Skip to content
2000
Volume 2, Issue 3
  • ISSN: 2210-3031
  • E-ISSN: 2210-304X

Abstract

To reduce the risk of infection in the treatment of long bone defects, implant materials can be provided with an antibiotic drug delivery system. A novel bone implant for the tissue engineering of critical long bone defects was developed by stacking embroidered scaffolds, seeded with mesenchymal human stem cells. Controlled drug release is to be integrated in this implant by coating the thread material with antibiotics incorporated in a resorbable polymer matrix. A predictable release with defined and steady-going dosages must be guaranteed. Scaffolds, embroidered from a degradable surgical poly(caprolactone-co-lactide)-thread, were provided with an antibiotic depot by dip-coating them in a poly(lactide-co-glycolide) (RESOMER RG 756) solution with the antibiotic gentamicin sulfate distributed as suspended grains. Influence on the releasing profile is taken by varying grain size and grain size distribution. Antibiotic load in a required range could be achieved and an influence of the grain size on the releasing profile could be verified. The required initial and daily dosages could be realized and were exceeded in most of the cases. As optimum an approximated zeroorder kinetic in a time interval from 1 to 24 hours could be attained.

Loading

Article metrics loading...

/content/journals/ddl/10.2174/2210304x11202030171
2012-09-01
2025-05-24
Loading full text...

Full text loading...

/content/journals/ddl/10.2174/2210304x11202030171
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test