- Home
- A-Z Publications
- Current Topics in Medicinal Chemistry
- Previous Issues
- Volume 23, Issue 19, 2023
Current Topics in Medicinal Chemistry - Volume 23, Issue 19, 2023
Volume 23, Issue 19, 2023
-
-
Insight of Engineered Nano-based Biologics Approaches used to Combat Autoimmune Disease using TNF-α & IL Inhibitors
Authors: Darshani Patil, Ajazuddin and Sankha BhattacharyaAutoimmune disease is increasing widely, and the biologicals in autoimmune disease play a vital role in the cure. Biologicals have an affinity to bind the specific target molecule and suppress inflammation. The different biologicals are used to treat various autoimmune diseases by preventing the cytokines from unlocking cells and causing inflammation. Each biologic targets a different cytokine. The common classes of biologic that are used to treat autoimmune disease are i) Tumor Necrosis Factor-alpha (TNFα) inhibitors and ii) Interleukin Inhibitors (IL). Along with biologics, nanomedicine has shown to be a successful method for creating customized nanomaterials with the potential to deliver medicinal agents to particular organs or tissues drugs without causing immunosuppressive or immunostimulatory adverse effects. This article reviews biologics used in treating Autoimmune Disease (AD) and the mechanism involved. The examination of current developments that have been made to create innovative nanoparticle-based therapies for autoimmune illnesses and their inclusion in vaccines. Also, recent clinical trials display nanosystem strategies for treating AD.
-
-
-
Impact of Cannabinoid Receptors in the Design of Therapeutic Agents against Human Ailments
Authors: Ankush Kumar, Ojasvi Gupta, Rohit Bhatia and VikramDeep MongaThe Cannabinoid (CB) signalling cascade is widely located in the human body and is associated with several pathophysiological processes. The endocannabinoid system comprises cannabinoid receptors CB1 and CB2, which belong to G-protein Coupled Receptors (GPCRs). CB1 receptors are primarily located on nerve terminals, prohibiting neurotransmitter release, whereas CB2 are present predominantly on immune cells, causing cytokine release. The activation of CB system contributes to the development of several diseases which might have lethal consequences, such as CNS disorders, cancer, obesity, and psychotic disorders on human health. Clinical evidence revealed that CB1 receptors are associated with CNS ailments such as Alzheimer’s disease, Huntington’s disease, and multiple sclerosis, whereas CB2 receptors are primarily connected with immune disorders, pain, inflammation, etc. Therefore, cannabinoid receptors have been proved to be promising targets in therapeutics and drug discovery. Experimental and clinical outcomes have disclosed the success story of CB antagonists, and several research groups have framed newer compounds with the binding potential to these receptors. In the presented review, we have summarized variously reported heterocycles with CB receptor agonistic/antagonistic properties against CNS disorders, cancer, obesity, and other complications. The structural activity relationship aspects have been keenly described along with enzymatic assay data. The specific outcomes of molecular docking studies have also been highlighted to get insights into the binding patterns of the molecules to CB receptors.
-
-
-
Anti-tumoral Titanium(IV) Complexes Stabilized with Phenolato Ligands and Structure-Activity Relationship
Authors: Tiankun Zhao, Peng Wang, Xupeng Zhang, Nan Liu, Wenzhuo Zhao, Yong Zhang, Pengpeng Yuan, Shanjia Li, Mingjun Yang, Zhongduo Yang and Thomas HuhnTitanocene dichloride and budotitane have opened a new chapter in medicinal chemistry of titanium(IV) complexes being novel non-platinum antitumor metallic agents. Numerous efforts have led to the discovery of the diamino bis-phenolato titanium(IV) complexes. Among which, the [ONNO] and [ONON] type ligands namely Salan, Salen and Salalen coordinated titanium(IV) alkoxyl complexes have demonstrated significantly enhanced aqueous stability, their in vitro and in vivo antitumor efficacy, mechanism of action, structure-activity relationships and combined tumor therapy have been intensively investigated. Replacement of the labile alkoxyls with a second chelator resulted in structural rigid titanium(IV) complexes, which showed exceedingly good aqueous stability and potent antitumor activity both in vitro and in vivo. The unique ligand system successfully allowed the access of isotopic [45Ti]Titanium(IV) complexes, post-synthetic modification, facile synthetic protocols and antitumor congeneric zirconium(IV) and hafnium(IV) complexes. This review presents recent research progress in the field of antitumor group 4 metal complexes stabilized with phenolato ligands; especially their structure-activity relationships are summarized.
-
-
-
Cocrystallizing and Codelivering Complementary Drugs to Multidrugresistant Tuberculosis Bacteria in Perfecting Multidrug Therapy
By Pathik SahooBacteria cells exhibit multidrug resistance in one of two ways: by raising the genetic expression of multidrug efflux pumps or by accumulating several drug-resistant components in many genes. Multidrug-resistive tuberculosis bacteria are treated by multidrug therapy, where a few certain antibacterial drugs are administered together to kill a bacterium jointly. A major drawback of conventional multidrug therapy is that the administration never ensures the reaching of different drug molecules to a particular bacterium cell at the same time, which promotes growing drug resistivity step-wise. As a result, it enhances the treatment time. With additional tabletability and plasticity, the formation of a cocrystal of multidrug can ensure administrating the multidrug chemically together to a target bacterium cell. With properly maintaining the basic philosophy of multidrug therapy here, the synergistic effects of drug molecules can ensure killing the bacteria, even before getting the option to raise the drug resistance against them. This can minimize the treatment span, expenditure and drug resistance. A potential threat of epidemic from tuberculosis has appeared after the Covid-19 outbreak. An unwanted loop of finding molecules with the potential to kill tuberculosis, getting their corresponding drug approvals, and abandoning the drug after facing drug resistance can be suppressed here. This perspective aims to develop the universal drug regimen by postulating the principles of drug molecule selection, cocrystallization, and subsequent harmonisation within a short period to address multidrug-resistant bacteria.
-
-
-
Natural Products as Antifungal Agents against Invasive Fungi
Authors: Fang-Rui Dong, Lu Gao, Liang Wang, Yuan-Ying Jiang and Yong-Sheng JinBackground: Invasive fungal infections (IFIs) are primarily caused by Candida spp., Cryptococcus neoformans, Aspergillus spp., Mucor spp., Sporothrix spp., and Pneumocystis spp., which attack human organs with a strong pathogenicity and exhibit drug resistance against commonly used chemical drugs. Therefore, the search for alternative drugs with high efficacy, low resistance rates, few side effects, and synergistic antifungal effects remains a major challenge. The characteristics of natural products with structural and bioactive diversity, lower drug resistance, and rich resources make them a major focus of the development of antifungal drugs. Objectives: This review attempts to summarize the origin, structure, and antifungal activity of natural products and their derivatives with MIC ≤ 20 μg/mL or 100 μM, focusing on their MoA and SAR. Methods: All pertinent literature databases were searched. The search keywords were antifungal or antifungals, terpenoids, steroidal saponins, alkaloid, phenols, lignans, flavonoids, quinones, macrolide, peptide, tetramic acid glycoside, polyene, polyketide, bithiazole, natural product, and derivatives. All the related literature (covering the past 20 years, 2001-2022) was evaluated. Results: In total, 340 natural products and 34 synthesized derivatives with antifungal activity from 301 studies were included in this review. These compounds were derived from terrestrial plants, ocean life, and microorganisms and exhibited in vitro and in vivo potent antifungal activity alone or in combination. The MoA and SARs of reported compounds were summarized whenever applicable. Conclusion: In this review, we attempted to review the available literature on natural antifungal products and their derivatives. Most of the studied compounds showed potent activity against Candida species, Aspergillus species, or Cryptococcus species. Some of the studied compounds also demonstrated the ability to impair the cell membrane and cell wall, inhibit hypha and biofilms, and cause mitochondrial dysfunction. Although the MoAs of these compounds are not well understood yet, they can be used as lead components for the development of new, effective, and safe antifungal agents through their novel mechanisms.
-
Volumes & issues
-
Volume 24 (2024)
-
Volume 23 (2023)
-
Volume 22 (2022)
-
Volume 21 (2021)
-
Volume 20 (2020)
-
Volume 19 (2019)
-
Volume 18 (2018)
-
Volume 17 (2017)
-
Volume 16 (2016)
-
Volume 15 (2015)
-
Volume 14 (2014)
-
Volume 13 (2013)
-
Volume 12 (2012)
-
Volume 11 (2011)
-
Volume 10 (2010)
-
Volume 9 (2009)
-
Volume 8 (2008)
-
Volume 7 (2007)
-
Volume 6 (2006)
-
Volume 5 (2005)
-
Volume 4 (2004)
-
Volume 3 (2003)
-
Volume 2 (2002)
-
Volume 1 (2001)