Skip to content
2000
image of Unlocking the Role of pH-sensitive Nanoparticles in the Targeted Management of Different Types of Ulcers

Abstract

The pH-sensitive drug delivery systems (PSDDS) are attracting significant attention as these systems transport the drug at a specific time as per the pathophysiological need of the disease, leading to improved patient therapeutic effectiveness and compliance. The pH-sensitive nanoparticles are a favorable alternative to treat ulcers, especially gastrointestinal ulcers comprising peptic ulcers and mouth ulcers. These nanoparticles can be intended to release medication in a meticulous way at specific pH levels of the ulcer site, which can improve therapeutic effectiveness and decrease side effects. It is significant to note that the use of pH-sensitive nanoparticles for ulcer management is an evolving field of research, and the specific applications and formulations may vary based on the type and location of the ulcer. Additionally, regulatory approvals and clinical trials may be necessary before such treatments become widely available to patients.

Loading

Article metrics loading...

/content/journals/ddl/10.2174/0122103031334895250227111942
2025-04-19
2025-05-20
Loading full text...

Full text loading...

References

  1. Srinivasarao M. Low P.S. Ligand-targeted drug delivery. Chem. Rev. 2017 117 19 12133 12164 10.1021/acs.chemrev.7b00013 28898067
    [Google Scholar]
  2. Mu Y. Gong L. Peng T. Yao J. Lin Z. Advances in pH-responsive drug delivery systems. OpenNano 2021 5 100031 10.1016/j.onano.2021.100031
    [Google Scholar]
  3. Lv Y. Hao L. Hu W. Ran Y. Bai Y. Zhang L. Novel multifunctional pH-sensitive nanoparticles loaded into microbubbles as drug delivery vehicles for enhanced tumor targeting. Sci. Rep. 2016 6 1 29321 10.1038/srep29321 27378018
    [Google Scholar]
  4. Ashique S. Mishra N. Garg A. Sibuh B.Z. Taneja P. Rai G. Djearamane S. Wong L.S. Al-Dayan N. Roychoudhury S. Kesari K.K. Slama P. Roychoudhury S. Gupta P.K. Recent updates on correlation between reactive oxygen species and synbiotics for effective management of ulcerative colitis. Front. Nutr. 2023 10 1126579 10.3389/fnut.2023.1126579 37545572
    [Google Scholar]
  5. Chavan M. Jain H. Diwan N. Khedkar S. Shete A. Durkar S. Recurrent aphthous stomatitis: A review. J. Oral Pathol. Med. 2012 41 8 577 583 10.1111/j.1600‑0714.2012.01134.x 22413800
    [Google Scholar]
  6. Gasmi Benahmed A. Noor S. Menzel A. Gasmi A. Oral aphthous: Pathophysiology, clinical aspects and medical treatment. Arch. Razi Inst. 2021 76 5 1155 1163 35355774
    [Google Scholar]
  7. Cornick S. Tawiah A. Chadee K. Roles and regulation of the mucus barrier in the gut. Tissue Barriers 2015 3 1-2 e982426 10.4161/21688370.2014.982426 25838985
    [Google Scholar]
  8. Pan Z. Zhang X. Xie W. Cui J. Wang Y. Zhang B. Du L. Zhai W. Sun H. Li Y. Li D. Revisited and innovative perspectives of oral ulcer: From biological specificity to local treatment. Front. Bioeng. Biotechnol. 2024 12 1335377 10.3389/fbioe.2024.1335377 38456005
    [Google Scholar]
  9. Meda N. Abbas M. Verma H. Tripathi R.K. Arterial ulcer. Khanna A. Tiwary S. Ulcers of the Lower Extremity Springer New Delhi 2016 10.1007/978‑81‑322‑2635‑2_11
    [Google Scholar]
  10. Stranden E. Slagsvold C.E. Arterial ischemic ulcers. Tidsskr Nor Laegeforen 2005 125 7 895 898 15815738
    [Google Scholar]
  11. Coelho G.A. Secretan P.H. Tortolano L. Charvet L. Yagoubi N. Evolution of the chronic venous leg ulcer microenvironment and its impact on medical devices and wound care therapies. J. Clin. Med. 2023 12 17 5605 10.3390/jcm12175605 37685674
    [Google Scholar]
  12. Malfertheiner P. Chan F.K.L. McColl K.E.L. Peptic ulcer disease. Lancet 2009 374 9699 1449 1461 10.1016/S0140‑6736(09)60938‑7 19683340
    [Google Scholar]
  13. Lanas A. Chan F.K.L. Peptic ulcer disease. Lancet 2017 390 10094 613 624 10.1016/S0140‑6736(16)32404‑7 28242110
    [Google Scholar]
  14. Mustafa M. Menon J. Muiandy R.K. Fredie R. Sein M.M. Fariz A. Risk factors, diagnosis, and management of peptic ulcer disease. IOSR J. Dent. Med. Sci. 2015 14 7 40 46 10.9790/0853‑14784046
    [Google Scholar]
  15. Jaswanth K. Kumar K. Venkatesh P. A review on peptic ulcer. UPI J. Pharm. Med. Health Sci. 2022 5 1 19 26 10.37022/jpmhs.v5i1.73
    [Google Scholar]
  16. Majumdar D. Looi S. Helicobacter pylori infection and peptic ulcers. Medicine (Abingdon) 2024 52 3 152 160 10.1016/j.mpmed.2023.12.006
    [Google Scholar]
  17. Chen L. Xu W. Lee A. He J. Huang B. Zheng W. Su T. Lai S. Long Y. Chu H. Chen Y. Wang L. Wang K. Si J. Chen S. The impact of Helicobacter pylori infection, eradication therapy and probiotic supplementation on gut microenvironment homeostasis: An open-label, randomized clinical trial. EBioMedicine 2018 35 87 96 10.1016/j.ebiom.2018.08.028 30145102
    [Google Scholar]
  18. El-Deeb N Al-Madboly L. Probiotics and GIT diseases/stomach ulcer. Probiotics, the Natural Microbiota in Living Organisms 1st ed CRC Press 2021 24
    [Google Scholar]
  19. Liang T.Y. Deng R.M. Li X. Xu X. Chen G. The role of nitric oxide in peptic ulcer. Med. Gas Res. 2021 11 1 42 45 10.4103/2045‑9912.310059 33642337
    [Google Scholar]
  20. Singhai M. Pandey V. Ashique S. Gupta G.D. Arora D. Haider T. Mishra N. Design and evaluation of SLNs encapsulated curcumin-based topical formulation for the management of cervical cancer. Anticancer Agents Med Chem 2023 23 16 1866 1879 10.2174/1871520623666230626145750 37365788
    [Google Scholar]
  21. Cunha Ramos M. Nicola M.R.C. Bezerra N.T.C. Sardinha J.C.G. Sampaio de Souza Morais J. Schettini A.P. Genital ulcers caused by sexually transmitted agents. An. Bras. Dermatol. 2022 97 5 551 565 10.1016/j.abd.2022.01.004 35868971
    [Google Scholar]
  22. Ajami S. Khaleghi L. A review on equipped hospital beds with wireless sensor networks for reducing bedsores. J Res Med Sci. 2015 20 10 1007 1015 10.4103/1735‑1995.172797 26929768
    [Google Scholar]
  23. Wei W. Ma N. Bedsore. Encyclopedia of Gerontology and Population Aging Springer International Publishing Cham 2022 606 611
    [Google Scholar]
  24. Nayak D. Srinivasan K. Jagdish S. Rattan R. Chatram V.S. Bedsores: “Top to bottom” and “bottom to top”. Indian J. Surg. 2008 70 4 161 168 10.1007/s12262‑008‑0046‑4 23133050
    [Google Scholar]
  25. Sumpio B.E. Foot Ulcers. N. Engl. J. Med. 2000 343 11 787 793 10.1056/NEJM200009143431107 10984568
    [Google Scholar]
  26. Reardon R. Simring D. Kim B. Mortensen J. Williams D. Leslie A. The diabetic foot ulcer. Aust. J. Gen. Pract. 2020 49 5 250 255 10.31128/AJGP‑11‑19‑5161 32416652
    [Google Scholar]
  27. Li Y. Ju S. Li X. Li W. Zhou S. Wang G. Cai Y. Dong Z. Characterization of the microenvironment of diabetic foot ulcers and potential drug identification based on scRNA-seq. Front. Endocrinol. (Lausanne) 2023 13 997880 10.3389/fendo.2022.997880 36686438
    [Google Scholar]
  28. Armstrong D.G. Tan T.W. Boulton A.J.M. Bus S.A. Diabetic foot ulcers: A review. JAMA 2023 330 1 62 75 10.1001/jama.2023.10578 37395769
    [Google Scholar]
  29. Ding B.Y. Active tumor targeting drug delivery system: The current status. Academic Journal of Second Military Medical University 2010 321 328
    [Google Scholar]
  30. Deng L. Dong H. Dong A. Zhang J. A strategy for oral chemotherapy via dual pH-sensitive polyelectrolyte complex nanoparticles to achieve gastric survivability, intestinal permeability, hemodynamic stability and intracellular activity. Eur. J. Pharm. Biopharm. 2015 97 Pt A 107 117 10.1016/j.ejpb.2015.10.010 26515259
    [Google Scholar]
  31. Adepu S. Ramakrishna S. Controlled drug delivery systems: Current status and future directions. Molecules 2021 26 19 5905 10.3390/molecules26195905 34641447
    [Google Scholar]
  32. Wu Y. Li Q. Shim G. Oh Y.K. Melanin-loaded CpG DNA hydrogel for modulation of tumor immune microenvironment. J. Control. Release 2021 330 540 553 10.1016/j.jconrel.2020.12.040 33373649
    [Google Scholar]
  33. Wu W. Luo L. Wang Y. Wu Q. Dai H.B. Li J.S. Durkan C. Wang N. Wang G.X. Endogenous pH-responsive nanoparticles with programmable size changes for targeted tumor therapy and imaging applications. Theranostics 2018 8 11 3038 3058 10.7150/thno.23459 29896301
    [Google Scholar]
  34. Hida K. Maishi N. Sakurai Y. Hida Y. Harashima H. Heterogeneity of tumor endothelial cells and drug delivery. Adv. Drug Deliv. Rev. 2016 99 Pt B 140 147 10.1016/j.addr.2015.11.008 26626622
    [Google Scholar]
  35. Sonaje K. Lin K.J. Wang J.J. Mi F.L. Chen C.T. Juang J.H. Sung H.W. Self‐assembled pH‐sensitive nanoparticles: A platform for oral delivery of protein drugs. Adv. Funct. Mater. 2010 20 21 3695 3700 10.1002/adfm.201001014
    [Google Scholar]
  36. Zhu Y.J. Chen F. pH-responsive drug-delivery systems. Chem. Asian J. 2015 10 2 284 305 10.1002/asia.201402715 25303435
    [Google Scholar]
  37. Alshammari B.H. Lashin M.M.A. Mahmood M.A. Al-Mubaddel F.S. Ilyas N. Rahman N. Sohail M. Khan A. Abdullaev S.S. Khan R. Organic and inorganic nanomaterials: Fabrication, properties and applications. RSC Advances 2023 13 20 13735 13785 10.1039/D3RA01421E 37152571
    [Google Scholar]
  38. Narayana S. Gowda B.H.J. Hani U. Shimu S.S. Paul K. Das A. Ashique S. Ahmed M.G. Tarighat M.A. Abdi G. Inorganic nanoparticle-based treatment approaches for colorectal cancer: Recent advancements and challenges. J. Nanobiotechnology 2024 22 1 427 10.1186/s12951‑024‑02701‑3 39030546
    [Google Scholar]
  39. Ashique S. Upadhyay A. Gulati M. Singh D. Chawla P.A. Chawla V. One-dimensional polymeric nanocomposites in drug delivery systems. Curr. Nanosci. 2023 19 6 825 839 10.2174/1573413719666230110110706
    [Google Scholar]
  40. Mehta M. Bui T.A. Yang X. Aksoy Y. Goldys E.M. Deng W. Lipid-based nanoparticles for drug/gene delivery: An overview of the production techniques and difficulties encountered in their industrial development. ACS Materials Au 2023 3 6 600 619 10.1021/acsmaterialsau.3c00032 38089666
    [Google Scholar]
  41. Wang J. Li B. Qiu L. Qiao X. Yang H. Dendrimer-based drug delivery systems: History, challenges, and latest developments. J. Biol. Eng. 2022 16 1 18 10.1186/s13036‑022‑00298‑5 35879774
    [Google Scholar]
  42. Saravanakumar K. Anbazhagan S. Pujani Usliyanage J. Vishven Naveen K. Wijesinghe U. Xiaowen H. Vishnu Priya V. Thiripuranathar G. Wang M.H. A comprehensive review on immuno-nanomedicine for breast cancer therapy: Technical challenges and troubleshooting measures. Int. Immunopharmacol. 2022 103 108433 10.1016/j.intimp.2021.108433 34922248
    [Google Scholar]
  43. Mastella P. Todaro B. Luin S. Nanogels: Recent advances in synthesis and biomedical applications. Nanomaterials (Basel) 2024 14 15 1300 10.3390/nano14151300 39120405
    [Google Scholar]
  44. Ashique S. Upadhyay A. Hussain A. Bag S. Chaterjee D. Rihan M. Mishra N. Bhatt S. Puri V. Sharma A. Prasher P. Singh S.K. Chellappan D.K. Gupta G. Dua K. Green biogenic silver nanoparticles, therapeutic uses, recent advances, risk assessment, challenges, and future perspectives. J. Drug Deliv. Sci. Technol. 2022 77 103876 10.1016/j.jddst.2022.103876
    [Google Scholar]
  45. Unnikrishnan G. Joy A. Megha M. Kolanthai E. Senthilkumar M. Exploration of inorganic nanoparticles for revolutionary drug delivery applications: A critical review. Discover Nano 2023 18 1 157 10.1186/s11671‑023‑03943‑0 38112849
    [Google Scholar]
  46. Yah C.S. The toxicity of Gold Nanoparticles in relation to their physiochemical properties. Biomed. Res. 2013 24 3 Available from: https://www.alliedacademies.org/articles/the-toxicity-of-gold-nanoparticles-in-relation-to-their-physiochemicalproperties.html
    [Google Scholar]
  47. Awasthi R. Bhushan B. Kulkarni G.T. Chapter 9 - Concepts of nanotechnology in nanomedicine: From discovery to applications. Targeting Chronic Inflammatory Lung Diseases Using Advanced Drug Delivery Systems Academic Press 2020 171 209 10.1016/B978‑0‑12‑820658‑4.00009‑1
    [Google Scholar]
  48. Maus A. Strait L. Zhu D. Nanoparticles as delivery vehicles for antiviral therapeutic drugs. Engineered Regeneration 2021 2 31 46 10.1016/j.engreg.2021.03.001 38620592
    [Google Scholar]
  49. Akram F. Imtiaz M. Haq I. Emergent crisis of antibiotic resistance: A silent pandemic threat to 21st century. Microb. Pathog. 2023 174 105923 10.1016/j.micpath.2022.105923 36526035
    [Google Scholar]
  50. Crisan M.C. Teodora M. Lucian M. Copper nanoparticles: Synthesis and characterization, physiology, toxicity and antimicrobial applications. Appl. Sci. (Basel) 2021 12 1 141 10.3390/app12010141
    [Google Scholar]
  51. Rahman G. Fazal H. Ullah A. Ahmad S. Nadeem T. Ahmad M. Ahmad I. Mishra N. Ashique S. Zengin G. Farid A. Empowering silver and copper nanoparticles through aqueous fruit extract of Solanum xanthocarpum for sustainable advancements. Biomass Convers. Biorefin. 2024 1 5 10.1007/s13399‑024‑05270‑5
    [Google Scholar]
  52. Lakshmipriya T. Gopinath S.C. 1 - Introduction to nanoparticles and analytical devices. Nanoparticles in Analytical and Medical Devices Elsevier 2021 1 29 10.1016/B978‑0‑12‑821163‑2.00001‑7
    [Google Scholar]
  53. Agarwal H. Shanmugam V. A review on anti-inflammatory activity of green synthesized zinc oxide nanoparticle: Mechanism-based approach. Bioorg. Chem. 2020 94 103423 10.1016/j.bioorg.2019.103423 31776035
    [Google Scholar]
  54. Ali S. Ulhassan Z. Shahbaz H. Kaleem Z. Yousaf M.A. Ali S. Sheteiwy M.S. Waseem M. Ali S. Zhou W. Application of magnesium oxide nanoparticles as a novel sustainable approach to enhance crop tolerance to abiotic and biotic stresses. Environ. Sci. Nano 2024 11 8 3250 3267 10.1039/D4EN00417E
    [Google Scholar]
  55. S A. Kavitha H.P. Magnesium oxide nanoparticles: Effective antilarvicidal and antibacterial agents. ACS Omega 2023 8 6 5225 5233 10.1021/acsomega.2c01450 36816696
    [Google Scholar]
  56. Moulahoum H. Ghorbanizamani F. Beduk T. Beduk D. Ozufuklar O. Guler Celik E. Timur S. Emerging trends in nanomaterial design for the development of point-of-care platforms and practical applications. J. Pharm. Biomed. Anal. 2023 235 115623 10.1016/j.jpba.2023.115623 37542827
    [Google Scholar]
  57. Liu J. Li R. Yang B. Carbon dots: A new type of carbon-based nanomaterial with wide applications. ACS Cent Sci. 2020 6 12 2179 2195 10.1021/acscentsci.0c01306 33376780
    [Google Scholar]
  58. Abdella S. Abid F. Youssef S.H. Kim S. Afinjuomo F. Malinga C. Song Y. Garg S. pH and its applications in targeted drug delivery. Drug Discov. Today 2023 28 1 103414 10.1016/j.drudis.2022.103414 36273779
    [Google Scholar]
  59. Zhang G. Han W. Zhao P. Wang Z. Li M. Sui X. Liu Y. Tian B. He Z. Fu Q. Programmed pH-responsive core–shell nanoparticles for precisely targeted therapy of ulcerative colitis. Nanoscale 2023 15 4 1937 1946 10.1039/D2NR04968F 36625215
    [Google Scholar]
  60. Deirram N. Zhang C. Kermaniyan S.S. Johnston A.P.R. Such G.K. pH‐responsive polymer nanoparticles for drug delivery. Macromol. Rapid Commun. 2019 40 10 1800917 10.1002/marc.201800917 30835923
    [Google Scholar]
  61. Pramod Kumar E.K. Um W. Park J.H. Recent developments in pathological pH-responsive polymeric nanobiosensors for cancer theranostics. Front. Bioeng. Biotechnol. 2020 8 601586 10.3389/fbioe.2020.601586 33330431
    [Google Scholar]
  62. Naeem M. Cao J. Choi M. Kim W.S. Moon H.R. Lee B.L. Kim M.S. Jung Y. Yoo J.W. Enhanced therapeutic efficacy of budesonide in experimental colitis with enzyme/pH dual-sensitive polymeric nanoparticles. Int. J. Nanomedicine 2015 10 4565 4580 26213469
    [Google Scholar]
  63. Ashique S. Almohaywi B. Haider N. Yasmin S. Hussain A. Mishra N. Garg A. siRNA-based nanocarriers for targeted drug delivery to control breast cancer. Advances in Cancer Biology - Metastasis 2022 4 100047 10.1016/j.adcanc.2022.100047
    [Google Scholar]
  64. Arif M. Sharaf M. Samreen Dong Q. Wang L. Chi Z. Liu C.G. Bacteria-targeting chitosan/carbon dots nanocomposite with membrane disruptive properties improve eradication rate of Helicobacter pylori. J. Biomater. Sci. Polym. Ed. 2021 32 18 2423 2447 10.1080/09205063.2021.1972559 34644235
    [Google Scholar]
  65. Sethuraman V. Janakiraman K. Krishnaswami V. Kandasamy R. Recent progress in stimuli-responsive intelligent nano scale drug delivery systems: A special focus towards pH-sensitive systems. Curr. Drug Targets 2021 22 8 947 966 10.2174/1389450122999210128180058 33511953
    [Google Scholar]
  66. Gao W. Chan J.M. Farokhzad O.C. pH-Responsive nanoparticles for drug delivery. Mol. Pharm. 2010 7 6 1913 1920 10.1021/mp100253e 20836539
    [Google Scholar]
  67. Li X. Yue R. Guan G. Zhang C. Zhou Y. Song G. Recent development of pH-responsive theranostic nanoplatforms for magnetic resonance imaging-guided cancer therapy. Exploration Wiley - Online Library 2023 3 3 20220002 10.1002/EXP.20220002
    [Google Scholar]
  68. Chu S. Shi X. Tian Y. Gao F. pH-responsive polymer nanomaterials for tumor therapy. Front. Oncol. 2022 12 855019 10.3389/fonc.2022.855019 35392227
    [Google Scholar]
  69. Finbloom J.A. Sousa F. Stevens M.M. Desai T.A. Engineering the drug carrier biointerface to overcome biological barriers to drug delivery. Adv. Drug Deliv. Rev. 2020 167 89 108 10.1016/j.addr.2020.06.007 32535139
    [Google Scholar]
  70. Lv X. Zhang J. Yang D. Shao J. Wang W. Zhang Q. Dong X. Recent advances in pH-responsive nanomaterials for anti-infective therapy. J. Mater. Chem. B Mater. Biol. Med. 2020 8 47 10700 10711 10.1039/D0TB02177F 33140806
    [Google Scholar]
  71. Huo D. Jiang X. Hu Y. Recent advances in nanostrategies capable of overcoming biological barriers for tumor management. Adv. Mater. 2020 32 27 1904337 10.1002/adma.201904337 31663198
    [Google Scholar]
  72. Jeong G.J. Rather M.A. Khan F. Tabassum N. Mandal M. Kim Y.M. pH-responsive polymeric nanomaterials for the treatment of oral biofilm infections. Colloids Surf. B Biointerfaces 2024 234 113727 10.1016/j.colsurfb.2023.113727 38157766
    [Google Scholar]
  73. Edidin M. Lipids on the frontier: A century of cell-membrane bilayers. Nat. Rev. Mol. Cell Biol. 2003 4 5 414 418 10.1038/nrm1102 12728275
    [Google Scholar]
  74. Soenen S.J. Parak W.J. Rejman J. Manshian B. (Intra)cellular stability of inorganic nanoparticles: Effects on cytotoxicity, particle functionality, and biomedical applications. Chem. Rev. 2015 115 5 2109 2135 10.1021/cr400714j 25757742
    [Google Scholar]
  75. Chiu C. Moore P.B. Shinoda W. Nielsen S.O. Size-dependent hydrophobic to hydrophilic transition for nanoparticles: A molecular dynamics study. J. Chem. Phys. 2009 131 24 244706 10.1063/1.3276915 20059098
    [Google Scholar]
  76. Ding H. Ma Y. Controlling cellular uptake of nanoparticles with pH-sensitive polymers. Sci. Rep. 2013 3 1 2804 10.1038/srep02804 24076598
    [Google Scholar]
  77. Behzadi S. Serpooshan V. Tao W. Hamaly M.A. Alkawareek M.Y. Dreaden E.C. Brown D. Alkilany A.M. Farokhzad O.C. Mahmoudi M. Cellular uptake of nanoparticles: Journey inside the cell. Chem. Soc. Rev. 2017 46 14 4218 4244 10.1039/C6CS00636A 28585944
    [Google Scholar]
  78. Kumari S. Mg S. Mayor S. Endocytosis unplugged: Multiple ways to enter the cell. Cell Res. 2010 20 3 256 275 10.1038/cr.2010.19 20125123
    [Google Scholar]
  79. Mahmoudi M. Tachibana A. Goldstone A.B. Woo Y.J. Chakraborty P. Lee K.R. Foote C.S. Piecewicz S. Barrozo J.C. Wakeel A. Rice B.W. Bell C.B. III Yang P.C. Novel MRI contrast agent from magnetotactic bacteria enables in vivo tracking of iPSC-derived cardiomyocytes. Sci. Rep. 2016 6 1 26960 10.1038/srep26960 27264636
    [Google Scholar]
  80. Foroozandeh P. Aziz A.A. Insight into cellular uptake and intracellular trafficking of nanoparticles. Nanoscale Res. Lett. 2018 13 1 339 10.1186/s11671‑018‑2728‑6 30361809
    [Google Scholar]
  81. Ashique S. Sandhu N.K. Chawla V. Chawla P.A. Targeted drug delivery: Trends and perspectives. Curr. Drug Deliv. 2021 18 10 1435 1455 10.2174/1567201818666210609161301 34151759
    [Google Scholar]
  82. Yameen B. Choi W.I. Vilos C. Swami A. Shi J. Farokhzad O.C. Insight into nanoparticle cellular uptake and intracellular targeting. J. Control. Release 2014 190 485 499 10.1016/j.jconrel.2014.06.038 24984011
    [Google Scholar]
  83. Torchilin V.P. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat. Rev. Drug Discov. 2014 13 11 813 827 10.1038/nrd4333 25287120
    [Google Scholar]
  84. Garnacho C. Intracellular drug delivery: Mechanisms for cell entry. Curr. Pharm. Des. 2016 22 9 1210 1226 10.2174/1381612822666151216151021 26675221
    [Google Scholar]
  85. Lee E.S. Gao Z. Kim D. Park K. Kwon I.C. Bae Y.H. Super pH-sensitive multifunctional polymeric micelle for tumor pHe specific TAT exposure and multidrug resistance. J. Control. Release 2008 129 3 228 236 10.1016/j.jconrel.2008.04.024 18539355
    [Google Scholar]
  86. Gugulothu D. Kulkarni A. Patravale V. Dandekar P. pH-sensitive nanoparticles of curcumin-celecoxib combination: Evaluating drug synergy in ulcerative colitis model. J. Pharm. Sci. 2014 103 2 687 696 10.1002/jps.23828 24375287
    [Google Scholar]
  87. Dai J. Nagai T. Wang X. Zhang T. Meng M. Zhang Q. pH-sensitive nanoparticles for improving the oral bioavailability of cyclosporine A. Int. J. Pharm. 2004 280 1-2 229 240 10.1016/j.ijpharm.2004.05.006 15265562
    [Google Scholar]
  88. Karimi M. Eslami M. Sahandi-Zangabad P. Mirab F. Farajisafiloo N. Shafaei Z. Ghosh D. Bozorgomid M. Dashkhaneh F. Hamblin M.R. pH ‐Sensitive stimulus‐responsive nanocarriers for targeted delivery of therapeutic agents. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2016 8 5 696 716 10.1002/wnan.1389 26762467
    [Google Scholar]
  89. Deng H. Zhao X. Liu J. Zhang J. Deng L. Liu J. Dong A. Synergistic dual-pH responsive copolymer micelles for pH-dependent drug release. Nanoscale 2016 8 3 1437 1450 10.1039/C5NR06745F 26677141
    [Google Scholar]
  90. Liu L. Yao W. Rao Y. Lu X. Gao J. pH-Responsive carriers for oral drug delivery: Challenges and opportunities of current platforms. Drug Deliv. 2017 24 1 569 581 10.1080/10717544.2017.1279238 28195032
    [Google Scholar]
  91. Garg T. Kumar A. Rath G. Goyal A. Gastroretentive drug delivery systems for therapeutic management of peptic ulcer. Crit Rev Ther Drug Carrier Syst. 2014 31 6 531 557 10.1615/critrevtherdrugcarriersyst.2014011104 25271775
    [Google Scholar]
  92. Zhao S. Lv Y. Zhang J.B. Wang B. Lv G.J. Ma X.J. Gastroretentive drug delivery systems for the treatment of Helicobacter pylori. World J. Gastroenterol. 2014 20 28 9321 9329 25071326
    [Google Scholar]
  93. de Souza M.P.C. de Camargo B.A.F. Spósito L. Fortunato G.C. Carvalho G.C. Marena G.D. Meneguin A.B. Bauab T.M. Chorilli M. Highlighting the use of micro and nanoparticles based-drug delivery systems for the treatment of Helicobacter pylori infections. Crit. Rev. Microbiol. 2021 47 4 435 460 10.1080/1040841X.2021.1895721 33725462
    [Google Scholar]
  94. Yun Y.H. Lee B.K. Park K. Controlled drug delivery: Historical perspective for the next generation. J. Control. Release 2015 219 2 7 10.1016/j.jconrel.2015.10.005 26456749
    [Google Scholar]
  95. Mutalabisin M.F. Chatterjee B. Jaffri J.M. PH responsive polymers in drug delivery. Research Journal of Pharmacy and Technology 2018 11 11 5115 5122 10.5958/0974‑360X.2018.00934.4
    [Google Scholar]
  96. Gunda R.K. Vijayalakshmi A. Formulation development and evaluation of gastro retentive drug delivery systems-a review. J. Pharm. Res. 2017 11 167 178
    [Google Scholar]
  97. Khodabakhsh F. Bourbour M. Yaraki M.T. Bazzazan S. Bakhshandeh H. Ahangari Cohan R. Tan Y.N. pH-Responsive PEGylated niosomal nanoparticles as an active-targeting cyclophosphamide delivery system for gastric cancer therapy. Molecules 2022 27 17 5418 10.3390/molecules27175418 36080186
    [Google Scholar]
  98. Bukhari A. Fatima Z. Atta M. Nazir A. Alshawwa S.Z. Alotaibi H.F. Iqbal M. Poly lactic-co-glycolic acid nano-carriers for encapsulation and controlled release of hydrophobic drug to enhance the bioavailability and antimicrobial properties. Dose Response 2023 21 1 15593258231152117 10.1177/15593258231152117 36743194
    [Google Scholar]
  99. Sun X.F. Wang H. Jing Z. Mohanathas R. Hemicellulose-based pH-sensitive and biodegradable hydrogel for controlled drug delivery. Carbohydr. Polym. 2013 92 2 1357 1366 10.1016/j.carbpol.2012.10.032 23399165
    [Google Scholar]
  100. Vaghani S.S. Patel M.M. pH-sensitive hydrogels based on semi-interpenetrating network (semi-IPN) of chitosan and polyvinyl pyrrolidone for clarithromycin release. Drug Dev. Ind. Pharm. 2011 37 10 1160 1169 10.3109/03639045.2011.563422 21417603
    [Google Scholar]
  101. Sharpe L.A. Daily A.M. Horava S.D. Peppas N.A. Therapeutic applications of hydrogels in oral drug delivery. Expert Opin. Drug Deliv. 2014 11 6 901 915 10.1517/17425247.2014.902047 24848309
    [Google Scholar]
  102. Zafar S. Hanif M. Azeem M. Mahmood K. Gondal S.A. Role of crosslinkers for synthesizing biocompatible, biodegradable and mechanically strong hydrogels with desired release profile. Polym. Bull. 2022 79 11 9199 9219 10.1007/s00289‑021‑03956‑8
    [Google Scholar]
  103. Lin Y.H. Chang C.H. Wu Y.S. Hsu Y.M. Chiou S.F. Chen Y.J. Development of pH-responsive chitosan/heparin nanoparticles for stomach-specific anti-Helicobacter pylori therapy. Biomaterials 2009 30 19 3332 3342 10.1016/j.biomaterials.2009.02.036 19299008
    [Google Scholar]
  104. Mikušová V. Mikuš P. Advances in chitosan-based nanoparticles for drug delivery. Int. J. Mol. Sci. 2021 22 17 9652 10.3390/ijms22179652 34502560
    [Google Scholar]
  105. Lin Y.H. Sonaje K. Lin K.M. Juang J.H. Mi F.L. Yang H.W. Sung H.W. Multi-ion-crosslinked nanoparticles with pH-responsive characteristics for oral delivery of protein drugs. J. Control. Release 2008 132 2 141 149 10.1016/j.jconrel.2008.08.020 18817821
    [Google Scholar]
  106. Lichtenstein G.R. Abreu M.T. Cohen R. Tremaine W. American Gastroenterological Association American Gastroenterological Association Institute technical review on corticosteroids, immunomodulators, and infliximab in inflammatory bowel disease. Gastroenterology 2006 130 3 940 987 10.1053/j.gastro.2006.01.048 16530532
    [Google Scholar]
  107. Wang M. Gao B. Wang X. Li W. Feng Y. Enzyme-responsive strategy as a prospective cue to construct intelligent biomaterials for disease diagnosis and therapy. Biomater. Sci. 2022 10 8 1883 1903 10.1039/D2BM00067A 35293402
    [Google Scholar]
  108. Yeh Y.C. Huang T.H. Yang S.C. Chen C.C. Fang J.Y. Nano-based drug delivery or targeting to eradicate bacteria for infection mitigation: A review of recent advances. Front Chem. 2020 8 286 10.3389/fchem.2020.00286 32391321
    [Google Scholar]
  109. Li Q. Lin L. Zhang C. Zhang H. Ma Y. Qian H. Chen X.L. Wang X. The progression of inorganic nanoparticles and natural products for inflammatory bowel disease. J. Nanobiotechnology 2024 22 1 17 10.1186/s12951‑023‑02246‑x 38172992
    [Google Scholar]
  110. AlSawaftah N.M. Awad N.S. Pitt W.G. Husseini G.A. pH-responsive nanocarriers in cancer therapy. Polymers (Basel) 2022 14 5 936 10.3390/polym14050936 35267759
    [Google Scholar]
  111. Ding H. Tan P. Fu S. Tian X. Zhang H. Ma X. Gu Z. Luo K. Preparation and application of pH-responsive drug delivery systems. J. Control. Release 2022 348 206 238 10.1016/j.jconrel.2022.05.056 35660634
    [Google Scholar]
  112. Schmaljohann D. Thermo- and pH-responsive polymers in drug delivery. Adv. Drug Deliv. Rev. 2006 58 15 1655 1670 10.1016/j.addr.2006.09.020 17125884
    [Google Scholar]
  113. Hoque J. Sangaj N. Varghese S. Stimuli‐responsive supramolecular hydrogels and their applications in regenerative medicine. Macromol. Biosci. 2019 19 1 1800259 10.1002/mabi.201800259 30295012
    [Google Scholar]
  114. Kim H. Fassihi R. Application of a binary polymer system in drug release rate modulation. 1. Characterization of release mechanism. J. Pharm. Sci. 1997 86 3 316 322 10.1021/js960302s 9050799
    [Google Scholar]
  115. Li M.G. Lu W.L. Wang J.C. Zhang X. Zhang H. Wang X.Q. Wu C.S. Zhang Q. Preparation and characterization of insulin nanoparticles employing chitosan and poly(methylmethacrylate/methylmethacrylic acid) copolymer. J. Nanosci. Nanotechnol. 2006 6 9 2874 2886 10.1166/jnn.2006.411 17048494
    [Google Scholar]
  116. Guilherme M.R. Aouada F.A. Fajardo A.R. Martins A.F. Paulino A.T. Davi M.F.T. Rubira A.F. Muniz E.C. Superabsorbent hydrogels based on polysaccharides for application in agriculture as soil conditioner and nutrient carrier: A review. Eur. Polym. J. 2015 72 365 385 10.1016/j.eurpolymj.2015.04.017
    [Google Scholar]
  117. Balamuralidhara V. Pramodkumar T.M. Srujana N. Venkatesh M.P. Gupta N.V. Krishna K.L. Gangadharappa H.V. pH sensitive drug delivery systems: A review. Am. J. Drug Discov. Dev. 2011 1 24 48 10.3923/ajdd.2011.24.48
    [Google Scholar]
  118. Alai M. Lin W.J. Application of nanoparticles for oral delivery of acid-labile lansoprazole in the treatment of gastric ulcer: In vitro and in vivo evaluations. Int. J. Nanomedicine 2015 10 4029 4041 26124659
    [Google Scholar]
  119. Arif M. Dong Q.J. Raja M.A. Zeenat S. Chi Z. Liu C.G. Development of novel pH-sensitive thiolated chitosan/PMLA nanoparticles for amoxicillin delivery to treat Helicobacter pylori. Mater. Sci. Eng. C 2018 83 17 24 10.1016/j.msec.2017.08.038 29208276
    [Google Scholar]
  120. Abd El Hady W.E. Mohamed E.A. Soliman O.A.E.A. EL Sabbagh H.M. In vitro–in vivo evaluation of chitosan-PLGA nanoparticles for potentiated gastric retention and anti-ulcer activity of diosmin. Int. J. Nanomedicine 2019 14 7191 7213 10.2147/IJN.S213836 31564873
    [Google Scholar]
  121. Thamphiwatana S. Fu V. Zhu J. Lu D. Gao W. Zhang L. Nanoparticle-stabilized liposomes for pH-responsive gastric drug delivery. Langmuir 2013 29 39 12228 12233 10.1021/la402695c 23987129
    [Google Scholar]
  122. Bhattarai N. Gunn J. Zhang M. Chitosan-based hydrogels for controlled, localized drug delivery. Adv. Drug Deliv. Rev. 2010 62 1 83 99 10.1016/j.addr.2009.07.019 19799949
    [Google Scholar]
  123. Zhao Y. Xu C. Liu Q. Lei X. Deng L. Wang F. Yang J. pH-responsive interface conversion efficient oral drug delivery platform for alleviating inflammatory bowel disease. Front Chem. 2024 12 1365880 10.3389/fchem.2024.1365880 38532806
    [Google Scholar]
  124. Zhang L. Zhang L. Deng H. Li H. Tang W. Guan L. Qiu Y. Donovan M.J. Chen Z. Tan W. In vivo activation of pH-responsive oxidase-like graphitic nanozymes for selective killing of Helicobacter pylori. Nat. Commun. 2021 12 1 2002 10.1038/s41467‑021‑22286‑x 33790299
    [Google Scholar]
  125. Karewicz A. 11 - Polymeric and liposomal nanocarriers for controlled drug delivery. Biomaterials for Bone Regeneration Woodhead Publishing 2014 351 373 10.1533/9780857098104.3.351
    [Google Scholar]
  126. Pandita D. Poonia N. Chaudhary G. Jain G.K. Lather V. Khar R.K. Chapter 3 - pH-sensitive polymeric nanocarriers for enhanced intracellular drug delivery. Smart Polymeric Nano-Constructs in Drug Delivery Academic Press 2023 65 107 10.1016/B978‑0‑323‑91248‑8.00004‑0
    [Google Scholar]
  127. Wang X.Q. Zhang Q. pH-sensitive polymeric nanoparticles to improve oral bioavailability of peptide/protein drugs and poorly water-soluble drugs. Eur. J. Pharm. Biopharm. 2012 82 2 219 229 10.1016/j.ejpb.2012.07.014 22885229
    [Google Scholar]
  128. Palanikumar L. Al-Hosani S. Kalmouni M. Nguyen V.P. Ali L. Pasricha R. Barrera F.N. Magzoub M. pH-responsive high stability polymeric nanoparticles for targeted delivery of anticancer therapeutics. Commun. Biol. 2020 3 1 95 10.1038/s42003‑020‑0817‑4 32127636
    [Google Scholar]
  129. Singh J. Nayak P. pH ‐responsive polymers for drug delivery: Trends and opportunities. J. Polym. Sci. 2023 61 22 2828 2850 10.1002/pol.20230403
    [Google Scholar]
  130. De R. Mahata M.K. Kim K.T. Structure‐based varieties of polymeric nanocarriers and influences of their physicochemical properties on drug delivery profiles. Adv. Sci. (Weinh.) 2022 9 10 2105373 10.1002/advs.202105373 35112798
    [Google Scholar]
  131. Abandansari H.S. Nabid M.R. Rezaei S.J.T. Niknejad H. pH-sensitive nanogels based on Boltorn® H40 and poly(vinylpyridine) using mini-emulsion polymerization for delivery of hydrophobic anticancer drugs. Polymer (Guildf.) 2014 55 16 3579 3590 10.1016/j.polymer.2014.06.037
    [Google Scholar]
  132. Du C. Deng D. Shan L. Wan S. Cao J. Tian J. Achilefu S. Gu Y. A pH-sensitive doxorubicin prodrug based on folate-conjugated BSA for tumor-targeted drug delivery. Biomaterials 2013 34 12 3087 3097 10.1016/j.biomaterials.2013.01.041 23374705
    [Google Scholar]
  133. Kamimura M. Nagasaki Y. pH-Sensitive polymeric micelles for enhanced intracellular anti-cancer drug delivery. J. Photopolym. Sci. Technol. 2013 26 2 161 164 10.2494/photopolymer.26.161
    [Google Scholar]
  134. Liu G.Y. Li M. Zhu C.S. Jin Q. Zhang Z.C. Ji J. Charge-conversional and pH-sensitive PEGylated polymeric micelles as efficient nanocarriers for drug delivery. Macromol. Biosci. 2014 14 9 1280 1290 10.1002/mabi.201400162 24866398
    [Google Scholar]
  135. Shixian. 89 prepared 3,3′-dithiodipropionic acid functionalized poly(ethylene glycol)-b-poly(L-lysine) (mPEG-b-P(LL-DTPA)) with paclitaxel (PTX) directly conjugated via ester bonds.
  136. She W. Li N. Luo K. Guo C. Wang G. Geng Y. Gu Z. Dendronized heparin−doxorubicin conjugate based nanoparticle as pH-responsive drug delivery system for cancer therapy. Biomaterials 2013 34 9 2252 2264 10.1016/j.biomaterials.2012.12.017 23298778
    [Google Scholar]
  137. Rigogliuso S. Sabatino M.A. Adamo G. Polymeric nanogels: Nanocarriers for drug delivery application. Chem. Eng. Trans. 2012 27 247 252
    [Google Scholar]
  138. Ramasamy T. Haidar Z.S. Tran T.H. Choi J.Y. Jeong J.H. Shin B.S. Choi H.G. Yong C.S. Kim J.O. Layer-by-layer assembly of liposomal nanoparticles with PEGylated polyelectrolytes enhances systemic delivery of multiple anticancer drugs. Acta Biomater. 2014 10 12 5116 5127 10.1016/j.actbio.2014.08.021 25169256
    [Google Scholar]
  139. Yang Y.Q. Zhao B. Li Z.D. Lin W.J. Zhang C.Y. Guo X.D. Wang J.F. Zhang L.J. pH-sensitive micelles self-assembled from multi-arm star triblock co-polymers poly(ε-caprolactone)-b-poly(2-(diethylamino)ethyl methacrylate)-b-poly(poly(ethylene glycol) methyl ether methacrylate) for controlled anticancer drug delivery. Acta Biomater. 2013 9 8 7679 7690 10.1016/j.actbio.2013.05.006 23669619
    [Google Scholar]
  140. Vilar G. Tulla-Puche J. Albericio F. Polymers and drug delivery systems. Curr. Drug Deliv. 2012 9 4 367 394 10.2174/156720112801323053 22640038
    [Google Scholar]
  141. Priya James H. John R. Alex A. Anoop K.R. Smart polymers for the controlled delivery of drugs – a concise overview. Acta Pharm. Sin. B 2014 4 2 120 127 10.1016/j.apsb.2014.02.005 26579373
    [Google Scholar]
  142. Shinn J. Kwon N. Lee S.A. Lee Y. Smart pH-responsive nanomedicines for disease therapy. J. Pharm. Investig. 2022 52 4 427 441 10.1007/s40005‑022‑00573‑z 35573320
    [Google Scholar]
  143. Sebastiani F. Yanez Arteta M. Lerche M. Porcar L. Lang C. Bragg R.A. Elmore C.S. Krishnamurthy V.R. Russell R.A. Darwish T. Pichler H. Waldie S. Moulin M. Haertlein M. Forsyth V.T. Lindfors L. Cárdenas M. Apolipoprotein E binding drives structural and compositional rearrangement of mRNA-containing lipid nanoparticles. ACS Nano 2021 15 4 6709 6722 10.1021/acsnano.0c10064 33754708
    [Google Scholar]
  144. Bami M.S. Raeisi Estabragh M.A. Khazaeli P. Ohadi M. Dehghannoudeh G. pH-responsive drug delivery systems as intelligent carriers for targeted drug therapy: Brief history, properties, synthesis, mechanism and application. J. Drug Deliv. Sci. Technol. 2022 70 102987 10.1016/j.jddst.2021.102987
    [Google Scholar]
/content/journals/ddl/10.2174/0122103031334895250227111942
Loading
/content/journals/ddl/10.2174/0122103031334895250227111942
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test