characterization of red ginseng–drug interaction by CYP3A activity increased in high dose administration in mice.Biopharm. Drug Dispos.202041729530610.1002/bdd.2246 32557706
    [Google Scholar]
  48. SantacroceL. ManA. CharitosI.A. HaxhirexhaK. TopiS. Current knowledge about the connection between health status and gut microbiota from birth to elderly. A narrative review.Front. Biosci.202126613514810.52586/4930 34162042
    [Google Scholar]
  49. LiangD. LeungR.K.K. GuanW. AuW.W. Correction to: Involvement of gut microbiome in human health and disease: Brief overview, knowledge gaps and research opportunities.Gut Pathog.20191115710.1186/s13099‑019‑0339‑0 31832105
    [Google Scholar]
  50. AzimT. Lymphocytes in the intestine: Role and distribution.J. Diarrhoeal Dis. Res.199191110 1869795
    [Google Scholar]
  51. WuH.J. WuE. The role of gut microbiota in immune homeostasis and autoimmunity.Gut Microbes20123141410.4161/gmic.19320 22356853
    [Google Scholar]
  52. ChengM. NingK. Stereotypes about enterotype: The old and new ideas.Genomics Proteomics Bioinformatics201917141210.1016/j.gpb.2018.02.004 31026581
    [Google Scholar]
  53. RoagerH.M. LichtT.R. PoulsenS.K. LarsenT.M. BahlM.I. Microbial enterotypes, inferred by the prevotella-to-bacteroides ratio, remained stable during a 6-month randomized controlled diet intervention with the new nordic diet.Appl. Environ. Microbiol.20148031142114910.1128/AEM.03549‑13 24296500
    [Google Scholar]
  54. SatokariR. GrönroosT. LaitinenK. SalminenS. IsolauriE. Bifidobacterium and Lactobacillus DNA in the human placenta.Lett. Appl. Microbiol.200948181210.1111/j.1472‑765X.2008.02475.x 19018955
    [Google Scholar]
  55. ArboleyaS. WatkinsC. StantonC. RossR.P. Gut bifidobacteria populations in human health and aging.Front. Microbiol.20167120410.3389/fmicb.2016.01204 27594848
    [Google Scholar]
  56. PendersJ. ThijsC. VinkC. StelmaF.F. SnijdersB. KummelingI. van den BrandtP.A. StobberinghE.E. Factors influencing the composition of the intestinal microbiota in early infancy.Pediatrics2006118251152110.1542/peds.2005‑2824 16882802
    [Google Scholar]
  57. SalazarN. Valdés-VarelaL. GonzálezS. GueimondeM. de los Reyes-GavilánC.G. Nutrition and the gut microbiome in the elderly.Gut Microbes201782829710.1080/19490976.2016.1256525 27808595
    [Google Scholar]
  58. McBurneyM.I. DavisC. FraserC.M. SchneemanB.O. HuttenhowerC. VerbekeK. WalterJ. LatulippeM.E. Establishing what constitutes a healthy human gut microbiome: State of the science, regulatory considerations, and future directions.J. Nutr.2019149111882189510.1093/jn/nxz154 31373365
    [Google Scholar]
  59. SartorR.B. Microbial influences in inflammatory bowel diseases.Gastroenterology2008134257759410.1053/j.gastro.2007.11.059 18242222
    [Google Scholar]
  60. EckburgP.B. BikE.M. BernsteinC.N. PurdomE. DethlefsenL. SargentM. GillS.R. NelsonK.E. RelmanD.A. Diversity of the human intestinal microbial flora.Science200530857281635163810.1126/science.1110591 15831718
    [Google Scholar]
  61. MeneesS. CheyW. The gut microbiome and irritable bowel syndrome.F1000 Res.20187102910.12688/f1000research.14592.1 30026921
    [Google Scholar]
  62. CaniP.D. DelzenneN.M. AmarJ. BurcelinR. Role of gut microflora in the development of obesity and insulin resistance following high-fat diet feeding.Pathol. Biol.200856530530910.1016/j.patbio.2007.09.008 18178333
    [Google Scholar]
  63. HarrisK. KassisA. MajorG. ChouC.J. Is the gut microbiota a new factor contributing to obesity and its metabolic disorders?J. Obes.20122012879151 22315672
    [Google Scholar]
  64. SantacroceL. PalmirottaR. BottalicoL. CharitosI.A. ColellaM. TopiS. JirilloE. Crosstalk between the resident microbiota and the immune cells regulates female genital tract health.Life2023137153110.3390/life13071531 37511906
    [Google Scholar]
  65. de PunderK. PruimboomL. Stress induces endotoxemia and low-grade inflammation by increasing barrier permeability.Front. Immunol.2015622310.3389/fimmu.2015.00223 26029209
    [Google Scholar]
  66. ZengX.Y. LiM. Looking into key bacterial proteins involved in gut dysbiosis.World J. Methodol.202111413014310.5662/wjm.v11.i4.130 34322365
    [Google Scholar]
  67. ColellaM. CharitosI.A. BalliniA. CafieroC. TopiS. PalmirottaR. SantacroceL. Microbiota revolution: How gut microbes regulate our lives.World J. Gastroenterol.202329284368438310.3748/wjg.v29.i28.4368 37576701
    [Google Scholar]
  68. QuanL.H. ZhangC. DongM. JiangJ. XuH. YanC. LiuX. ZhouH. ZhangH. ChenL. ZhongF.L. LuoZ.B. LamS.M. ShuiG. LiD. JinW. Myristoleic acid produced by enterococci reduces obesity through brown adipose tissue activation.Gut20206971239124710.1136/gutjnl‑2019‑319114 31744910
    [Google Scholar]
  69. PotenzaM.A. NacciC. De SalviaM.A. SgarraL. CollinoM. MontagnaniM. Targeting endothelial metaflammation to counteract diabesity cardiovascular risk: Current and perspective therapeutic options.Pharmacol. Res.201712022624110.1016/j.phrs.2017.04.009 28408314
    [Google Scholar]
  70. FestiD. SchiumeriniR. EusebiL.H. MarascoG. TaddiaM. ColecchiaA. Gut microbiota and metabolic syndrome.World J. Gastroenterol.20142043160791609410.3748/wjg.v20.i43.16079 25473159
    [Google Scholar]
  71. DiamantM. BlaakE.E. de VosW.M. Do nutrient–gut–microbiota interactions play a role in human obesity, insulin resistance and type 2 diabetes?Obes. Rev.201112427228110.1111/j.1467‑789X.2010.00797.x 20804522
    [Google Scholar]
  72. GhoshS.S. WangJ. YannieP.J. GhoshS. Intestinal barrier dysfunction, LPS translocation, and disease development.J. Endocr. Soc.202042bvz03910.1210/jendso/bvz039 32099951
    [Google Scholar]
  73. ZhangQ. XiaoX. ZhengJ. LiM. YuM. PingF. WangT. WangX. Featured article: Structure moderation of gut microbiota in liraglutide-treated diabetic male rats.Exp. Biol. Med.20182431344410.1177/1535370217743765 29171288
    [Google Scholar]
  74. PaisR. GribbleF.M. ReimannF. Stimulation of incretin secreting cells.Ther. Adv. Endocrinol. Metab.201671244210.1177/2042018815618177 26885360
    [Google Scholar]
  75. GérardC. VidalH. Impact of gut microbiota on host glycemic control.Front. Endocrinol.2019102910.3389/fendo.2019.00029 30761090
    [Google Scholar]
  76. Santacroce, L., Mavaddati, S., Hamedi, J., Zeinali, B., Ballini, A., Bilancia, M. (2020). Expressive analysis of gut microbiota in preand post- solid organ transplantation using bayesian topic models. In: Gervasi, O., et al. Computational science and its applications – ICCSA 2020. ICCSA 2020. Lecture notes in computer science,vol 12252. Springer, Cham, 2020.10.1007/978‑3‑030‑58811‑3_11
    [Google Scholar]
  77. SearsC.L. GarrettW.S. Microbes, microbiota, and colon cancer.Cell Host Microbe201415331732810.1016/j.chom.2014.02.007 24629338
    [Google Scholar]
  78. VinascoK. MitchellH.M. KaakoushN.O. Castaño-RodríguezN. Microbial carcinogenesis: Lactic acid bacteria in gastric cancer.Biochim. Biophys. Acta Rev. Cancer20191872218830910.1016/j.bbcan.2019.07.004 31394110
    [Google Scholar]
  79. KellyD. YangL. PeiZ. Gut microbiota, fusobacteria, and colorectal cancer.Diseases20186410910.3390/diseases6040109 30544946
    [Google Scholar]
  80. CardingS. VerbekeK. VipondD.T. CorfeB.M. OwenL.J. Dysbiosis of the gut microbiota in disease.Microb. Ecol. Health Dis.20152626191 25651997
    [Google Scholar]
  81. PolimenoL. FrancavillaA. PiscitelliD. FioreM.G. PolimenoR. TopiS. HaxhirexhaK. BalliniA. DanieleA. SantacroceL. The role of PIAS3, p-STAT3 and ALR in colorectal cancer: New translational molecular features for an old disease.Eur. Rev. Med. Pharmacol. Sci.20202420104961051110.26355/eurrev_202010_23402 33155205
    [Google Scholar]
  82. SignoriniL. BalliniA. ArrigoniR. De LeonardisF. SainiR. CantoreS. De VitoD. CosciaM.F. DipalmaG. SantacroceL. InchingoloF. Evaluation of a nutraceutical product with probiotics, vitamin d, plus banaba leaf extracts (lagerstroemia speciosa) in glycemic control.Endocr. Metab. Immune Disord. Drug Targets20212171356136510.2174/1871530320666201109115415 33167849
    [Google Scholar]
  83. PolimenoL. BaroneM. MoscaA. ViggianiM.T. JoukarF. Mansour-GhanaeiF. MavaddatiS. DanieleA. DebellisL. BilanciaM. SantacroceL. Di LeoA. Soy metabolism by gut microbiota from patients with precancerous intestinal lesions.Microorganisms20208446910.3390/microorganisms8040469 32218321
    [Google Scholar]
  84. ArrigoniR. BalliniA. SantacroceL. CantoreS. InchingoloA. InchingoloF. Di DomenicoM. QuagliuoloL. BoccellinoM. Another look at dietary polyphenols: challenges in cancer prevention and treatment.Curr. Med. Chem.20222961061108210.2174/0929867328666210810154732 34375181
    [Google Scholar]
  85. MontagnaniM. BottalicoL. PotenzaM.A. CharitosI.A. TopiS. ColellaM. SantacroceL. The crosstalk between gut microbiota and nervous system: A bidirectional interaction between microorganisms and metabolome.Int. J. Mol. Sci.202324121032210.3390/ijms241210322 37373470
    [Google Scholar]
  86. CarabottiM. SciroccoA. MaselliM.A. SeveriC. The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems.Ann. Gastroenterol.2015282203209 25830558
    [Google Scholar]
  87. DalileB. Van OudenhoveL. VervlietB. VerbekeK. The role of short-chain fatty acids in microbiota–gut–brain communication.Nat. Rev. Gastroenterol. Hepatol.201916846147810.1038/s41575‑019‑0157‑3 31123355
    [Google Scholar]
  88. KimY.K. YumK.S. Effects of red ginseng extract on gut microbial distribution.J. Ginseng Res.20224619110310.1016/j.jgr.2021.04.005 35035242
    [Google Scholar]
  89. LiangW. ZhouK. JianP. ChangZ. ZhangQ. LiuY. XiaoS. ZhangL. Ginsenosides improve nonalcoholic fatty liver disease via integrated regulation of gut microbiota, inflammation and energy homeostasis.Front. Pharmacol.20211262284110.3389/fphar.2021.622841 33679403
    [Google Scholar]
  90. JeonH. BaeC.H. LeeY. KimH.Y. KimS. Korean red ginseng suppresses 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced inflammation in the substantia nigra and colon.Brain Behav. Immun.20219441042310.1016/j.bbi.2021.02.028 33662500
    [Google Scholar]
  91. XuY. WangN. TanH.Y. LiS. ZhangC. FengY. Gut-liver axis modulation of Panax notoginseng saponins in nonalcoholic fatty liver disease.Hepatol. Int.202115235036510.1007/s12072‑021‑10138‑1 33656663
    [Google Scholar]
  92. ChenH. YangH. DengJ. FanD. Ginsenoside Rk3 ameliorates obesity-induced colitis by regulating of intestinal flora and the TLR4/NF-κB signaling pathway in C57BL/6 mice.J. Agric. Food Chem.202169103082309310.1021/acs.jafc.0c07805 33621094
    [Google Scholar]
  93. YangY. HuN. GaoX.J. LiT. YanZ.X. WangP.P. WeiB. LiS. ZhangZ.J. LiS.L. YanR. Dextran sulfate sodium-induced colitis and ginseng intervention altered oral pharmacokinetics of cyclosporine A in rats.J. Ethnopharmacol.202126511325110.1016/j.jep.2020.113251 32810615
    [Google Scholar]
  94. QuQ. YangF. ZhaoC. LiuX. YangP. LiZ. HanL. ShiX. Effects of fermented ginseng on the gut microbiota and immunity of rats with antibiotic-associated diarrhea.J. Ethnopharmacol.202126711359410.1016/j.jep.2020.113594 33217518
    [Google Scholar]
  95. XuY. WangN. TanH.Y. LiS. ZhangC. ZhangZ. FengY. Panax notoginseng saponins modulate the gut microbiota to promote thermogenesis and beige adipocyte reconstruction via leptin-mediated AMPKα/STAT3 signaling in diet-induced obesity.Theranostics20201024113021132310.7150/thno.47746 33042284
    [Google Scholar]
  96. ZhuJ.H. XuJ.D. ZhouS.S. ZhangX.Y. ZhouJ. KongM. MaoQ. ZhuH. LiS.L. Differences in intestinal metabolism of ginseng between normal and immunosuppressed rats.Eur. J. Drug Metab. Pharmacokinet.20214619310410.1007/s13318‑020‑00645‑1 32894450
    [Google Scholar]
  97. XuJ. LiT. XiaX. FuC. WangX. ZhaoY. Dietary ginsenoside T19 supplementation regulates glucose and lipid metabolism via AMPK and PI3K pathways and its effect on intestinal microbiota.J. Agric. Food Chem.20206849144521446210.1021/acs.jafc.0c04429 33237753
    [Google Scholar]
  98. XieY. LiuJ. WangH. LuoJ. ChenT. XiQ. ZhangY. SunJ. Effects of fermented feeds and ginseng polysaccharides on the intestinal morphology and microbiota composition of Xuefeng black-bone chicken.PLoS One2020158e023735710.1371/journal.pone.0237357 32780763
    [Google Scholar]
  99. LuoZ. XuW. ZhangY. DiL. ShanJ. A review of saponin intervention in metabolic syndrome suggests further study on intestinal microbiota.Pharmacol. Res.202016010508810.1016/j.phrs.2020.105088 32683035
    [Google Scholar]
  100. WangJ.L. XiuC.K. YangJ. WangX. HuY.H. FangJ.Y. LeiY. Effect of ginseng radix et rhizoma, notoginseng radix et rhizoma and chuanxiong rhizoma extracts on intestinal flora of vascular aging mice induced by high glucose and high lipid.Zhongguo Zhongyao Zazhi2020451229382946 32627470
    [Google Scholar]
  101. KimJ.K. ChoiM.S. JeungW. RaJ. YooH.H. KimD.H. Effects of gut microbiota on the pharmacokinetics of protopanaxadiol ginsenosides Rd, Rg3, F2, and compound K in healthy volunteers treated orally with red ginseng.J. Ginseng Res.202044461161810.1016/j.jgr.2019.05.012 32617041
    [Google Scholar]
  102. ChenL. ChenM.Y. ShaoL. ZhangW. RaoT. ZhouH.H. HuangW.H. Panax notoginseng saponins prevent colitis-associated colorectal cancer development: The role of gut microbiota.Chin. J. Nat. Med.202018750050710.1016/S1875‑5364(20)30060‑1 32616190
    [Google Scholar]
  103. GuoY.P. ShaoL. ChenM.Y. QiaoR.F. ZhangW. YuanJ.B. HuangW.H. In vivo metabolic profiles of panax notoginseng saponins mediated by gut microbiota in rats.J. Agric. Food Chem.202068256835684410.1021/acs.jafc.0c01857 32449854
    [Google Scholar]
  104. YangL. ZouH. GaoY. LuoJ. XieX. MengW. ZhouH. TanZ. Insights into gastrointestinal microbiota-generated ginsenoside metabolites and their bioactivities.Drug Metab. Rev.202052112513810.1080/03602532.2020.1714645 31984805
    [Google Scholar]
  105. ChenH. ShenJ. LiH. ZhengX. KangD. XuY. ChenC. GuoH. XieL. WangG. LiangY. Ginsenoside Rb1 exerts neuroprotective effects through regulation of Lactobacillus helveticus abundance and GABAA receptor expression.J. Ginseng Res.2020441869510.1016/j.jgr.2018.09.002 32095096
    [Google Scholar]
  106. HanS.K. JooM.K. KimJ.K. JeungW. KangH. KimD.H. Bifidobacteria-fermented red ginseng and its constituents ginsenoside rd and protopanaxatriol alleviate anxiety/depression in mice by the amelioration of gut dysbiosis.Nutrients202012490110.3390/nu12040901 32224881
    [Google Scholar]
  107. ZhangJ. WeiL. YangJ. AhmedW. WangY. FuL. JiG. Probiotic consortia: Reshaping the rhizospheric microbiome and its role in suppressing root-rot disease of panax notoginseng.Front. Microbiol.20201170110.3389/fmicb.2020.00701 32425904
    [Google Scholar]
  108. FanJ. WangY. YouY. AiZ. DaiW. PiaoC. LiuJ. WangY. Fermented ginseng improved alcohol liver injury in association with changes in the gut microbiota of mice.Food Funct.20191095566557310.1039/C9FO01415B 31429848
    [Google Scholar]
  109. ZhouS.S. AuyeungK.K.W. YipK.M. YeR. ZhaoZ.Z. MaoQ. XuJ. ChenH.B. LiS.L. Stronger anti-obesity effect of white ginseng over red ginseng and the potential mechanisms involving chemically structural/compositional specificity to gut microbiota.Phytomedicine20207415276110.1016/j.phymed.2018.11.021 31005370
    [Google Scholar]
  110. ZhangT. DongK. XiaoL. LiG. ZhangZ. Effects of co-administration of icariin and panax notoginseng saponins on intestinal microbiota and hippocampal protein expression in a mouse model of alzheimer’s disease.Neuropsychiatr. Dis. Treat.2020162169217910.2147/NDT.S253972 33061388
    [Google Scholar]
  111. QiY.L. LiS.S. QuD. ChenL.X. GongR.Z. GaoK. SunY.S. Effects of ginseng neutral polysaccharide on gut microbiota in antibiotic-associated diarrhea mice.Zhongguo Zhongyao Zazhi2019444811818 30989896
    [Google Scholar]
  112. GuoY.P. ChenM.Y. ShaoL. ZhangW. RaoT. ZhouH.H. HuangW.H. Quantification of panax notoginseng saponins metabolites in rat plasma with in vivo gut microbiota-mediated biotransformation by HPLC-MS/MS.Chin. J. Nat. Med.201917323124010.1016/S1875‑5364(19)30026‑3 30910060
    [Google Scholar]
  113. KimJ.C. JeonJ.Y. YangW. KimC.H. EomD.W. Combined amelioration of ginsenoside (Rg1, Rb1, and Rg3)-enriched korean red ginseng and probiotic lactobacillus on non-alcoholic fatty liver disease.Curr. Pharm. Biotechnol.201920322223110.2174/1389201020666190311143554 30854954
    [Google Scholar]
  114. ZhouP. XieW. HeS. SunY. MengX. SunG. SunX. Ginsenoside Rb1 as an anti-diabetic agent and its underlying mechanism analysis.Cells20198320410.3390/cells8030204 30823412
    [Google Scholar]
  115. SantacroceL. InchingoloF. TopiS. Del PreteR. Di CosolaM. CharitosI.A. MontagnaniM. Potential beneficial role of probiotics on the outcome of COVID-19 patients: An evolving perspective.Diabetes Metab. Syndr.202115129530110.1016/j.dsx.2020.12.040 33484986
    [Google Scholar]
  116. LiC. NiuZ. ZouM. LiuS. WangM. GuX. LuH. TianH. JhaR. Probiotics, prebiotics, and synbiotics regulate the intestinal microbiota differentially and restore the relative abundance of specific gut microorganisms.J. Dairy Sci.202010375816582910.3168/jds.2019‑18003 32418689
    [Google Scholar]
  117. JeongJ.J. Van LeT.H. LeeS.Y. EunS.H. NguyenM.D. ParkJ.H. KimD.H. Anti-inflammatory effects of vina-ginsenoside R2 and majonoside R2 isolated from Panax vietnamensis and their metabolites in lipopolysaccharide-stimulated macrophages.Int. Immunopharmacol.201528170070610.1016/j.intimp.2015.07.025 26256699
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303270923240307120117
Loading
/content/journals/emiddt/10.2174/0118715303270923240307120117
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test