Skip to content
2000
Volume 21, Issue 2
  • ISSN: 1573-4048
  • E-ISSN: 1875-6581

Abstract

Background

Urinary tract infection (UTIs) is the most common infection in women affecting approximately 75% of women worldwide during their pregnancy, and in pre and postmenopausal women. Typical symptoms include urinary frequency, urgency, suprapubic discomfort, and dysuria.

Methods

An introduction to the epidemiology of UTIs and detailed herbal nanoformulation treatment approach through novel intravaginal route is intended through this narrative review. UTIs are associated with significant morbidity and mortality, and they affect the quality of life of the affected patients. Multidrug-resistant bacteria and recurrent UTIs are becoming more common. Development of resistance, adverse effects of antibiotics, and other associated problems lead to establishing the research framework to find out the alternative approaches in controlling UTIs. Antibiotic-free treatments for uncomplicated urinary tract infections UTIs should be used, saving drugs for severe infections. Herbal medication might be used instead of antibiotics for uncomplicated UTIs, in addition to analgesics for purely symptomatic treatment.

Conclusion

This review identifies the pathophysiology of UTI, distinguish the intravaginal route as an alternative to oral delivery route, summarizes the management of urinary tract infections and highlights the anti-uropathogenic and anti-bactericidal effects of herbal approaches to prevent or treat urinary tract infections.

Loading

Article metrics loading...

/content/journals/cwhr/10.2174/0115734048265267231119175852
2024-01-15
2025-01-11
Loading full text...

Full text loading...

References

  1. AiresA. MotaV.R. SaavedraM.J. RosaE.A.S. BennettR.N. The antimicrobial effects of glucosinolates and their respective enzymatic hydrolysis products on bacteria isolated from the human intestinal tract.J. Appl. Microbiol.200910662086209510.1111/j.1365‑2672.2009.04180.x19291240
    [Google Scholar]
  2. MedinaM Castillo-PinoE An introduction to the epidemiology and burden of urinary tract infections.Ther Adv Urol201911175628721983217210.1177/1756287219832172
    [Google Scholar]
  3. LongB. KoyfmanA. The emergency department diagnosis and management of urinary tract infection.Emerg. Med. Clin. North Am.201836468571010.1016/j.emc.2018.06.00330296999
    [Google Scholar]
  4. Flores-MirelesA.L. WalkerJ.N. CaparonM. HultgrenS.J. Urinary tract infections: Epidemiology, mechanisms of infection and treatment options.Nat. Rev. Microbiol.201513526928410.1038/nrmicro343225853778
    [Google Scholar]
  5. KostakiotiM. HultgrenS.J. HadjifrangiskouM. Molecular blueprint of uropathogenic Escherichia coli virulence provides clues toward the development of anti-virulence therapeutics.Virulence20123759259310.4161/viru.2236423154288
    [Google Scholar]
  6. BehzadiP. BehzadiE. YazdanbodH. AghapourR. Akbari CheshmehM. Salehian OmranD. A survey on urinary tract infections associated with the three most common uropathogenic bacteria.Maedica20105211111521977133
    [Google Scholar]
  7. YamajiR. FriedmanC.R. RubinJ. SuhJ. ThysE. A population-based surveillance study of shared genotypes of escherichia coli isolates from retail meat and suspected cases of urinary tract infections.mSphere201834e0017918
    [Google Scholar]
  8. BarnettB.J. StephensD.S. StephensS. Urinary tract infection: An overview.Am. J. Med. Sci.199731442452499332263
    [Google Scholar]
  9. HootonT.M. Clinical practice. Uncomplicated urinary tract infection.N. Engl. J. Med.2012366111028103710.1056/NEJMcp110442922417256
    [Google Scholar]
  10. OngD.S.Y. KuyvenhovenM.M. van DijkL. VerheijT.J.M. Antibiotics for respiratory, ear and urinary tract disorders and consistency among GPs.J. Antimicrob. Chemother.200862358759210.1093/jac/dkn23018544602
    [Google Scholar]
  11. Epidemiology, diagnostics, therapy and management of uncomplicated bacterial community acquired urinary tract infection in adults: German S3-Guideline2010
    [Google Scholar]
  12. HootonT.M. VecchioM. IrozA. TackI. DornicQ. SeksekI. LotanY. Effect of increased daily water intake in premenopausal women with recurrent urinary tract infections.JAMA Intern. Med.2018178111509151510.1001/jamainternmed.2018.420430285042
    [Google Scholar]
  13. LiuY. XiaoD. ShiX. Urinary tract infection control in intensive care patients.Medicine20189738e1219510.1097/MD.000000000001219530235665
    [Google Scholar]
  14. FoxmanB. BrownP. Epidemiology of urinary tract infections.Infect. Dis. Clin. North Am.200317222724110.1016/S0891‑5520(03)00005‑912848468
    [Google Scholar]
  15. JansåkerF. LiX. VikI. Frimodt-MøllerN. KnudsenJ.D. SundquistK. The risk of pyelonephritis following uncomplicated cystitis: A nationwide primary healthcare study.Antibiotics20221112169510.3390/antibiotics1112169536551352
    [Google Scholar]
  16. StammW.E. NorrbyS.R. Urinary tract infections: Disease panorama and challenges.J. Infect. Dis.2001183s1Suppl. 1S1S410.1086/31885011171002
    [Google Scholar]
  17. SakamotoS. MiyazawaK. YasuiT. IguchiT. FujitaM. NishimatsuH. MasakiT. HasegawaT. HibiH. ArakawaT. AndoR. KatoY. IshitoN. YamaguchiS. TakazawaR. TsujihataM. TaguchiM. AkakuraK. HataA. IchikawaT. Chronological changes in epidemiological characteristics of lower urinary tract urolithiasis in Japan.Int. J. Urol.20192619610110.1111/iju.1381730308705
    [Google Scholar]
  18. AlperinM. BurnettL. LukaczE. BrubakerL. The mysteries of menopause and urogynecologic health: Clinical and scientific gaps.Menopause201926110311110.1097/GME.000000000000120930300297
    [Google Scholar]
  19. MaharjanG. KhadkaP. Siddhi ShilpakarG. ChapagainG. DhunganaG.R. Catheter-associated urinary tract infection and obstinate biofilm producers.Can. J. Infect. Dis. Med. Microbiol.201820181710.1155/2018/762485730224941
    [Google Scholar]
  20. WoolfsonA.D. MalcolmR.K. GallagherR. Drug delivery by the intravaginal route.Crit. Rev. Ther. Drug Carrier Syst.20001754710.1615/CritRevTherDrugCarrierSyst.v17.i5.3011108158
    [Google Scholar]
  21. WashingtonN. WashingtonC. WilsonC.G. Vaginal and intrauterine drug delivery. Physiological pharmaceutics: Barriers to drug absorption WashingtonN. WashingtonC. WilsonC.G. Taylor and FrancisLondon2001271281
    [Google Scholar]
  22. AlexanderN.J. BakerE. KapteinM. KarckU. MillerL. ZampaglioneE. Why consider vaginal drug administration?Fertil. Steril.200482111210.1016/j.fertnstert.2004.01.02515236978
    [Google Scholar]
  23. SrikrishnaS. CardozoL. The vagina as a route for drug delivery: A review.Int. Urogynecol. J. Pelvic Floor Dysfunct.201324453754310.1007/s00192‑012‑2009‑323229421
    [Google Scholar]
  24. HussainA. AhsanF. The vagina as a route for systemic drug delivery.J. Control. Release2005103230131310.1016/j.jconrel.2004.11.03415763615
    [Google Scholar]
  25. TangM. QuanstromK. JinC. SuskindA.M. Recurrent urinary tract infections are associated with frailty in older adults.Urology2019123242710.1016/j.urology.2018.09.02530296501
    [Google Scholar]
  26. LavigneJ.P. BourgG. BottoH. SottoA. Cranberry (Vaccinium macrocarpon) and urinary tract infections: study model and review of literature.Pathol. Biol.2007558-946046410.1016/j.patbio.2007.07.00517905535
    [Google Scholar]
  27. NeuH.C. Optimal characteristics of agents to treat uncomplicated urinary tract infections.Infection199220S4Suppl. 4S266S27110.1007/BF017100121294515
    [Google Scholar]
  28. StameyT.A. FairW.R. TimothyM.M. MillarM.A. MiharaG. LoweryY.C. Serum versus urinary antimicrobial concentrations in cure of urinary-tract infections.N. Engl. J. Med.1974291221159116310.1056/NEJM1974112829122044422010
    [Google Scholar]
  29. TalanD.A. StammW.E. HootonT.M. MoranG.J. BurkeT. IravaniA. Reuning-SchererJ. ChurchD.A. Comparison of ciprofloxacin (7 days) and trimethoprim-sulfamethoxazole (14 days) for acute uncomplicated pyelonephritis pyelonephritis in women: a randomized trial.JAMA2000283121583159010.1001/jama.283.12.158310735395
    [Google Scholar]
  30. GuptaK. SahmD.F. MayfieldD. StammW.E. Antimicrobial resistance among uropathogens that cause community-acquired urinary tract infections in women: a nationwide analysis.Clin. Infect. Dis.2001331899410.1086/32088011389500
    [Google Scholar]
  31. GuptaK. HootonT.M. StammW.E. Increasing antimicrobial resistance and the management of uncomplicated community-acquired urinary tract infections.Ann. Intern. Med.20011351415010.7326/0003‑4819‑135‑1‑200107030‑0001211434731
    [Google Scholar]
  32. GuptaK. ScholesD. StammW.E. Increasing prevalence of antimicrobial resistance among uropathogens causing acute uncomplicated cystitis in women.JAMA1999281873673810.1001/jama.281.8.73610052444
    [Google Scholar]
  33. DasD.C. SinhaN.K. PatsaM.K. DasM. Investigation of herbals for the treatment of leucorrhoea from south west Bengal, India.Int. J. Bioassays2015445554559
    [Google Scholar]
  34. TaidT.C. RajkhowaR.C. KalitaJ.C. A study on the medicinal plants used by the local traditional healers of Dhemaji district, Assam, India for curing reproductive health related disorders.Adv. Appl. Sci. Res.20145296301
    [Google Scholar]
  35. PattayakS. DasD.C. SinhaN.K. ParidaS. Use of medicinal plants for the treatment of urinary tract infections: A study from paschim medinipur district, west bengal, India.Int. J. Pharma Bio Sci.20178250259
    [Google Scholar]
  36. SkrovankovaS. SumczynskiD. MlcekJ. JurikovaT. SochorJ. Bioactive compounds and antioxidant activity in different types of berries.Int. J. Mol. Sci.20151610246732470610.3390/ijms16102467326501271
    [Google Scholar]
  37. DasonS. DasonJ.T. KapoorA. Guidelines for the diagnosis and management of recurrent urinary tract infection in women.Can. Urol. Assoc. J.20135531632210.5489/cuaj.68722031610
    [Google Scholar]
  38. HisanoM. BruschiniH. NicodemoA.C. SrougiM. Cranberries and lower urinary tract infection prevention.Clinics201267666166710.6061/clinics/2012(06)1822760907
    [Google Scholar]
  39. Pérez-LópezF.R. HayaJ. ChedrauiP. Vaccinium macrocarpon : An interesting option for women with recurrent urinary tract infections and other health benefits.J. Obstet. Gynaecol. Res.200935463063910.1111/j.1447‑0756.2009.01026.x19751320
    [Google Scholar]
  40. ChettaouiR. MayotG. De AlmeidaL. Di MartinoP. Cranberry (Vaccinium macrocarpon) dietary supplementation and fecal microbiota of Wistar rats.AIMS Microbiol.20217225727010.3934/microbiol.202101634250378
    [Google Scholar]
  41. Al-BayatiF.A. Al-MolaH.F. Antibacterial and antifungal activities of different parts of Tribulus terrestris L. growing in Iraq.J. Zhejiang Univ. Sci. B20089215415910.1631/jzus.B072025118257138
    [Google Scholar]
  42. KannabiranK. MohankumarT. GunasekerV. Evaluation of antimicrobial activity of saponin isolated from Solanum xanthocarpum and Centella asiatica.Intern J Nat Engin Sci2009312225
    [Google Scholar]
  43. MandalP. Sinha BabuS.P. MandalN.C. Antimicrobial activity of saponins from Acacia auriculiformis.Fitoterapia200576546246510.1016/j.fitote.2005.03.00415951137
    [Google Scholar]
  44. BatoeiS. MahboubiM. YariR. Antibacterial activity of Tribulus terrestris methanol extract against clinical isolates of Escherichia coli.Herba Pol.2016622576610.1515/hepo‑2016‑0011
    [Google Scholar]
  45. SharmaR. GodatwarP.K. In vitro anti-microbial effect of various extracts of Ġokṣura (Tribulus terrestris) fruits on common pathogens causing urinary tract infection.J Ayu Int Med Sci2022796469
    [Google Scholar]
  46. BhukerA. MorV.S. MsP.R. JakharS.S. Potential use of medicinal plant Gokhru: A review.Journal of Ayurvedic and Herbal Medicine20228210110610.31254/jahm.2022.8208
    [Google Scholar]
  47. ArabskiM. WąsikS. DworeckiK. KacaW. Laser interferometric and cultivation methods for measurement of colistin/ampicilin and saponin interactions with smooth and rough of Proteus mirabilis lipopolysaccharides and cells.J. Microbiol. Methods200977217818310.1016/j.mimet.2009.01.02019318050
    [Google Scholar]
  48. KumarA. JhadwalN. LalM. Antibacterial activity of some medicinal plants used against UTI causing Pathogens.Inter J Drug Develop Res20124278280
    [Google Scholar]
  49. SaxenaA.P. VyasK.M. Antimicrobial activity of seeds of some ethnomedicinal plants.J. Econ. Taxon. Bot.19868291300
    [Google Scholar]
  50. KhanujaS.P. Formulation Comprising Thymol useful in the Treatment of Drug Resistance Bacterial infection, CCIR, New DelhiUnited state patent no US 6,824,795 b22004
  51. BairwaR. RajawatB.S. SodhaR.S. Trachyspermum ammi.Pharmacogn. Rev.2012611566010.4103/0973‑7847.9587122654405
    [Google Scholar]
  52. SinghD.B. SinghS.P. GuptaR.C. Antifungal effect of volatiles from seeds of some Umbelliferae.Trans. Br. Mycol. Soc.197973234935010.1016/S0007‑1536(79)80121‑7
    [Google Scholar]
  53. CaccioniD.L. GuizzardiM. BiondiD.M. Relationships between volatile components of citrus fruit essential oil and antimicrobial action on Penicillium digitatum and Penicillium italicum.Int. J. Food Microbiol.200088170175
    [Google Scholar]
  54. KhanR. IslamB. AkramM. ShakilS. AhmadA.A. AliS.M. SiddiquiM. KhanA. Antimicrobial activity of five herbal extracts against multi drug resistant (MDR) strains of bacteria and fungus of clinical origin.Molecules200914258659710.3390/molecules1402058619214149
    [Google Scholar]
  55. VasconcelosN.G. CrodaJ. SimionattoS. Antibacterial mechanisms of cinnamon and its constituents: A review.Microb. Pathog.201812019820310.1016/j.micpath.2018.04.03629702210
    [Google Scholar]
  56. RasoolN. SaeedZ. PervaizM. AliF. YounasU. BashirR. BukhariS.M. Mahmood khanR.R. JelaniS. SikandarR. Evaluation of essential oil extracted from ginger, cinnamon and lemon for therapeutic and biological activities.Biocatal. Agric. Biotechnol.20224410247010.1016/j.bcab.2022.102470
    [Google Scholar]
  57. RaoP.V. GanS.H. Cinnamon: A multifaceted medicinal plant.Evid. Based Complement. Alternat. Med.2014201411210.1155/2014/64294224817901
    [Google Scholar]
  58. JayaprakashaG.K. RaoL.J.M. Chemistry, biogenesis, and biological activities of Cinnamomum zeylanicum.Crit. Rev. Food Sci. Nutr.201151654756210.1080/1040839100369955021929331
    [Google Scholar]
  59. HussainS. RahmanR. MushtaqA. Zerey-BelaskriA. El Clove: A review of a precious species with multiple uses.Int. J. Chem. Biochem. Sci.201711129133
    [Google Scholar]
  60. YunJ.W. YouJ.R. KimY.S. KimS.H. ChoE.Y. YoonJ.H. KwonE. JangJ.J. ParkJ.S. KimH.C. CheJ.H. KangB.C. In vitro and in vivo safety studies of cinnamon extract (Cinnamomum cassia) on general and genetic toxicology.Regul. Toxicol. Pharmacol.20189511512310.1016/j.yrtph.2018.02.01729501463
    [Google Scholar]
  61. Ortega-LozanoA.J. Hernández-CruzE.Y. Gómez-SierraT. Pedraza-ChaverriJ. Antimicrobial activity of spices popularly used in mexico against urinary tract infections.Antibiotics202312232510.3390/antibiotics1202032536830236
    [Google Scholar]
  62. VakilwalaM. MacanK. TandelA. Phytochemical analysis and antimicrobial activity of Cinnamomum verum.International Journal of Research and Scientific Innovation2017446974
    [Google Scholar]
  63. KumarA. SharmaV. Antibacterial activity of allicin from allium sativum against antibiotic resistant uropathogens.Int. J. Infect. Dis.20098115
    [Google Scholar]
  64. JoshiB. LekhakS. SharmaA. Antibacterial property of different medicinal plants: Ocimum sanctum, Cinnamomum zeylanicum, Xanthoxylum armatum and Origanum majorana.Kathmand Univ J Sci Engineer Technol20095143150
    [Google Scholar]
  65. BuddhadevS. BuddhadevS. MehtaN. A review article on ocimum sanctum linn.PunarnaV201420106
    [Google Scholar]
  66. CohenM. Tulsi - Ocimum sanctum: A herb for all reasons.J. Ayurveda Integr. Med.20145425125910.4103/0975‑9476.14655425624701
    [Google Scholar]
  67. MahajanN. RawalS. VermaM. PoddarM. AlokS. A phytopharmacological overview on Ocimum species with special emphasis on Ocimum sanctum. Biomedicine & Preventive Nutrition20133218519210.1016/j.bionut.2012.08.002
    [Google Scholar]
  68. MohanL. AmberkarM.V. KumariM. Ocimum sanctum linn. (TULSI)-an overview.Int. J. Pharm. Sci. Rev. Res.201175153
    [Google Scholar]
  69. PattanayakP. BeheraP. DasD. PandaS. Ocimum sanctum Linn. A reservoir plant for therapeutic applications: An overview.Pharmacogn. Rev.2010479510510.4103/0973‑7847.6532322228948
    [Google Scholar]
  70. AliH. DixitS. In vitro antimicrobial activity of flavanoids of Ocimum sanctum with synergistic effect of their combined form.Asian Pac. J. Trop. Dis.20122S396S39810.1016/S2222‑1808(12)60189‑3
    [Google Scholar]
  71. SinghS. MalhotraM. MajumdarD.K. Antibacterial activity of Ocimum sanctum L. fixed oil.Indian J. Exp. Biol.200543983583716187537
    [Google Scholar]
  72. MondalS. MirdhaB.R. MahapatraS.C. The science behind sacredness of Tulsi (Ocimum sanctum Linn.).Indian J. Physiol. Pharmacol.200953429130620509321
    [Google Scholar]
  73. DeoS.S. InamF. MahashabdeR.P. Antimicrobial activity and HPLC fingerprinting of crude ocimum extracts.E-J. Chem.2011831430143710.1155/2011/428019
    [Google Scholar]
  74. BalakumarS. RajanS. ThirunalasundariT. JeevaS. Antifungal activity of Ocimum sanctum Linn. (Lamiaceae) on clinically isolated dermatophytic fungi.Asian Pac. J. Trop. Med.20114865465710.1016/S1995‑7645(11)60166‑121914546
    [Google Scholar]
  75. DasJ. BuragohainB. SrivastavaR.B. In vitro evaluation of ocimum sanctum leaf extract against dermatophytes and opportunistic fungi.Asian J. Microbiol. Biotechnol. Environ. Sci.201012789792
    [Google Scholar]
  76. ChandraR. DwivediV. ShivamK. JhaA.K. Detection of antimicrobial activity of Oscimum sanctum (Tulsi) and Trigonella foenum graecum (Methi) against some selected bacterial and fungal strains.Res. J. Pharm. Biol. Chem. Sci.20112809813
    [Google Scholar]
  77. KaruppiahP. RajaramS. Antibacterial effect of Allium sativum cloves and Zingiber officinale rhizomes against multiple-drug resistant clinical pathogens.Asian Pac. J. Trop. Biomed.20122859760110.1016/S2221‑1691(12)60104‑X23569978
    [Google Scholar]
  78. MaoQ.Q. XuX.Y. CaoS.Y. GanR.Y. CorkeH. BetaT. LiH.B. Bioactive compounds and bioactivities of ginger (Zingiber officinale Roscoe).Foods20198618510.3390/foods806018531151279
    [Google Scholar]
  79. PrasadS. TyagiA.K. Ginger and its constituents: Role in prevention and treatment of gastrointestinal cancer.Gastroenterol. Res. Pract.2015201511110.1155/2015/14297925838819
    [Google Scholar]
  80. JiK. FangL. ZhaoH. LiQ. ShiY. XuC. WangY. DuL. WangJ. LiuQ. Ginger oleoresin alleviated gamma-ray irradiation-induced reactive oxygen species via the Nrf2 protective response in human mesenchymal stem cells.Oxid. Med. Cell. Longev.2017201711210.1155/2017/148029429181121
    [Google Scholar]
  81. SchadichE. HlaváčJ. VolnáT. VaranasiL. HajdúchM. DžubákP. Effects of ginger phenylpropanoids and quercetin on Nrf2-ARE pathway in human BJ fibroblasts and HaCaT keratinocytes.BioMed Res. Int.201620161610.1155/2016/217327526942188
    [Google Scholar]
  82. MoonY.S. LeeH.S. LeeS.E. Inhibitory effects of three monoterpenes from ginger essential oil on growth and aflatoxin production of Aspergillus flavus and their gene regulation in aflatoxin biosynthesis.Applied Biological Chemistry201861224325010.1007/s13765‑018‑0352‑x
    [Google Scholar]
  83. NassanM.A. MohamedE.H. Immunopathological and antimicrobial effect of black pepper, ginger and thyme extracts on experimental model of acute hematogenous pyelonephritis in albino rats.Int. J. Immunopathol. Pharmacol.201427453154110.1177/03946320140270040925572733
    [Google Scholar]
  84. ChakotiyaA.S. TanwarA. NarulaA. SharmaR.K. Zingiber officinale : Its antibacterial activity on Pseudomonas aeruginosa and mode of action evaluated by flow cytometry.Microb. Pathog.201710725426010.1016/j.micpath.2017.03.02928389345
    [Google Scholar]
  85. ShanmugapriyaR. UshadeviT. In vitro antibacterial and antioxidant activities of Apium graveolens L. seed extracts.Int J Drug Dev Res20146165170
    [Google Scholar]
  86. Al-SnafiA.E. The pharmacology of apium graveolens-a review.International Journal for Pharmaceutical Research Scholars201431671677
    [Google Scholar]
  87. KhairullahA.R. SolikhahT.I. AnsoriA.N.M. HidayatullahA.R. HartadiE.B. RamandiniantoS.C. FadhollyA. Review on the pharmacological and health aspects of Apium graveolens or celery: An update.SRP2021121606612
    [Google Scholar]
  88. Al-JiffriO. El-SayedZ. Al-SharifF. Urinary tract infection with Escherichia coli and antibacterial activity of some plants extracts.Int. J. Microbiol. Res.2011217
    [Google Scholar]
  89. SinghR. ShushniM.A.M. BelkheirA. BelkheirA. Antibacterial and antioxidant activities of Mentha piperita L.Arab. J. Chem.20158332232810.1016/j.arabjc.2011.01.019
    [Google Scholar]
  90. GholamipourfardK. SalehiM. BanchioE. Mentha piperita phytochemicals in agriculture, food industry and medicine: Features and applications.S. Afr. J. Bot.202114118319510.1016/j.sajb.2021.05.014
    [Google Scholar]
  91. AhmedS. KhatriM.S. HasanM.M. Plants of family lamiaceae: A promising hand for new antiurolithiatic drug development.World J. Pharm. Pharm. Sci.201769096
    [Google Scholar]
  92. MahendranG. RahmanL.U. Ethnomedicinal, phytochemical and pharmacological updates on Peppermint ( Mentha × piperita L.)—A review.Phytother. Res.20203492088213910.1002/ptr.666432173933
    [Google Scholar]
  93. NetoC.C. VinsonJ.A. Cranberry. Herbal Medicine: Biomolecular and Clinical Aspects.2nd ed BenzieI.F.F. Wachtel-GalorS. Boca Raton, FLCRC Press/Taylor & Francis201110.1201/b10787‑7
    [Google Scholar]
  94. RajashekarV. RaoE.U. SrinivasP. Biological activities and medicinal properties of Gokhru (Pedalium murex L.).Asian Pac. J. Trop. Biomed.20122758158510.1016/S2221‑1691(12)60101‑423569975
    [Google Scholar]
  95. ChhatreS. NesariT. KanchanD. SomaniG. SathayeS. Phytopharmacological overview of Tribulus terrestris.Pharmacogn. Rev.2014815455110.4103/0973‑7847.12553024600195
    [Google Scholar]
  96. JakhetiaV. PatelR. KhatriP. Cinnamon: A pharmacological review.Int. J. Adv. Sci. Res.2010121912
    [Google Scholar]
  97. JamshedA. JabeenQ. Pharmacological evaluation of Mentha piperita against urolithiasis: An in vitro and in vivo study.Dose Response202220110.1177/1559325821107308735110977
    [Google Scholar]
  98. NordinN.I. GibbonsS. PerrettD. MageedR.A. NafiahM.A. Immunomodulatory effects of Roscoe var. (Halia Bara) ON inflammatory responses relevant to psoriasis.Open Conf. Proc. J.2013417610.2174/2210289201304010076
    [Google Scholar]
  99. RazaliN. DewaA. AsmawiM.Z. MohamedN. ManshorN.M. Mechanisms underlying the vascular relaxation activities of Zingiber officinale var. rubrum in thoracic aorta of spontaneously hypertensive rats.J. Integr. Med.2020181465810.1016/j.joim.2019.12.00331882255
    [Google Scholar]
  100. NirvanaS.J. WidiyaniT. BudiharjoA. Antihypercholesterolemia activities of red ginger extract (Zingiber officinale Roxb. var rubrum) on wistar ratsProceedings of the IOP Conference Series: Materials Science and EngineeringChennai, India202001202510.1088/1757‑899X/858/1/012025
    [Google Scholar]
  101. HariyantoI.H. IndriK. SaragihN. Antihyperuricemia activity from methanol extract of red ginger rhizomes (Zingiber officinale Rosc. var rubrum) towards white male rat wistar strain.Int J Pharm Teach Pr20134540
    [Google Scholar]
  102. SyafitriD.M. LevitaJ. MutakinM. DiantiniA. A Review: Is Ginger (Zingiber officinale var. Roscoe) Potential for Future Phytomedicine?Indonesian Journal of Applied Sciences2018813010.24198/ijas.v8i1.16466
    [Google Scholar]
  103. SrinivasaB. DesuR. SivaramakrishnaK. Antidepressant activity of methanolic extract of Apium graveolens seeds.Int. J. Res. Pharm. Chem.20122411241127
    [Google Scholar]
  104. ShadA.A. ShahH.U. BakhtJ. ChoudharyM.I. UllahJ. Nutraceutical potential and bioassay of Apium graveolens L. grown in Khyber Pakhtunkhwa Pakistan.J. Med. Plants Res.2011551605166
    [Google Scholar]
  105. BaananouS. BouftiraI. MahmoudA. BoukefK. MarongiuB. BoughattasN.A. Antiulcerogenic and antibacterial activities of Apium graveolens essential oil and extract.Nat. Prod. Res.201327121075108310.1080/14786419.2012.71728422934666
    [Google Scholar]
  106. GenatrikaE. SatrianiF. HapsariI. Hapsari. antibacterial activity of celery leaves (Apium graveolens L.) formulated in toothpaste against streptococcus mutans.International Journal of Applied Pharmaceutics2019115141610.22159/ijap.2019.v11s5.T0028
    [Google Scholar]
  107. MominR.A. NairM.G. Mosquitocidal, nematicidal, and antifungal compounds from Apium graveolens L. seeds.J. Agric. Food Chem.200149114214510.1021/jf001052a11305251
    [Google Scholar]
  108. RumiyatiA.R. WinartiA.D. SeptiaD.N. Antihypertensive testing of Combination of Apium graveolans L., Orthosiphon stamineus Benth., and Morinda citrifolia L. extract on Normotensive and Hypertensive Sprague Dawley Rats.Traditional Medicine Journal2016213149156
    [Google Scholar]
  109. Al-HowirinyT. AlsheikhA. AlqasoumiS. Al-YahyaM. ElTahirK. RafatullahS. Gastric antiulcer, antisecretory and cytoprotective properties of celery ( Apium graveolens ) in rats.Pharm. Biol.201048778679310.3109/1388020090328002620645778
    [Google Scholar]
  110. JittiwatJ. ChonpathompikunlertP. SukketsiriW. Neuroprotective effects of Apium graveolens against focal cerebral ischemia occur partly via antioxidant, anti-inflammatory, and anti-apoptotic pathways.J. Sci. Food Agric.202110162256226310.1002/jsfa.1084633006386
    [Google Scholar]
  111. AburjaiT. MansiK. AbushoffaA. DisiA. Hypolipidemic effects of seed extract of Celery ( Apium graveolens ) in rats.Pharmacogn. Mag.200952030130510.4103/0973‑1296.58149
    [Google Scholar]
  112. SubhadradeviV. KhairunissaK. AsokkumarK. UmamaheswariM. SivashanmugamA. JagannathP. Induction of apoptosis and cytotoxic activities of Apium graveolens linn. using in vitro models.Middle East J. Sci. Res.2011919094
    [Google Scholar]
  113. SamehB. IbtissemB. MahmoudA. BoukefK. BoughattasN.A. Antioxidant activity of Apium graveolens extracts.Journal of Biologically Active Products from Nature201115-634034310.1080/22311866.2011.10719102
    [Google Scholar]
  114. LewisD.A. TharibS.M. VeitchG.B.A. The antiinflammatory activity of celery Apium graveolens L. (Fam. Umbelliferae).Pharm. Biol.19852312732
    [Google Scholar]
  115. Al-SanabraO.M.F. QunaibiE.A. AburjaiT.A. Al-QaadanF.A. ShomafM.S. DisiA.M. Antifertility activity of ethanolic seed extract of celery (Apium Graveolens L.) in male albino rats.Jordan J. Pharm. Sci.201361303910.12816/0000360
    [Google Scholar]
  116. LansC.A. Ethnomedicines used in Trinidad and Tobago for urinary problems and diabetes mellitus.J. Ethnobiol. Ethnomed.2006214510.1186/1746‑4269‑2‑4517040567
    [Google Scholar]
  117. MagryśA. OlenderA. TchórzewskaD. Antibacterial properties of Allium sativum L. against the most emerging multidrug-resistant bacteria and its synergy with antibiotics.Arch. Microbiol.202120352257226810.1007/s00203‑021‑02248‑z33638666
    [Google Scholar]
  118. PatelaJ. PatelbR. KhambholjabK. PatelaN. An overview of phytosomes as an advanced herbal drug delivery system.Asian Journal of Pharmaceutical Sciences200946363371
    [Google Scholar]
  119. NeamtuI. RusuA.G. DiaconuA. NitaL.E. ChiriacA.P. Basic concepts and recent advances in nanogels as carriers for medical applications.Drug Deliv.201724153955710.1080/10717544.2016.127623228181831
    [Google Scholar]
  120. DakalT.C. KumarA. MajumdarR.S. YadavV. Mechanistic basis of antimicrobial actions of silver nanoparticles.Front. Microbiol.20167183110.3389/fmicb.2016.0183127899918
    [Google Scholar]
  121. ManachC. ScalbertA. MorandC. RémésyC. JiménezL. Polyphenols: Food sources and bioavailability.Am. J. Clin. Nutr.200479572774710.1093/ajcn/79.5.72715113710
    [Google Scholar]
  122. VenkatesanN. BabuB.S. VyasS.P. Protected particulate drug carriers for prolonged systemic circulation–a review.Indian J. Pharm. Sci.200062327333
    [Google Scholar]
  123. SharmaS. SikarwarM. Phytosome: A review.Planta Indica2005113
    [Google Scholar]
  124. GuptaA. AshawalM.S. SarafS. Phytosomes: A novel approach towards functional cosmetics.J. Plant Sci.200726644649
    [Google Scholar]
  125. CotelleseR. LeddaA. BelcaroG. CesaroneM.R. ScipioneC. ScipioneV. DugallM. FeragalliB. RivaA. AllegriniP. PetrangoliniG. TogniS. Anthocran® Phytosome®: Prevention of recurring urinary infections and symptoms after catheterization.J. Diet. Suppl.2023201556710.1080/19390211.2021.197207434632933
    [Google Scholar]
  126. LangerR. Biomaterials in drug delivery and tissue engineering: One laboratory’s experience.Acc. Chem. Res.20003329410110.1021/ar980099310673317
    [Google Scholar]
  127. BhadraD. BhadraS. JainP. JainN.K. Pegnology: A review of PEG-ylated systems.Pharmazie200257152911836932
    [Google Scholar]
  128. KommareddyS. TiwariS.B. AmijiM.M. Long-circulating polymeric nanovectors for tumor-selective gene delivery.Technol. Cancer Res. Treat.20054661562510.1177/15330346050040060516292881
    [Google Scholar]
  129. LeeM. KimS.W. Polyethylene glycol-conjugated copolymers for plasmid DNA delivery.Pharm. Res.200522111010.1007/s11095‑004‑9003‑515771224
    [Google Scholar]
  130. AkbarzadehF. MotaghiM. ChauhanN.P.S. SargaziG. A novel synthesis of new antibacterial nanostructures based on Zn-MOF compound: Design, characterization and a high performance application.Heliyon202061e0323110.1016/j.heliyon.2020.e0323132021929
    [Google Scholar]
  131. SargaziG. AfzaliD. MostafaviA. ShadmanA. RezaeeB. ZarrintajP. SaebM.R. RamakrishnaS. MozafariM. Chitosan/polyvinyl alcohol nanofibrous membranes: Towards green super-adsorbents for toxic gases.Heliyon201954e0152710.1016/j.heliyon.2019.e0152731049436
    [Google Scholar]
  132. LiangH. NacharajuP. FriedmanA. FriedmanJ.M. Nitric oxide generating/releasing materials.Future Sci. OA201511fso.15.5410.4155/fso.15.5426855790
    [Google Scholar]
  133. QuinnJ.F. WhittakerM.R. DavisT.P. Delivering nitric oxide with nanoparticles.J. Control. Release201520519020510.1016/j.jconrel.2015.02.00725665865
    [Google Scholar]
  134. BannovA.G. PopovM.V. KurmashovP.B. Thermal analysis of carbon nanomaterials: Advantages and problems of interpretation.J. Therm. Anal. Calorim.2020142134937010.1007/s10973‑020‑09647‑2
    [Google Scholar]
  135. KumarM.S. DasA.P. Emerging nanotechnology based strategies for diagnosis and therapeutics of urinary tract infections: A review.Adv. Colloid Interface Sci.2017249536510.1016/j.cis.2017.06.01028668171
    [Google Scholar]
  136. BarteldsR. NematollahiM.H. PolsT. StuartM.C.A. PardakhtyA. AsadikaramG. PoolmanB. Niosomes, an alternative for liposomal delivery.PLoS One2018134e019417910.1371/journal.pone.019417929649223
    [Google Scholar]
  137. NematollahiM.H. PardakhtyA. Torkzadeh-MahanaiM. MehrabaniM. AsadikaramG. Changes in physical and chemical properties of niosome membrane induced by cholesterol: A promising approach for niosome bilayer intervention.RSC Advances2017778494634947210.1039/C7RA07834J
    [Google Scholar]
  138. Abbaszadeh-GoudarziK. NematollahiM.H. KhanbabaeiH. NaveH.H. MirzaeiH.R. PourghadamyariH. SahebkarA. Targeted delivery of CRISPR/Cas13 as a promising therapeutic approach to treat SARS-CoV-2.Curr. Pharm. Biotechnol.20212291149115510.2174/18734316MTEwtNTgrw33038909
    [Google Scholar]
  139. SanthoshkumarJ. KumarS.V. RajeshkumarS. Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen.Resource-Efficient Technologies20173445946510.1016/j.reffit.2017.05.001
    [Google Scholar]
  140. SehadC. ShiaoT. SallamL. AzzouzA. RoyR. Effect of dendrimer generation and aglyconic linkers on the binding properties of mannosylated dendrimers prepared by a combined convergent and onion peel approach.Molecules2018238189010.3390/molecules2308189030060568
    [Google Scholar]
  141. ZhuZ. YuF. ChenH. WangJ. LopezA.I. ChenQ. LiS. LongY. DarouicheR.O. HullR.A. ZhangL. CaiC. Coating of silicone with mannoside-PAMAM dendrimers to enhance formation of non-pathogenic Escherichia coli biofilms against colonization of uropathogens.Acta Biomater.20176420021010.1016/j.actbio.2017.10.00829024820
    [Google Scholar]
  142. SuhailM. RosenholmJ.M. MinhasM.U. BadshahS.F. NaeemA. KhanK.U. FahadM. Nanogels as drug-delivery systems: A comprehensive overview.Ther. Deliv.2019101169771710.4155/tde‑2019‑001031789106
    [Google Scholar]
  143. GharaghieT.P. BeiranvandS. ShirinN.J. ElahianfarY. Thymol-based Chitosan Nanogels Have Strong Antibacterial and Anti-bio lm Effects on Multidrug-resistant Pathogens.Research Square2021
    [Google Scholar]
  144. GuptaA. EralH.B. HattonT.A. DoyleP.S. Nanoemulsions: Formation, properties and applications.Soft Matter201612112826284110.1039/C5SM02958A
    [Google Scholar]
  145. TroncosoE. AguileraJ.M. McClementsD.J. Fabrication, characterization and lipase digestibility of food-grade nanoemulsions.Food Hydrocoll.201227235536310.1016/j.foodhyd.2011.10.014
    [Google Scholar]
  146. TalegaonkarS. AzeemA. AhmadF. KharR. PathanS. KhanZ. Microemulsions: A novel approach to enhanced drug delivery.Recent Pat. Drug Deliv. Formul.20082323825710.2174/18722110878624167919075911
    [Google Scholar]
  147. GaoY. YuanA. ChuchuenO. HamA. YangK.H. KatzD.F. Vaginal deployment and tenofovir delivery by microbicide gels.Drug Deliv. Transl. Res.20155327929410.1007/s13346‑015‑0227‑125874971
    [Google Scholar]
  148. KaurA. GabraniR. DangS. Nanoemulsions of green tea catechins and other natural compounds for the treatment of urinary tract infection: Antibacterial analysis.Adv. Pharm. Bull.20199340140810.15171/apb.2019.04731592118
    [Google Scholar]
  149. KaurA. GuptaS. TyagiA. SharmaR.K. AliJ. GabraniR. DangS. Development of nanoemulsion based gel loaded with phytoconstituents for the treatment of urinary tract infection and in vivo biodistribution studies.Adv. Pharm. Bull.20177461161910.15171/apb.2017.07329399551
    [Google Scholar]
/content/journals/cwhr/10.2174/0115734048265267231119175852
Loading
/content/journals/cwhr/10.2174/0115734048265267231119175852
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test