Skip to content
2000
Volume 24, Issue 22
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Introduction

Toxoplasmosis is a worldwide distributed zoonosis caused by (), an obligate intracellular protozoan. The infection in immunocompetent hosts usually progresses with mild or no symptoms. However, in immunocompromised individuals, this disease can cause severe or fatal symptoms.

Methods

Sulfadiazine and pyrimethamine are two drugs used as standard therapies for human toxoplasmosis. Although they do not cause chronic infection, they may cause hematological toxicity, hypersensitivity, intolerance, teratogenic effects, gastrointestinal disorders, and bone marrow suppression.

Results

The limited effect, significant toxicity, and emerging resistance to current drugs available to treat infections require investigating other effective, nontoxic, and well-tolerated alternatives. Medicinal plants are, traditionally, the most promising sources used to treat infectious diseases.

Conclusion

This review provides data on new therapeutic and prophylactic methods for infection based on the use of extracts and/or compounds derived from natural products, which have been reported to be useful as alternative treatment options in the last 20 years.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266299409240606062235
2024-09-01
2025-01-09
Loading full text...

Full text loading...

References

  1. DubeyJ.P. LagoE.G. GennariS.M. SuC. JonesJ.L. Toxoplasmosis in humans and animals in Brazil: high prevalence, high burden of disease, and epidemiology.Parasitology2012139111375142410.1017/S0031182012000765 22776427
    [Google Scholar]
  2. SobralC.A. KleinC.H. PatelB.N. TevaA. AmendoeiraM.R.R. Seroprevalence of infection with Toxoplasma gondii in indigenous Brazilian populations.Am. J. Trop. Med. Hyg.2005721374110.4269/ajtmh.2005.72.37 15728865
    [Google Scholar]
  3. Robert-GangneuxF. DardéM.L. Epidemiology of and diagnostic strategies for toxoplasmosis.Clin. Microbiol. Rev.201225226429610.1128/CMR.05013‑11 22491772
    [Google Scholar]
  4. MontazeriM MehrzadiS SharifM SarviS TanzifiA AghayanSA Daryani, A Drug Resistance in Toxoplasma gondii. Front. Microbiol.2018299258710.3389/fmicb.2018.02587
    [Google Scholar]
  5. MartínezA.F.F. TeixeiraS.C. de SouzaG. RosiniA.M. JúniorJ.P.L. MeloG.N. BlandónK.O.E. GomesA.O. AmbrósioS.R. VenezianiR.C.S. BastosJ.K. MartinsC.H.G. FerroE.A.V. BarbosaB.F. Leaf hydroalcoholic extract and oleoresin from Copaifera multijuga control Toxoplasma gondii infection in human trophoblast cells and placental explants from thirdtrimester pregnancy.Front. Cell. Infect. Microbiol.202313111389610.3389/fcimb.2023.1113896 36860986
    [Google Scholar]
  6. TomitaT. BzikD.J. MaY.F. FoxB.A. MarkillieL.M. TaylorR.C. KimK. WeissL.M. The Toxoplasma gondii cyst wall protein CST1 is critical for cyst wall integrity and promotes bradyzoite persistence.PLoS Pathog.2013912e100382310.1371/journal.ppat.1003823 24385904
    [Google Scholar]
  7. BarrattJ.L.N. HarknessJ. MarriottD. EllisJ.T. StarkD. Importance of nonenteric protozoan infections in immunocompromised people.Clin. Microbiol. Rev.201023479583610.1128/CMR.00001‑10 20930074
    [Google Scholar]
  8. AlanaziA.D. AlmohammedH.I. Therapeutic Potential and Safety of the Cinnamomum zeylanicum Methanolic Extract Against Chronic Toxoplasma gondii Infection in Mice.Front. Cell. Infect. Microbiol.20221290004610.3389/fcimb.2022.900046 35755846
    [Google Scholar]
  9. AlanaziA.D. MajeedQ.A.H. AlnomasyS.F. AlmohammedH.I. Potent In Vitro and In Vivo Effects of Stachys lavandulifolia Methanolic Extract against Toxoplasma gondii Infection.Trop. Med. Infect. Dis.20238735510.3390/tropicalmed8070355 37505651
    [Google Scholar]
  10. DunayI.R. GajurelK. DhakalR. LiesenfeldO. MontoyaJ.G. Treatment of toxoplasmosis: historical perspective, animal models, and current clinical practice.Clin. Microbiol. Rev.2018314e000571710.1128/CMR.00057‑17 30209035
    [Google Scholar]
  11. FurtadoJ. SmithJ. BelfortR.Jr GatteyD. WinthropK. Toxoplasmosis: A global threat.J. Glob. Infect. Dis.20113328128410.4103/0974‑777X.83536 21887062
    [Google Scholar]
  12. RodriguezJ.B. SzajnmanS.H. New antibacterials for the treatment of toxoplasmosis; a patent review.Expert Opin. Ther. Pat.201222331133310.1517/13543776.2012.668886 22404108
    [Google Scholar]
  13. McLeodR. KiefferF. SautterM. HostenT. PellouxH. Why prevent, diagnose and treat congenital toxoplasmosis?Mem. Inst. Oswaldo Cruz2009104232034410.1590/S0074‑02762009000200029 19430661
    [Google Scholar]
  14. HamedE.F.A. MostafaN.E. FawzyE.M. IbrahimM.N. AttiaR. SalamaM.A. The delayed death-causing nature of Rosmarinus officinalis leaf extracts and their mixture within experimental chronic toxoplasmosis: Therapeutic and prophylactic implications.Acta Trop.202122110599210.1016/j.actatropica.2021.105992 34089696
    [Google Scholar]
  15. FouadH. HongjieL. HosniD. WeiJ. AbbasG. Ga’alH. JianchuM. Controlling Aedes albopictus and Culex pipiens pallens using silver nanoparticles synthesized from aqueous extract of Cassia fistula fruit pulp and its mode of action.Artif. Cells Nanomed. Biotechnol.201846355856710.1080/21691401.2017.1329739 28541740
    [Google Scholar]
  16. KheirandishF. ChegeniR. DelfanB. JabariM. EbrahimzadehF. RashidipourM. The cytotoxic and antileishmanial effects of Satureja Khuzestanica essential oil.Herbal Med J201611117
    [Google Scholar]
  17. HarveyA.L. Edrada-EbelR. QuinnR.J. The re-emergence of natural products for drug discovery in the genomics era.Nat. Rev. Drug Discov.201514211112910.1038/nrd4510 25614221
    [Google Scholar]
  18. ThomfordN. SenthebaneD. RoweA. MunroD. SeeleP. MaroyiA. DzoboK. Natural products for drug discovery in the 21st century: Innovations for novel drug discovery.Int. J. Mol. Sci.2018196157810.3390/ijms19061578 29799486
    [Google Scholar]
  19. AbdullahiS.A. UnyahN.Z. NordinN. BasirR. NasirW.M. AlapidA.A. HassanY. MustaphaT. MajidR.A. Phytochemicals and Potential Therapeutic Targets on Toxoplasma gondii Parasite.Mini Rev. Med. Chem.202020973975310.2174/1389557519666191029105736 31660810
    [Google Scholar]
  20. BhattacharyyaS. RanaD. BhattacharyyaS.N. Determination of heat of formation of associated systems by calorimetry.J lndian Cllem Soe19977410310710.5281/ZENODO.5875144
    [Google Scholar]
  21. RuanJ. LiuZ. QiuF. ShiH. WangM. Simultaneous Quantification of Five Sesquiterpene Components after Ultrasound Extraction in Artemisia annua L. by an Accurate and Rapid UPLC-PDA Assay.Molecules2019248153010.3390/molecules24081530 31003442
    [Google Scholar]
  22. International ethical guidelines for biomedical research involving human subjects.Bull. Med. Ethics20021821723 14983848
    [Google Scholar]
  23. YounH.J. LakritzJ. RottinghausG.E. SeoH.S. KimD.Y. ChoM.H. MarshA.E. Anti-protozoal efficacy of high performance liquid chromatography fractions of Torilis japonica and Sophora flavescens extracts on Neospora caninum and Toxoplasma gondii. Vet. Parasitol.20041253-440941410.1016/j.vetpar.2004.08.002 15482896
    [Google Scholar]
  24. LooC.S.N. LamN.S.K. YuD. SuX. LuF. Artemisinin and its derivatives in treating protozoan infections beyond malaria.Pharmacol. Res.201711719221710.1016/j.phrs.2016.11.012 27867026
    [Google Scholar]
  25. BanzragchgaravO. ArieftaN.R. MurataT. MyagmarsurenP. BattsetsegB. BatturB. BatkhuuJ. NishikawaY. Evaluation of Mongolian compound library for potential antimalarial and anti-Toxoplasma agents.Parasitol. Int.20218510242410.1016/j.parint.2021.102424 34302982
    [Google Scholar]
  26. SarcironM.E. PeyronF. SaccharinC. PetavyA.F. Effects of artesunate, dihydroartemisinin, and an artesunate-dihydroartemisinin combination against Toxoplasma gondii. Am. J. Trop. Med. Hyg.2000621737610.4269/ajtmh.2000.62.73 10761727
    [Google Scholar]
  27. MeshnickS.R. Artemisinin: mechanisms of action, resistance and toxicity.Int. J. Parasitol.200232131655166010.1016/S0020‑7519(02)00194‑7
    [Google Scholar]
  28. RäthK. HeideL. GleiterC.H. TaxisK. LiS.M. WalzG. Pharmacokinetic study of artemisinin after oral intake of a traditional preparation of Artemisia annua L. (annual wormwood).Am. J. Trop. Med. Hyg.200470212813210.4269/ajtmh.2004.70.128 14993622
    [Google Scholar]
  29. MunyangiJ. Cornet-VernetL. IdumboM. LuC. LutgenP. PerronneC. NgombeN. BiangaJ. MupendaB. LalukalaP. MergeaiG. MumbaD. TowlerM. WeathersP. RETRACTED: Artemisia annua and Artemisia afra tea infusions vs. artesunate-amodiaquine (ASAQ) in treating Plasmodium falciparum malaria in a large scale, double blind, randomized clinical trial.Phytomedicine201957495610.1016/j.phymed.2018.12.002 30668322
    [Google Scholar]
  30. QiuF. WuS. LuX. ZhangC. LiJ. GongM. WangM. Quality evaluation of the artemisinin-producing plant Artemisia annua L. based on simultaneous quantification of artemisinin and six synergistic components and hierarchical cluster analysis.Ind. Crops Prod.201811813114110.1016/j.indcrop.2018.03.043
    [Google Scholar]
  31. Jones-BrandoL. D’AngeloJ. PosnerG.H. YolkenR. In vitro inhibition of Toxoplasma gondii by four new derivatives of artemisinin.Antimicrob. Agents Chemother.200650124206420810.1128/AAC.00793‑06 17060514
    [Google Scholar]
  32. SchultzT.L. HenckenC.P. WoodardL.E. PosnerG.H. YolkenR.H. Jones-BrandoL. CarruthersV.B. A thiazole derivative of artemisinin moderately reduces Toxoplasma gondii cyst burden in infected mice.J. Parasitol.2014100451652110.1645/13‑451.1 24524228
    [Google Scholar]
  33. DunayI.R. ChanW.C. HaynesR.K. SibleyL.D. Artemisone and artemiside control acute and reactivated toxoplasmosis in a murine model.Antimicrob. Agents Chemother.200953104450445610.1128/AAC.00502‑09 19635951
    [Google Scholar]
  34. D’AngeloJ.G. BordónC. PosnerG.H. YolkenR. Jones-BrandoL. Artemisinin derivatives inhibit Toxoplasma gondii in vitro at multiple steps in the lytic cycle.J. Antimicrob. Chemother.200963114615010.1093/jac/dkn451 18988681
    [Google Scholar]
  35. de OliveiraT.C. SilvaD.A.O. RostkowskaC. BélaS.R. FerroE.A.V. MagalhãesP.M. MineoJ.R. Toxoplasma gondii: Effects of Artemisia annua L. on susceptibility to infection in experimental models in vitro and in vivo. Exp. Parasitol.2009122323324110.1016/j.exppara.2009.04.010 19389400
    [Google Scholar]
  36. HeX. FangJ. HuangL. WangJ. HuangX. Sophora flavescens Ait.: Traditional usage, phytochemistry and pharmacology of an important traditional Chinese medicine.J. Ethnopharmacol.2015172172102910.1016/j.jep.2015.06.010 26087234
    [Google Scholar]
  37. FanR. LiuR. MaR. BiK. LiQ. Determination of oxymatrine and its active metabolite matrine in human plasma after administration of oxymatrine oral solution by high-performance liquid chromatography coupled with mass spectrometry.Fitoterapia20138927127710.1016/j.fitote.2013.05.024 23747322
    [Google Scholar]
  38. LinY. HeF. WuL. XuY. DuQ. Matrine Exerts Pharmacological Effects Through Multiple Signaling Pathways: A Comprehensive Review.Drug Des. Devel. Ther.20221653356910.2147/DDDT.S349678 35256842
    [Google Scholar]
  39. SunJ. MaoJ. LiuX. WangY. SunY. HeZ. Separation and mechanism elucidation for six structure‐like matrine‐type alkaloids by micellar liquid chromatography.J. Sep. Sci.200932122043205010.1002/jssc.200900066 19479753
    [Google Scholar]
  40. BiW. TianM. RowK.H. Selective extraction and separation of oxymatrine from Sophora flavescens Ait. extract by silica-confined ionic liquid.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2012880110811310.1016/j.jchromb.2011.11.025 22138590
    [Google Scholar]
  41. HoangB.X. ShawD.G. LevineS. HoangC. PhamP. New approach in asthma treatment using excitatory modulator.Phytother. Res.200721655455710.1002/ptr.2107 17295384
    [Google Scholar]
  42. LiDR LinH.S. Safety and effectiveness of large dose compound Sophora flavescens Ait injection in the treatment of advanced malignant tumors.Zhonghua Zhong Liu Za Zhi2011334391294
    [Google Scholar]
  43. ChoiK.M. GangJ. YunJ. Anti-Toxoplasma gondii RH strain activity of herbal extracts used in traditional medicine.Int. J. Antimicrob. Agents200832436036210.1016/j.ijantimicag.2008.04.012 18619816
    [Google Scholar]
  44. YounH.J. LakritzJ. KimD.Y. RottinghausG.E. MarshA.E. Anti-protozoal efficacy of medicinal herb extracts against Toxoplasma gondii and Neospora caninum. Vet. Parasitol.2003116171410.1016/S0304‑4017(03)00154‑7 14519322
    [Google Scholar]
  45. MiaoKL ZhangJZ DongY XiYF Research progress on the chemical compounds and pharmacology of Sophora flavescens.Nat Prod Res Dev20011369e73
    [Google Scholar]
  46. ZhangX. JinL. CuiZ. ZhangC. WuX. ParkH. QuanH. JinC. Antiparasitic effects of oxymatrine and matrine against Toxoplasma gondii in vitro and in vivo. Exp. Parasitol.20161659510210.1016/j.exppara.2016.03.020 26993085
    [Google Scholar]
  47. ChoW.C.S. LeungK.N. In vitro and in vivo immunomodulating and immunorestorative effects of Astragalus membranaceus.J. Ethnopharmacol.2007113113214110.1016/j.jep.2007.05.020 17611061
    [Google Scholar]
  48. ZhangX. QuH. YangT. LiuQ. ZhouH. Astragaloside IV attenuate MI-induced myocardial fibrosis and cardiac remodeling by inhibiting ROS/caspase-1/GSDMD signaling pathway.Cell Cycle202221212309232210.1080/15384101.2022.2093598 35770948
    [Google Scholar]
  49. WangX. WangY. HuangD. ShiS. PeiC. WuY. ShenZ. WangF. WangZ. Astragaloside IV regulates the ferroptosis signaling pathway via the Nrf2/SLC7A11/GPX4 axis to inhibit PM2.5-mediated lung injury in mice.Int. Immunopharmacol.202211210918610.1016/j.intimp.2022.109186
    [Google Scholar]
  50. YangH. ZhaoZ. GaoS. LeiJ. JiangY. Extraction of astragaloside in Astragali broken-cell pieces by accelerated solvent extraction.Lishizhen Medicine and Materia Medica Research201728310312
    [Google Scholar]
  51. XuL. WeiK. JiangJ. ZhangL. Extraction Optimization of Astragaloside IV by Response Surface Methodology and Evaluation of Its Stability during Sterilization and Storage.Molecules2021268240010.3390/molecules26082400 33924283
    [Google Scholar]
  52. YangX. HuangS. ChenJ. SongN. WangL. ZhangZ. DengG. ZhengH. ZhuX.Q. LuF. Evaluation of the adjuvant properties of Astragalus membranaceus and Scutellaria baicalensis GEORGI in the immune protection induced by UV-attenuated Toxoplasma gondii in mouse models.Vaccine201028373774310.1016/j.vaccine.2009.10.065 19887128
    [Google Scholar]
  53. YangX. HuangB. ChenJ. HuangS. ZhengH. LunZ.R. ShenJ. WangY. LuF. In vitro effects of aqueous extracts of Astragalus membranaceus and Scutellaria baicalensis GEORGI on Toxoplasma gondii. Parasitol. Res.201211062221222710.1007/s00436‑011‑2752‑2 22179265
    [Google Scholar]
  54. SönmezN. Büyükbaba BoralÖ. Kaşali̇K. Tekeli̇F. [Effects of atovaquone and astragalus combination on the treatment and IL-2, IL-12, IFN-γ levels on mouse models of acute toxoplasmosis].Mikrobiyol. Bul.201448463965110.5578/mb.8025 25492659
    [Google Scholar]
  55. YangM. ShenC. ZhuS.J. ZhangY. JiangH.L. BaoY.D. YangG.Y. LiuJ.P. Chinese patent medicine Aidi injection for cancer care: An overview of systematic reviews and metaanalyses.J. Ethnopharmacol.202228211465610.1016/j.jep.2021.114656
    [Google Scholar]
  56. KuptniratsaikulV. ThanakhumtornS. ChinswangwatanakulP. WattanamongkonsilL. ThamlikitkulV. Efficacy and safety of Curcuma domestica extracts in patients with knee osteoarthritis.J. Altern. Complement. Med.200915889189710.1089/acm.2008.0186 19678780
    [Google Scholar]
  57. KuptniratsaikulV. DajprathamP. TaechaarpornkulW. BuntragulpoontaweeM. LukkanapichonchutP. ChootipC. SaengsuwanJ. TantayakomK. LaongpechS. Efficacy and safety of Curcuma domestica extracts compared with ibuprofen in patients with knee osteoarthritis: a multicenter study.Clin. Interv. Aging20149945145810.2147/CIA.S58535 24672232
    [Google Scholar]
  58. MadhuK. ChandaK. SajiM.J. Safety and efficacy of Curcuma longa extract in the treatment of painful knee osteoarthritis: a randomized placebo-controlled trial.Inflammopharmacology201321212913610.1007/s10787‑012‑0163‑3 23242572
    [Google Scholar]
  59. YatooM.I. GopalakrishnanA. SaxenaA. ParrayO.R. TufaniN.A. ChakrabortyS. TiwariR. DhamaK. IqbalH.M.N. Anti-Inflammatory Drugs and Herbs with Special Emphasis on Herbal Medicines for Countering Inflammatory Diseases and Disorders - A Review.Recent Pat. Inflamm. Allergy Drug Discov.2018121395810.2174/1872213X12666180115153635 29336271
    [Google Scholar]
  60. DoelloK. OrtizR. AlvarezP.J. MelguizoC. CabezaL. PradosJ. Latest in Vitro and in Vivo Assay, Clinical Trials and Patents in Cancer Treatment using Curcumin: A Literature Review.Nutr. Cancer201870456957810.1080/01635581.2018.1464347 29708445
    [Google Scholar]
  61. SarrisJ. Herbal medicines in the treatment of psychiatric disorders: 10‐year updated review.Phytother. Res.20183271147116210.1002/ptr.6055 29575228
    [Google Scholar]
  62. ZoiV. GalaniV. LianosG.D. VoulgarisS. KyritsisA.P. AlexiouG.A. The Role of Curcumin in Cancer Treatment.Biomedicines202199108610.3390/biomedicines9091086 34572272
    [Google Scholar]
  63. HaddadM. SauvainM. DeharoE. Curcuma as a parasiticidal agent: a review.Planta Med.201177667267810.1055/s‑0030‑1250549 21104602
    [Google Scholar]
  64. Al-ZanbagiN. In vivo effect of some home spices extracts on the Toxoplasma gondii Tachyzoites.J. Family Community Med.2009162596510.4103/2230‑8229.96997 23012192
    [Google Scholar]
  65. Al-ZanbagiN.A. ZelaiN.T. Two methods for attenuating Toxoplasma gondii tachyzoites RH strain by using ethanol extract of Curcuma longa.J. Egypt. Soc. Parasitol.2008383965976 19209778
    [Google Scholar]
  66. AzamiS.J. TeimouriA. KeshavarzH. AmaniA. EsmaeiliF. HasanpourH. ElikaeeS. SalehiniyaH. ShojaeeS. Curcumin nanoemulsion as a novel chemical for the treatment of acute and chronic toxoplasmosis in mice.Int. J. Nanomedicine201813137363737410.2147/IJN.S181896 30519020
    [Google Scholar]
  67. SharmaV. AgrawalR.C. Glycyrrhiza glabra — a plant for the future.Mint J Pharm Med Sci2013231520
    [Google Scholar]
  68. SoeiroM.N.C. VergotenG. BaillyC. Mechanism of action of glycyrrhizin against Plasmodium falciparum.Mem. Inst. Oswaldo Cruz2021116e21008410.1590/0074‑02760210084 34431854
    [Google Scholar]
  69. RichardS.A. Exploring the Pivotal Immunomodulatory and Anti-Inflammatory Potentials of Glycyrrhizic and Glycyrrhetinic Acids.Mediators Inflamm.2021202111510.1155/2021/6699560 33505216
    [Google Scholar]
  70. SangkitpornS. ShideL. KlinbuayaemV. LeenasirimakulP. WirayutwatthanaN.A. LeechanachaiP. DettrairatS. KunachiwaW. ThamlikitkulV. Efficacy and safety of zidovudine and zalcitabine combined with a combination of herbs in the treatment of HIV-infected Thai patients.Southeast Asian J. Trop. Med. Public Health2005363704708 16124442
    [Google Scholar]
  71. Kelly-PieperK. PatilS.P. BusseP. YangN. SampsonH. LiX.M. WisniveskyJ.P. KattanM. Safety and tolerability of an antiasthma herbal Formula (ASHMI) in adult subjects with asthma: a randomized, double-blinded, placebo-controlled, dose-escalation phase I study.J. Altern. Complement. Med.200915773574310.1089/acm.2008.0543 19586409
    [Google Scholar]
  72. ArentzS. SmithC.A. AbbottJ. FaheyP. CheemaB.S. BensoussanA. Combined Lifestyle and Herbal Medicine in Overweight Women with Polycystic Ovary Syndrome (PCOS): A Randomized Controlled Trial.Phytother. Res.20173191330134010.1002/ptr.5858 28685911
    [Google Scholar]
  73. ChenY. LuoD. CaiJ.F. LinC.H. ShenY. ZouJ. GuanJ.L. Effectiveness and safety of Glycyrrhizae Decoction for Purging Stomach-Fire in Behcet disease patients: Study protocol for a randomized controlled and double-blinding trail.Medicine (Baltimore)20189713e026510.1097/MD.0000000000010265 29595687
    [Google Scholar]
  74. RangnekarH. PatankarS. SuryawanshiK. SoniP. Safety and efficacy of herbal extracts to restore respiratory health and improve innate immunity in COVID-19 positive patients with mild to moderate severity: A structured summary of a study protocol for a randomised controlled trial.Trials202021194310.1186/s13063‑020‑04906‑x 33225970
    [Google Scholar]
  75. SaitoH. MurataY. NonakaM. KatoK. Screening of a library of traditional Chinese medicines to identify compounds and extracts which inhibit Toxoplasma gondii growth.J. Vet. Med. Sci.202082218418710.1292/jvms.19‑0241 31904004
    [Google Scholar]
  76. Gol’dbergVE RyzhakovVM MatiashMG StepovaiaEA BoldyshevDA LitvinenkoVI DygaĭAM Dry extract of Scutellaria baicalensis as a hemostimulant in antineoplastic chemotherapy in patents with lung cancer.Eksp Klin Farmakol.19976062830
    [Google Scholar]
  77. Smol’ianinovES Gol’dbergVE MatiashMG RyzhakovVM BoldyshevDA LitvinenkoVI DygaĭAM Effect of Scutellaria baicalensis extract on the immunologic status of patients with lung cancer receiving antineoplastic chemotherapy.Eksp Klin Farmakol.19976064951
    [Google Scholar]
  78. ArjmandiB.H. OrmsbeeL.T. ElamM.L. CampbellS.C. RahnamaN. PaytonM.E. Brummel-SmithK. DaggyB.P. A combination of Scutellaria baicalensis and Acacia catechu extracts for short-term symptomatic relief of joint discomfort associated with osteoarthritis of the knee.J. Med. Food201417670771310.1089/jmf.2013.0010 24611484
    [Google Scholar]
  79. KangK.A. ZhangR. PiaoM.J. ChaeS. KimH.S. ParkJ.H. JungK.S. HyunJ.W. Baicalein inhibits oxidative stress-induced cellular damage via antioxidant effects.Toxicol. Ind. Health201228541242110.1177/0748233711413799 21957089
    [Google Scholar]
  80. ContiP. CaraffaA. GallengaC.E. RossR. KritasS.K. FrydasI. YounesA. Di EmidioP. RonconiG. PandolfiF. Powerful anti‐inflammatory action of luteolin: Potential increase with IL‐38.Biofactors202147216516910.1002/biof.1718 33755250
    [Google Scholar]
  81. Li-WeberM. New therapeutic aspects of flavones: The anticancer properties of Scutellaria and its main active constituents Wogonin, Baicalein and Baicalin.Cancer Treat. Rev.2009351576810.1016/j.ctrv.2008.09.005 19004559
    [Google Scholar]
  82. MittraB. SahaA. Roy ChowdhuryA. PalC. MandalS. MukhopadhyayS. BandyopadhyayS. MajumderH.K. Luteolin, an abundant dietary component is a potent anti-leishmanial agent that acts by inducing topoisomerase II-mediated kinetoplast DNA cleavage leading to apoptosis.Mol. Med.20006652754110.1007/BF03401792 10972088
    [Google Scholar]
  83. DasB.B. SenN. RoyA. DasguptaS.B. GangulyA. MohantaB.C. DindaB. MajumderH.K. Differential induction of Leishmania donovani bi-subunit topoisomerase I-DNA cleavage complex by selected flavones and camptothecin: activity of flavones against camptothecin-resistant topoisomerase I.Nucleic Acids Res.20063441121113210.1093/nar/gkj502 16488884
    [Google Scholar]
  84. LacombeO.K. ZumaA.A. da SilvaC.C. de SouzaW. MottaM.C.M. Effects of camptothecin derivatives and topoisomerase dual inhibitors on Trypanosoma cruzi growth and ultrastructure.J. Negat. Results Biomed.20141311110.1186/1477‑5751‑13‑11 24917086
    [Google Scholar]
  85. LiuM. ZhangD. WangD. WuX. ZhangY. YinJ. ZhuG. Cost-effective In Vivo and In Vitro Mouse Models for Evaluating Anticryptosporidial Drug Efficacy: Assessing Vorinostat, Docetaxel, and Baicalein.J. Infect. Dis.2023228101430144010.1093/infdis/jiad243 37418629
    [Google Scholar]
  86. MlcekJ. JurikovaT. SkrovankovaS. SochorJ. Quercetin and Its Anti-Allergic Immune Response.Molecules201621562310.3390/molecules21050623 27187333
    [Google Scholar]
  87. KianianF. MarefatiN. BoskabadyM. GhasemiS.Z. BoskabadyM.H. Pharmacological Properties of Allium cepa, Preclinical and Clinical Evidences; A Review.Iran. J. Pharm. Res.202120210713410.22037/ijpr.2020.112781.13946 34567150
    [Google Scholar]
  88. HelenA. KrishnakumarK. VijayammalP.L. AugustiK.T. Antioxidant effect of onion oil (Allium cepa. Linn) on the damages induced by nicotine in rats as compared to alpha-tocopherol.Toxicol. Lett.20001161-2616810.1016/S0378‑4274(00)00208‑3 10906423
    [Google Scholar]
  89. M Al-AnsariM. Al-HumaidL. AldawsariM. AbidI.F. JhananiG.K. ShanmuganathanR. Quercetin extraction from small onion skin (Allium cepa L. var. aggregatum Don.) and its antioxidant activity.Environ. Res.202322411549710.1016/j.envres.2023.115497 36805894
    [Google Scholar]
  90. GharadaghiY. ShojaeeS. KhakiA. HatefA. Ahmadi AshtianiH.R. RastegarH. FathiazadF. Modulating effect of Allium cepa on kidney apoptosis caused by Toxoplasma gondii. Adv. Pharm. Bull.2012211610.5681/apb.2012.001 24312764
    [Google Scholar]
  91. GaredaghiY. BahavarniaS.R. Repairing effect of Allium cepa on testis degeneration caused by Toxoplasma gondii in the rat.Int. J. Women’s Health Reprod. Sci.201422808910.15296/ijwhr.2014.12
    [Google Scholar]
  92. Abdul WahabS.M. JantanI. HaqueM.A. ArshadL. Exploring the leaves of Annona muricata L. as a source of potential anti-inflammatory and anticancer agents.Front. Pharmacol.2018966110.3389/fphar.2018.00661 29973884
    [Google Scholar]
  93. Degli EspostiM GhelliA RattaM CortesD EstornellE Natural substances (acetogenins) from the family Annonaceae are powerful inhibitors of mitochondrial NADH dehydrogenase (Complex I).Biochem. J.199430116116710.1042/bj3010161
    [Google Scholar]
  94. MutakinM. FauziatiR. FadhilahF.N. ZuhrotunA. AmaliaR. HadisaputriY.E. Pharmacological Activities of Soursop (Annona muricata Lin.).Molecules2022274120110.3390/molecules27041201 35208993
    [Google Scholar]
  95. FerreiraG.G. QuaresmaA.C.S. BrandãoD.L.N. MarinhoA.M.R. SiqueiraJ.E.S. CorreaK.L. Silva-JúniorJ.O.C. PercarioS. DolabelaM.F. Evaluation of Genotoxicity and Toxicity of Annona muricata L. Seeds and In Silico. Molecules202228123110.3390/molecules28010231 36615425
    [Google Scholar]
  96. BonneauN. CynoberT. JullianJ.C. ChampyP. 1 H qNMR Quantification of Annonaceous Acetogenins in Crude Extracts of Annona muricata L. Fruit Pulp.Phytochem. Anal.201728425125610.1002/pca.2668 28092423
    [Google Scholar]
  97. LeesombunA. BoonmasawaiS. NishikawaY. Ethanol Extracts from Thai Plants have Anti-Plasmodium and Anti-Toxoplasma Activities In Vitro. Acta Parasitol.201964225726110.2478/s11686‑019‑00036‑w 30820881
    [Google Scholar]
  98. MirandaN.C. AraujoE.C.B. JustinoA.B. CariacoY. MotaC.M. Costa-NascimentoL.A. EspindolaF.S. SilvaN.M. Anti-parasitic activity of Annona muricata L. leaf ethanolic extract and its fractions against Toxoplasma gondii in vitro and in vivo. J. Ethnopharmacol.202127311401910.1016/j.jep.2021.114019 33716084
    [Google Scholar]
  99. MeloE.J.T. VilelaK.J. CarvalhoC.S. Effects of aqueous leaf extracts of Azadirachta indica A. Juss. (neem) and Melia azedarach L. (Santa Barbara or cinnamon) on the intracellular development of Toxoplasma gondii.Rev Bras Plantas Med Botucatu2011132215222
    [Google Scholar]
  100. SrivastavaP. YadavN. LellaR. SchneiderA. JonesA. MarloweT. LovettG. O’LoughlinK. MindermanH. GogadaR. ChandraD. Neem oil limonoids induces p53-independent apoptosis and autophagy.Carcinogenesis201233112199220710.1093/carcin/bgs269 22915764
    [Google Scholar]
  101. FernandesS.R. BarreirosL. OliveiraR.F. CruzA. PrudêncioC. OliveiraA.I. PinhoC. SantosN. MorgadoJ. Chemistry, bioactivities, extraction and analysis of azadirachtin: State-of-the-art.Fitoterapia201913414115010.1016/j.fitote.2019.02.006 30738093
    [Google Scholar]
  102. VankaA. TandonS. RaoS.R. UdupaN. RamkumarP. The effect of indigenous Neem Azadirachta indica [correction of (Adirachta indica)] mouth wash on Streptococcus mutans and lactobacilli growth.Indian J. Dent. Res.2001123133144 11808064
    [Google Scholar]
  103. PaiM.R. AcharyaL.D. UdupaN. Evaluation of antiplaque activity of Azadirachta indica leaf extract gel—a 6-week clinical study.J. Ethnopharmacol.20049019910310.1016/j.jep.2003.09.035 14698516
    [Google Scholar]
  104. NandlalB. SreenivasanP.K. ShashikumarP. DevishreeG. Bettahalli ShivamalluA. A randomized clinical study to examine the oral hygiene efficacy of a novel herbal toothpaste with zinc over a 6‐month period.Int. J. Dent. Hyg.202119444044910.1111/idh.12505 33866666
    [Google Scholar]
  105. HosnyN.S. El KhodaryS.A. El BoghdadiR.M. ShakerO.G. Effect of Neem (Azadirachta indica) versus 2.5% sodium hypochlorite as root canal irrigants on the intensity of post‐operative pain and the amount of endotoxins in mandibular molars with necrotic pulps: a randomized controlled trial.Int. Endod. J.20215491434144710.1111/iej.13532 33884661
    [Google Scholar]
  106. BandyopadhyayU. BiswasK. SenguptaA. MoitraP. DuttaP. SarkarD. DebnathP. GangulyC.K. BanerjeeR.K. Clinical studies on the effect of Neem (Azadirachta indica) bark extract on gastric secretion and gastroduodenal ulcer.Life Sci.200475242867287810.1016/j.lfs.2004.04.050 15454339
    [Google Scholar]
  107. PingaliU. VuppalanchiB. NutalapatiC. GundaganiS. Aqueous Azadirachta indica (Neem) Extract Attenuates Insulin Resistance to Improve Glycemic Control and Endothelial Function in Subjects with Metabolic Syndrome.J. Med. Food20212411jmf.2020.483810.1089/jmf.2020.4838 34582720
    [Google Scholar]
  108. Benoit-VicalF. Santillana-HayatM. Kone-BambaD. MallieM. DerouinF. Anti- Toxoplasma activity of vegetal extracts used in West African traditional medicine.Parasite2000713710.1051/parasite/2000071003 10743641
    [Google Scholar]
  109. YangC. LimW. YouS. SongG. 4-Methylbenzylidene-camphor inhibits proliferation and induces reactive oxygen species-mediated apoptosis of human trophoblast cells.Reprod. Toxicol.201984495810.1016/j.reprotox.2018.12.011 30597193
    [Google Scholar]
  110. LeeS.H. KimD.S. ParkS.H. ParkH. Phytochemistry and Applications of Cinnamomum camphora Essential Oils.Molecules2022279269510.3390/molecules27092695 35566046
    [Google Scholar]
  111. RabiulH. SubhasishM. ParagG. Investigation of in vitro anthelmintic activity of Cinnamomum camphor leaves.Int J Drug Dev & Res20113295300
    [Google Scholar]
  112. ElazabS.T. SolimanA.F. NishikawaY. Effect of some plant extracts from Egyptian herbal plants against <i>Toxoplasma gondii</i> tachyzoites in vitro. J. Vet. Med. Sci.202183110010710.1292/jvms.20‑0458 33268605
    [Google Scholar]
  113. WuJ. LuoY. DengD. SuS. LiS. XiangL. HuY. WangP. MengX. Coptisine from Coptis chinensis exerts diverse beneficial properties: A concise review.J. Cell. Mol. Med.201923127946796010.1111/jcmm.14725 31622015
    [Google Scholar]
  114. HuS. WangJ. LiuE. ZhangX. XiangJ. LiW. WeiP. ZengJ. ZhangY. MaX. Protective effect of berberine in diabetic nephropathy: A systematic review and meta-analysis revealing the mechanism of action.Pharmacol. Res.202218510648110.1016/j.phrs.2022.106481 36195307
    [Google Scholar]
  115. YeM. FuS. PiR. HeF. Neuropharmacological and pharmacokinetic properties of berberine: a review of recent research.J. Pharm. Pharmacol.201061783183710.1211/jpp.61.07.0001 19589224
    [Google Scholar]
  116. KrivogorskyB PernatJA DouglasKA CzernieckiNJ GrundtP Structure-activity studies of some berberine analogs as inhibitors of Toxoplasma gondii.Bioorg Med Chem Lett.201222829802982
    [Google Scholar]
  117. NakoniecznaS. GrabarskaA. GawelK. Wróblewska-ŁuczkaP. CzerwonkaA. StepulakA. Kukula-KochW. Isoquinoline alkaloids from Coptis chinensis Franch: Focus on coptisine as a potential therapeutic candidate against gastric cancer cells.Int. J. Mol. Sci.202223181033010.3390/ijms231810330 36142236
    [Google Scholar]
  118. AndreadouI. IliodromitisE.K. MikrosE. ConstantinouM. AgaliasA. MagiatisP. SkaltsounisA.L. KamberE. Tsantili-KakoulidouA. KremastinosD.T. The olive constituent oleuropein exhibits anti-ischemic, antioxidative, and hypolipidemic effects in anesthetized rabbits.J. Nutr.200613682213221910.1093/jn/136.8.2213 16857843
    [Google Scholar]
  119. KimN.Y. PaeH.O. KoY.S. YooJ.C. ChoiB.M. JunC.D. ChungH.T. InagakiM. HiguchiR. KimY.C. In vitro inducible nitric oxide synthesis inhibitory active constituents from Fraxinus rhynchophylla. Planta Med.199965765665810.1055/s‑2006‑960840 10575381
    [Google Scholar]
  120. JiangJ.H. JinC.M. KimY.C. KimH.S. ParkW.C. ParkH. Anti-toxoplasmosis effects of oleuropein isolated from Fraxinus rhychophylla. Biol. Pharm. Bull.200831122273227610.1248/bpb.31.2273 19043212
    [Google Scholar]
  121. YangG. WangY. SunJ. ZhangK. LiuJ. Ginkgo Biloba for Mild Cognitive Impairment and Alzheimer’s Disease: A Systematic Review and Meta-Analysis of Randomized Controlled Trials.Curr. Top. Med. Chem.201516552052810.2174/1568026615666150813143520 26268332
    [Google Scholar]
  122. PohlF. Kong Thoo LinP. The Potential Use of Plant Natural Products and Plant Extracts with Antioxidant Properties for the Prevention/Treatment of Neurodegenerative Diseases: In Vitro, In Vivo and Clinical Trials.Molecules20182312328310.3390/molecules23123283 30544977
    [Google Scholar]
  123. RyckewaertL. SacconnayL. CarruptP.A. NurissoA. Simões-PiresC. Non-specific SIRT inhibition as a mechanism for the cytotoxicity of ginkgolic acids and urushiols.Toxicol. Lett.2014229237438010.1016/j.toxlet.2014.07.002 24998427
    [Google Scholar]
  124. MeiN. GuoX. RenZ. KobayashiD. WadaK. GuoL. Review of Ginkgo biloba -induced toxicity, from experimental studies to human case reports.J. Environ. Sci. Health Part C Environ. Carcinog. Ecotoxicol. Rev.201735112810.1080/10590501.2016.1278298 28055331
    [Google Scholar]
  125. LuJ. XieL. LiuK. ZhangX. WangX. DaiX. LiangY. CaoY. LiX. Bilobalide: A review of its pharmacology, pharmacokinetics, toxicity, and safety.Phytother. Res.202135116114613010.1002/ptr.7220 34342079
    [Google Scholar]
  126. HeX. BernartM.W. NolanG.S. LinL. LindenmaierM.P. High-performance liquid chromatography-electrospray ionization-mass spectrometry study of ginkgolic acid in the leaves and fruits of the ginkgo tree (Ginkgo biloba). J. Chromatogr. Sci.200038416917310.1093/chromsci/38.4.169 10766484
    [Google Scholar]
  127. BoatengI.D. A critical review of ginkgolic acids in Ginkgo biloba leaf extract (EGb): toxicity and technologies to remove ginkgolic acids and their promising bioactivities.Food Funct.202213189226924210.1039/D2FO01827F 36065842
    [Google Scholar]
  128. ChenS.X. WuL. JiangX.G. FengY.Y. CaoJ.P. Anti-Toxoplasma gondii activity of GAS in vitro. J. Ethnopharmacol.2008118350350710.1016/j.jep.2008.05.023 18602775
    [Google Scholar]
  129. NapoliE. SiracusaL. RubertoG. CarrubbaA. LazzaraS. SpecialeA. CiminoF. SaijaA. CristaniM. Phytochemical profiles, phototoxic and antioxidant properties of eleven Hypericum species - A comparative study.Phytochemistry201815216217310.1016/j.phytochem.2018.05.003 29775867
    [Google Scholar]
  130. de AndradeG.P. de SouzaT.F.M. CerchiaroG. PinhalM.A.S. RibeiroA.O. GirãoM.J.B.C. Hypericin in photobiological assays: An overview.Photodiagn. Photodyn. Ther.20213510234310.1016/j.pdpdt.2021.102343 34038765
    [Google Scholar]
  131. DenkeA. SchemppH. WeiserD. ElstnerE. Biochemical activities of extracts from Hypericum perforatum L. 5th communication: dopamine-beta-hydroxylase-product quantification by HPLC and inhibition by hypericins and flavonoids.Arzneimittelforschung201150541541910.1055/s‑0031‑1300225 10858868
    [Google Scholar]
  132. ShinjyoN. NakayamaH. LiL. IshimaruK. HikosakaK. SuzukiN. YoshidaH. NoroseK. Hypericum perforatum extract and hyperforin inhibit the growth of neurotropic parasite Toxoplasma gondii and infection-induced inflammatory responses of glial cells in vitro. J. Ethnopharmacol.202126711352510.1016/j.jep.2020.113525 33129946
    [Google Scholar]
  133. ShinjyoN. NakayamaH. IshimaruK. HikosakaK. Mi-ichiF. NoroseK. YoshidaH. Hypericum erectum alcoholic extract inhibits Toxoplasma growth and Entamoeba encystation: an exploratory study on the anti-protozoan potential.J. Nat. Med.202074129430510.1007/s11418‑019‑01369‑6 31728823
    [Google Scholar]
  134. HanH. ChenY. BiH. YuL. SunC. LiS. OumarS.A. ZhouY. In vivo antimalarial activity of ginseng extracts.Pharm. Biol.201149328328910.3109/13880209.2010.511235 21323481
    [Google Scholar]
  135. LüJ.M. YaoQ. ChenC. Ginseng compounds: an update on their molecular mechanisms and medical applications.Curr. Vasc. Pharmacol.20097329330210.2174/157016109788340767 19601854
    [Google Scholar]
  136. ImD.S. Pro-Resolving Effect of Ginsenosides as an Anti-Inflammatory Mechanism of Panax ginseng. Biomolecules202010344410.3390/biom10030444 32183094
    [Google Scholar]
  137. de Oliveira ZanusoB. de Oliveira dos SantosA.R. MiolaV.F.B. Guissoni CamposL.M. SpillaC.S.G. BarbalhoS.M. Panax ginseng and aging related disorders: A systematic review.Exp. Gerontol.202216111173110.1016/j.exger.2022.111731 35143871
    [Google Scholar]
  138. QuDF YuHJ LiuZ ZhangDF ZhouQJ ZhangH DuAF Ginsenoside Rg1 enhances immune response induced by recombinant Toxoplasma gondii SAG1 antigen.Vet Parasitol.20111791-32834
    [Google Scholar]
  139. LeeN.H. YooS.R. KimH.G. ChoJ.H. SonC.G. Safety and tolerability of Panax ginseng root extract: a randomized, placebo-controlled, clinical trial in healthy Korean volunteers.J. Altern. Complement. Med.201218111061106910.1089/acm.2011.0591 22909282
    [Google Scholar]
  140. VohraS. JohnstonB.C. LaycockK.L. MidodziW.K. DhunnooI. HarrisE. BaydalaL. Safety and tolerability of North American ginseng extract in the treatment of pediatric upper respiratory tract infection: a phase II randomized, controlled trial of 2 dosing schedules.Pediatrics20081222e402e41010.1542/peds.2007‑2186 18676527
    [Google Scholar]
  141. HighK.P. CaseD. HurdD. PowellB. LesserG. FalseyA.R. SiegelR. Metzner-SadurskiJ. KraussJ.C. ChinnasamiB. SandersG. RouseyS. ShawE.G. A randomized, controlled trial of Panax quinquefolius extract (CVT-E002) to reduce respiratory infection in patients with chronic lymphocytic leukemia.J. Support. Oncol.201210519520110.1016/j.suponc.2011.10.005 22266154
    [Google Scholar]
  142. ChoiS.H. YangK.J. LeeD.S. Effects of Complementary Combination Therapy of Korean Red Ginseng and Antiviral Agents in Chronic Hepatitis B.J. Altern. Complement. Med.2016221296496910.1089/acm.2015.0206 27603149
    [Google Scholar]
  143. ShergisJ.L. ThienF. WorsnopC.J. LinL. ZhangA.L. WuL. ChenY. XuY. LangtonD. Da CostaC. FongH. WuD. StoryD. XueC.C. 12-month randomised controlled trial of ginseng extract for moderate COPD.Thorax201974653954510.1136/thoraxjnl‑2018‑212665 30940771
    [Google Scholar]
  144. RekhaV.P. KolliparaM. GuptaB.R.S.S. BharathY. PulicherlaK. A Review on Piper betle L.: Nature’s Promising Medicinal Reservoir.American Journal of Ethnomedicine201415276289
    [Google Scholar]
  145. DerosaG. MaffioliP. SahebkarA. Piperine and Its Role in Chronic Diseases.Adv. Exp. Med. Biol.201692817318410.1007/978‑3‑319‑41334‑1_8 27671817
    [Google Scholar]
  146. HaqI.U. ImranM. NadeemM. TufailT. GondalT.A. MubarakM.S. Piperine: A review of its biological effects.Phytother. Res.202135268070010.1002/ptr.6855 32929825
    [Google Scholar]
  147. Bravo-ChaucanésC.P. ChitivaL.C. Vargas-CasanovaY. Diaz-SantoyoV. HernándezA.X. CostaG.M. Parra-GiraldoC.M. Exploring the Potential Mechanism of Action of Piperine against Candida albicans and Targeting Its Virulence Factors.Biomolecules20231312172910.3390/biom13121729 38136600
    [Google Scholar]
  148. LeesombunA. BoonmasawaiS. ShimodaN. NishikawaY. Effects of extracts from Thai Piperaceae plants against infection with Toxoplasma gondii. PLoS One2016115e015611610.1371/journal.pone.0156116 27213575
    [Google Scholar]
  149. SuganyadeviP. SaravanakumarM. MohandasS. Characterization of anthocyanin from red sorghum (Sorghum bicolor) bran by liquid chromatography-electron spray ionization mass spectrometry analysis.Eur. J. Mass Spectrom. (Chichester, Eng.)2021272-410711410.1177/14690667211035720 34325557
    [Google Scholar]
  150. AbugriD.A. JaynesJ.M. WitolaW.H. Anti-Toxoplasma activity of Sorghum bicolor-derived lipophilic fractions.BMC Res. Notes201912168810.1186/s13104‑019‑4732‑z 31651353
    [Google Scholar]
  151. OwumiS.E. KazeemA.I. WuB. IshokareL.O. ArunsiU.O. OyelereA.K. Apigeninidin-rich Sorghum bicolor (L. Moench) extracts suppress A549 cells proliferation and ameliorate toxicity of aflatoxin B1-mediated liver and kidney derangement in rats.Sci. Rep.2022121743810.1038/s41598‑022‑10926‑1 35523904
    [Google Scholar]
  152. BoslettJ. HemannC. ZhaoY.J. LeeH.C. ZweierJ.L. Luteolinidin Protects the Postischemic Heart through CD38 Inhibition with Preservation of NAD(P)(H).J. Pharmacol. Exp. Ther.201736119910810.1124/jpet.116.239459 28108596
    [Google Scholar]
  153. AbugriD.A. WitolaW.H. JaynesJ.M. TouficN. In vitro activity of Sorghum bicolor extracts, 3-deoxyanthocyanidins, against Toxoplasma gondii. Exp. Parasitol.2016164121910.1016/j.exppara.2016.02.001 26855040
    [Google Scholar]
  154. WuY. WangY. LiuZ. WangJ. Extraction, Identification and Antioxidant Activity of 3-Deoxyanthocyanidins from Sorghum bicolor L. Moench Cultivated in China.Antioxidants202312246810.3390/antiox12020468 36830026
    [Google Scholar]
  155. AyubaG.I. JensenG.S. BensonK.F. OkubenaA.M. OkubenaO. Clinical efficacy of a West African sorghum bicolor-based traditional herbal preparation Jobelyn shows increased hemoglobin and CD4+ T-lymphocyte counts in HIV-positive patients.J. Altern. Complement. Med.2014201535610.1089/acm.2013.0125 24283768
    [Google Scholar]
  156. de Morais CardosoL. PinheiroS.S. MartinoH.S.D. Pinheiro-Sant’Ana, H.M. Sorghum (Sorghum bicolor L.): Nutrients, bioactive compounds, and potential impact on human health.Crit. Rev. Food Sci. Nutr.201757237239010.1080/10408398.2014.887057 25875451
    [Google Scholar]
  157. AhmadW. JantanI. BukhariS.N.A. Tinospora crispa (L.) Hook. f. & Tomson: a review of its ethnobotanical, phytochemical, and pharmacological aspects.Front. Pharmacol.201675910.3389/fphar.2016.00059 27047378
    [Google Scholar]
  158. SangsuwanC. UdompanthurakS. VannasaengS. ThamlikitkulV. Randomized controlled trial of Tinospora crispa for additional therapy in patients with type 2 diabetes mellitus.J. Med. Assoc. Thai.2004875543546 15222526
    [Google Scholar]
  159. KlangjareonchaiT. RoongpisuthipongC. The effect of Tinospora crispa on serum glucose and insulin levels in patients with type 2 diabetes mellitus.J. Biomed. Biotechnol.201220121410.1155/2012/808762 22131824
    [Google Scholar]
  160. ZuhriU.M. PurwaningsihE.H. FadilahF. YulianaN.D. Network pharmacology integrated molecular dynamics reveals the bioactive compounds and potential targets of Tinospora crispa Linn. as insulin sensitizer.PLoS One2022176e025183710.1371/journal.pone.0251837 35737707
    [Google Scholar]
  161. LeeW.C. MahmudR. NoordinR. PiaruS.P. PerumalS. IsmailS. Alkaloids content, cytotoxicity and anti-<i>Toxoplasma gondii</i> activity of <i>Psidium guajava</i> L. and <i>Tinospora crispa</i>.Bangladesh J. Pharmacol.20127427227610.3329/bjp.v7i4.12499
    [Google Scholar]
  162. SharifA.A. UnyahN.Z. NordinN. BasirR. WanaM.N. Alapid AhmadA. MustaphaT. MajidR.A. Susceptibility of Toxoplasma gondii to Ethanolic Extract of Tinospora crispa in Vero Cells.Evid. Based Complement. Alternat. Med.2019201911010.1155/2019/2916547 31827548
    [Google Scholar]
  163. RahimpourY. DoorandishanM. DehsheikhA.B. SourestaniM.M. MottaghipishehJ. A Review on Torilis japonica: Ethnomedicinal, Phytochemical, and Biological Features.Chem. Biodivers.2023205e20220107110.1002/cbdv.202201071 37073927
    [Google Scholar]
  164. EndaleM. KimT.H. KwakY.S. KimN.M. KimS.H. ChoJ.Y. YunB.S. RheeM.H. Torilin Inhibits Inflammation by Limiting TAK1-Mediated MAP Kinase and NF- κ B Activation.Mediators Inflamm.2017201711310.1155/2017/7250968 28316375
    [Google Scholar]
  165. Nassiri-AslM. HosseinzadehH. Review of the Pharmacological Effects of Vitis vinifera (Grape) and its Bioactive Constituents: An Update.Phytother. Res.20163091392140310.1002/ptr.5644 27196869
    [Google Scholar]
  166. MengT. XiaoD. MuhammedA. DengJ. ChenL. HeJ. Anti-Inflammatory Action and Mechanisms of Resveratrol.Molecules202126122910.3390/molecules26010229 33466247
    [Google Scholar]
  167. FerreiraC. SoaresD.C. NascimentoM.T.C. Pinto-da-SilvaL.H. SarzedasC.G. TinocoL.W. SaraivaE.M. Resveratrol is active against Leishmania amazonensis: in vitro effect of its association with Amphotericin B.Antimicrob. Agents Chemother.201458106197620810.1128/AAC.00093‑14 25114129
    [Google Scholar]
  168. BottariN.B. BaldisseraM.D. ToninA.A. RechV.C. NishihiraV.S.K. ThoméG.R. CamilloG. VogelF.F. DuarteM.M.M.F. SchetingerM.R.C. MorschV.M. TochettoC. FigheraR. Da SilvaA.S. Effects of sulfamethoxazole-trimethoprim associated to resveratrol on its free form and complexed with 2-hydroxypropyl-β-cyclodextrin on cytokines levels of mice infected by Toxoplasma gondii. Microb. Pathog.201587404410.1016/j.micpath.2015.07.013 26209515
    [Google Scholar]
  169. ChenQ.W. DongK. QinH.X. YangY.K. HeJ.L. LiJ. ZhengZ.W. ChenD.L. ChenJ.P. Direct and Indirect Inhibition Effects of Resveratrol against Toxoplasma gondii Tachyzoites In Vitro. Antimicrob. Agents Chemother.2019633e012331810.1128/AAC.01233‑18 30530601
    [Google Scholar]
  170. AdeyemiO.S. AtolaniO. AwakanO.J. OlaoluT.D. NwonumaC.O. AlejolowoO. OtohinoyiD.A. RotimiD. OwolabiA. BatihaG.E. In Vitro Screening to Identify Anti-Toxoplasma compounds and in silico modeling for bioactivities and toxicity.Yale J. Biol. Med.2019923369383 31543702
    [Google Scholar]
  171. BottariN.B. BaldisseraM.D. ToninA.A. RechV.C. AlvesC.B. D’AvilaF. ThoméG.R. GuardaN.S. MorescoR.N. CamilloG. VogelF.F. LucheseC. SchetingerM.R.C. MorschV.M. TochettoC. FigheraR. NishihiraV.S.K. Da SilvaA.S. Synergistic effects of resveratrol (free and inclusion complex) and sulfamethoxazole-trimetropim treatment on pathology, oxidant/antioxidant status and behavior of mice infected with Toxoplasma gondii. Microb. Pathog.20169516617410.1016/j.micpath.2016.04.002 27057672
    [Google Scholar]
  172. RamaJ.L.R. MalloN. BiddauM. FernandesF. de MiguelT. SheinerL. ChoupinaA. LoresM. Exploring the powerful phytoarsenal of white grape marc against bacteria and parasites causing significant diseases.Environ. Sci. Pollut. Res. Int.20212819242702427810.1007/s11356‑019‑07472‑1 31939019
    [Google Scholar]
  173. BardagjyA.S. HuQ. GieblerK.A. FordA. SteinbergF.M. Effects of grape consumption on biomarkers of inflammation, endothelial function, and PBMC gene expression in obese subjects.Arch. Biochem. Biophys.201864614515210.1016/j.abb.2018.04.003 29649425
    [Google Scholar]
  174. ParandooshM. YousefiR. KhorsandiH. NikpayamO. SaidpourA. BabaeiH. The effects of grape seed extract (VITIS VINIFERA) supplement on inflammatory markers, neuropeptide Y, anthropometric measures, and appetite in obese or overweight individuals: A randomized clinical trial.Phytother. Res.202034237938710.1002/ptr.6529 31713941
    [Google Scholar]
  175. DaniC. DiasK.M. TrevizolL. BassôaL. FragaI. ProençaI.C.T. PochmannD. ElsnerV.R. The impact of red grape juice (Vitis labrusca)consumption associated with physical training on oxidative stress, inflammatory and epigenetic modulation in healthy elderly women.Physiol. Behav.202122911321510.1016/j.physbeh.2020.113215 33096120
    [Google Scholar]
  176. GreenwayF.L. LiuZ. MartinC.K. Kai-yuanW. NofzigerJ. RoodJ.C. YuY. AmenR.J. Safety and efficacy of NT, an herbal supplement, in treating human obesity.Int. J. Obes.200630121737174110.1038/sj.ijo.0803343 16652135
    [Google Scholar]
  177. CarvalhoG.C.N. Lira-NetoJ.C.G. AraújoM.F.M. FreitasR.W.J.F. ZanettiM.L. DamascenoM.M.C. Effectiveness of ginger in reducing metabolic levels in people with diabetes: a randomized clinical trial.Rev. Lat. Am. Enfermagem202028e336910.1590/1518‑8345.3870.3369 33053078
    [Google Scholar]
  178. BossiP. CortinovisD. FatigoniS. Cossu RoccaM. FabiA. SeminaraP. RipamontiC. AlfieriS. GranataR. BergaminiC. AgustoniF. BidoliP. NolèF. PessiM.A. MacchiF. MichelliniL. MontanaroF. RoilaF. A randomized, double-blind, placebo-controlled, multicenter study of a ginger extract in the management of chemotherapy-induced nausea and vomiting (CINV) in patients receiving high-dose cisplatin.Ann. Oncol.201728102547255110.1093/annonc/mdx315 28666335
    [Google Scholar]
  179. BhargavaR. ChasenM. EltenM. MacDonaldN. The effect of ginger (Zingiber officinale Roscoe) in patients with advanced cancer.Support. Care Cancer20202873279328610.1007/s00520‑019‑05129‑w 31745695
    [Google Scholar]
  180. AltmanR.D. MarcussenK.C. Effects of a ginger extract on knee pain in patients with osteoarthritis.Arthritis Rheum.200144112531253810.1002/1529‑0131(200111)44:11<2531:AID‑ART433>3.0.CO;2‑J 11710709
    [Google Scholar]
  181. ParamdeepG. Efficacy and tolerability of ginger (Zingiber officinale) in patients of osteoarthritis of knee.Indian J. Physiol. Pharmacol.2013572177183 24617168
    [Google Scholar]
  182. AryaeianN. ShahramF. MahmoudiM. TavakoliH. YousefiB. ArablouT. Jafari KaregarS. The effect of ginger supplementation on some immunity and inflammation intermediate genes expression in patients with active Rheumatoid Arthritis.Gene201969817918510.1016/j.gene.2019.01.048 30844477
    [Google Scholar]
  183. YamprasertR. ChanvimaluengW. MukkasombutN. ItharatA. Ginger extract versus Loratadine in the treatment of allergic rhinitis: a randomized controlled trial.BMC Complementary Medicine and Therapies202020111910.1186/s12906‑020‑2875‑z 32312261
    [Google Scholar]
  184. González-GrossM. Quesada-GonzálezC. RuedaJ. Sillero-QuintanaM. IssalyN. DíazA.E. GesteiroE. Escobar-ToledoD. Torres-PeraltaR. RollerM. Guadalupe-GrauA. Analysis of Effectiveness of a Supplement Combining Harpagophytum procumbens, Zingiber officinale and Bixa orellana in Healthy Recreational Runners with Self-Reported Knee Pain: A Pilot, Randomized, Triple-Blind, Placebo-Controlled Trial.Int. J. Environ. Res. Public Health20211811553810.3390/ijerph18115538 34067240
    [Google Scholar]
  185. AliB.H. BlundenG. TaniraM.O. NemmarA. Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): A review of recent research.Food Chem. Toxicol.200846240942010.1016/j.fct.2007.09.085 17950516
    [Google Scholar]
  186. de LimaR.M.T. dos ReisA.C. de MenezesA.A.P.M. SantosJ.V.O. FilhoJ.W.G.O. FerreiraJ.R.O. de AlencarM.V.O.B. da MataA.M.O.F. KhanI.N. IslamA. UddinS.J. AliE.S. IslamM.T. TripathiS. MishraS.K. MubarakM.S. Melo-CavalcanteA.A.C. Protective and therapeutic potential of ginger (ZINGIBER OFFICINALE) extract and [6]‐gingerol in cancer: A comprehensive review.Phytother. Res.201832101885190710.1002/ptr.6134 30009484
    [Google Scholar]
  187. KaratayK.B. KılçarA.Y. DervişE. MüftülerF.Z.B. Radioiodinated Ginger Compounds (6-gingerol and 6-shogaol) and Incorporation Assays on Breast Cancer Cells.Anticancer. Agents Med. Chem.20202091129113910.2174/1871520620666200128114215 31994470
    [Google Scholar]
  188. ChoiW. JiangM. ChuJ. Antiparasitic effects of Zingiber officinale (Ginger) extract against Toxoplasma gondii. J. Appl. Biomed.2013111152610.2478/v10136‑012‑0014‑y
    [Google Scholar]
  189. FilisettiD CandofiE Immune response to Toxoplasma gondii.Ann 1st Super Sanita.20044017180
    [Google Scholar]
  190. LiuQ. SinglaL.D. ZhouH. Vaccines against Toxoplasma gondii: Status, challenges and future directions.Hum. Vaccin. Immunother.2012891305130810.4161/hv.21006 22906945
    [Google Scholar]
  191. RoozbehaniM. FalakR. MohammadiM. HemphillA. RazmjouE. MeamarA. MasooriL. KhoshmirsafaM. MoradiM. GharaviM.J. Characterization of a multi-epitope peptide with selective MHC-binding capabilities encapsulated in PLGA nanoparticles as a novel vaccine candidate against Toxoplasma gondii infection.Vaccine201836416124613210.1016/j.vaccine.2018.08.068 30181047
    [Google Scholar]
  192. BauriR.K. TiggaM.N. KulluS.S. A review on use of medicinal plants to control parasites.Indian J. Nat. Prod. Resour.201564268277[IJNPR].
    [Google Scholar]
  193. KangS.G. RyangY.S. KimI. Effects of Gentiana scabra var. buergeri extract on Toxoplasmastic activity of macrophages.J. Exp. Biol. Sci2003928591
    [Google Scholar]
  194. ZhangW. FangF.R. LiuY.J. YangL.D. LuoR.Y. GongF. LuH. XuX.X. [In vitro effect of combined traditional Chinese medicine (Changqing capsule) on the tachyzoites of Toxoplasma gondii.].Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi20062415658 16866146
    [Google Scholar]
  195. Al-ZanbagiN. Effectiveness of myrrh and spiramycin as inhibitors for Toxoplasma gondii tachyzoites in vivo. Mansoura J. Forensic Med. Clin. Toxicol.200715211712810.21608/mjfmct.2007.48856
    [Google Scholar]
  196. KhoushzabanF. GhazanfariT. GhaffarifF. SharifiM. GhasemiN.S. The effect of garlic extract on acute toxoplasmosis in mice.Iranian J. Med. Arom. Plant2007337295306
    [Google Scholar]
  197. NagamuneK. BeattyW.L. SibleyL.D. Artemisinin induces calcium-dependent protein secretion in the protozoan parasite Toxoplasma gondii. Eukaryot. Cell20076112147215610.1128/EC.00262‑07 17766463
    [Google Scholar]
  198. NagamuneK. MorenoS.N.J. SibleyL.D. Artemisinin-resistant mutants of Toxoplasma gondii have altered calcium homeostasis.Antimicrob. Agents Chemother.200751113816382310.1128/AAC.00582‑07 17698618
    [Google Scholar]
  199. KhoshzabanF. GhaffarifarF. SharafiM. Ghasemi NikouS. Effect of Peganum harmala on acute toxoplasmosis in mice.Daneshvar Med200815752736
    [Google Scholar]
  200. KrivogorskyB. GrundtP. YolkenR. Jones-BrandoL. Inhibition of Toxoplasma gondii by indirubin and tryptanthrin analogs.Antimicrob. Agents Chemother.200852124466446910.1128/AAC.00903‑08 18824607
    [Google Scholar]
  201. DahbiA. BelleteB. FloriP. HssaineA. ElhachimiY. RaberinH. ChaitA. Tran Manh SungR. HafidJ. The effect of essential oils from Thymus broussonetii Boiss on transmission of Toxoplasma gondii cysts in mice.Parasitol. Res.20101071555810.1007/s00436‑010‑1832‑z 20336317
    [Google Scholar]
  202. De PablosL.M. GonzálezG. RodriguesR. García GranadosA. ParraA. OsunaA. Action of a pentacyclic triterpenoid, maslinic acid, against Toxoplasma gondii. J. Nat. Prod.201073583183410.1021/np900749b 20441162
    [Google Scholar]
  203. Al-ZanbagiN.A. Noticeable effect of Juniperus procera as Toxoplasma gondii tachyzoites inhibitor in vivo. Int. J. Health Wellness Soc.20111219720410.18848/2156‑8960/CGP/v01i02/41159
    [Google Scholar]
  204. RayanH.Z. WagihH.M. AtwaM.M. Efficacy of black seed oil from Nigella sativa against murine infection with cysts of Me49 strain of Toxoplasma gondii.PUJ201142165176
    [Google Scholar]
  205. GomesT.C. Andrade JúniorH.F. LescanoS.A.Z. Amato-NetoV. In vitro action of antiparasitic drugs, especially artesunate, against Toxoplasma gondii. Rev. Soc. Bras. Med. Trop.201245448549010.1590/S0037‑86822012000400014 22930046
    [Google Scholar]
  206. KavithaN NoordinR ChanK-L In vitro anti-Toxoplasma gondii activity of root extract/fractions of Eurycoma longifolia Jack.Molecules2012179207901910.3390/molecules17089207 22858841
    [Google Scholar]
  207. PillaiS. MahmudR. LeeW.C. PerumalS. Anti-parasitic activity of Myristica fragrans Houtt. essential oil against Toxoplasma gondii parasite.APCBEE Procedia20122929610.1016/j.apcbee.2012.06.017
    [Google Scholar]
  208. QuD. HanJ. DuA. Enhancement of protective immune response to recombinant Toxoplasma gondii ROP18 antigen by ginsenoside Re.Exp. Parasitol.2013135223423910.1016/j.exppara.2013.07.013 23896123
    [Google Scholar]
  209. HongS. LeeH.A. LeeY. ChungY.H. KimO. Anti-toxoplasmosis effect of Dictamnus dasycarpus extract against Toxoplasma Gondii. J. Biomed. Res. (Cheongju)201415171110.12729/jbr.2014.15.1.007
    [Google Scholar]
  210. OliveiraC. MeurerY. OliveiraM. MedeirosW. SilvaF. BritoA. PontesD. Andrade-NetoV. Comparative study on the antioxidant and anti-Toxoplasma activities of vanillin and its resorcinarene derivative.Molecules20141955898591210.3390/molecules19055898 24810805
    [Google Scholar]
  211. DaryaniA. EbrahimzadehM.A. SharifM. AhmadpourE. EdalatianS. Anti-Toxoplasma activities of methanolic extract of Sambucus nigra (Caprifoliaceae) fruits and leaves.Rev. Biol. Trop.201563171210.15517/rbt.v63i1.14545 26299111
    [Google Scholar]
  212. SoaresA.M.S. CarvalhoL.P. MeloE.J.T. CostaH.P.S. VasconcelosI.M. OliveiraJ.T.A. A protein extract and a cysteine protease inhibitor enriched fraction from Jatropha curcas seed cake have in vitro anti-Toxoplasma gondii activity.Exp. Parasitol.201515311111710.1016/j.exppara.2015.03.011 25816973
    [Google Scholar]
  213. ErakyM.A. El-FakahanyA.F. El-SayedN.M. Abou-OufE.A.R. YaseenD.I. Effects of Thymus vulgaris ethanolic extract on chronic toxoplasmosis in a mouse model.Parasitol. Res.201611572863287110.1007/s00436‑016‑5041‑2 27098159
    [Google Scholar]
  214. Gasparotto JuniorA. CosmoM.L.A. ReisM.P. dos SantosP.S. GonçalvesD.D. GasparottoF.M. NavarroI.T. LourençoE.L.B. Effects of extracts from Echinacea purpurea (L) MOENCH on mice infected with different strains of Toxoplasma gondii. Parasitol. Res.2016115103999400510.1007/s00436‑016‑5167‑2 27277433
    [Google Scholar]
  215. RamosE.L.P. SantanaS.S. SilvaM.V. SantiagoF.M. MineoT.W.P. MineoJ.R. MineoJ.R. Lectins from Synadenium carinatum (ScLL) and Artocarpus heterophyllus (ArtinM) are able to induce beneficial immunomodulatory effects in a murine model for treatment of Toxoplasma gondii infection.Front. Cell. Infect. Microbiol.2016616410.3389/fcimb.2016.00164 27933277
    [Google Scholar]
  216. PalhariniJ.G. RichterA.C. SilvaM.F. FerreiraF.B. PirovaniC.P. NavesK.S.C. GoulartV.A. MineoT.W.P. SilvaM.J.B. SantiagoF.M. Eutirucallin: a lectin with antitumor and antimicrobial properties.Front. Cell. Infect. Microbiol.2017713610.3389/fcimb.2017.00136 28487845
    [Google Scholar]
  217. PereiraA.V. GóisM.B. LeraK.R.J.L. Falkowski-TemporiniG.J. MassiniP.F. DrozinoR.N. AleixoD.L. MirandaM.M. da Silva WatanabeP. Conchon-CostaI. da CostaI.N. dos Anjos Neto FilhoM. de AraújoS.M. PavanelliW.R. Histopathological lesions in encephalon and heart of mice infected with Toxoplasma gondii increase after Lycopodium clavatum 200dH treatment.Pathol. Res. Pract.20172131505710.1016/j.prp.2016.11.003 27894616
    [Google Scholar]
  218. ChoiW. LeeI. Evaluation of Anti-Toxoplasma gondii Effect of Ursolic Acid as a Novel Toxoplasmosis Inhibitor.Pharmaceuticals20181124310.3390/ph11020043 29747388
    [Google Scholar]
  219. DégbéM. Debierre-GrockiegoF. Tété-BénissanA. DébareH. AklikokouK. Dimier-PoissonI. GbeassorM. Extracts of Tectona grandis and Vernonia amygdalina have anti- Toxoplasma and pro-inflammatory properties in vitro. Parasite2018251110.1051/parasite/2018014 29533762
    [Google Scholar]
  220. El-TantawyN.L. SolimanA.F. Abdel-MagiedA. GhorabD. KhalilA.T. NaeemZ.M. ShimizuK. El-SharkawyS.H. Could Araucaria heterophylla resin extract be used as a new treatment for toxoplasmosis?Exp. Parasitol.2018195445310.1016/j.exppara.2018.10.003 30339984
    [Google Scholar]
  221. MirzaalizadehB. SharifM. DaryaniA. EbrahimzadehM.A. ZargariM. SarviS. MehrzadiS. RahimiM.T. MirabedinyZ. GolpourM. MontazeriM. Effects of Aloe vera and Eucalyptus methanolic extracts on experimental toxoplasmosis in vitro and in vivo. Exp. Parasitol.201819261110.1016/j.exppara.2018.07.010 30031121
    [Google Scholar]
  222. AhmadpourE. EbrahimzadehM.A SharifM. EdalatianS. SarviS. MontazeriM. MehrzadiS. AkbariM. RahimiMT. DaryaniA. Anti-Toxoplasma Activities of Zea Mays and Eryngium Caucasicum Extracts, In Vitro and In Vivo. J. Pharmacopuncture201922315415910.3831/KPI.2019.22.020 31673445
    [Google Scholar]
  223. AlajmiRA Al-MegrinWA MetwallyD Al-SubaieH AltamrahN BarakatAM Abdel MoneimAE Al-OtaibiTT El-KhadragyM Anti-Toxoplasma activity of silver nanoparticles green synthesized with Phoenix dactylifera and Ziziphus spinachristi extracts which inhibits inflammation through liver regulation of cytokines in Balb/c mice.Biosci. Rep.2019395BSR2019037910.1042/BSR20190379
    [Google Scholar]
  224. AtolaniO. OguntoyeH. ArehE.T. AdeyemiO.S. KambiziL. Chemical composition, anti-toxoplasma, cytotoxicity, antioxidant, and anti-inflammatory potentials of Cola gigantea seed oil.Pharm. Biol.201957115416010.1080/13880209.2019.1577468 30905238
    [Google Scholar]
  225. ChoiWH LeeIA The mechanism of action of ursolic acid as a potential anti-toxoplasmosis agent, and its immunomodulatory effects.Pathogens2019826110.3390/pathogens8020061
    [Google Scholar]
  226. LuanT. JinC. JinC.M. GongG.H. QuanZ.S. Synthesis and biological evaluation of ursolic acid derivatives bearing triazole moieties as potential anti- Toxoplasma gondii agents.J. Enzyme Inhib. Med. Chem.201934176177210.1080/14756366.2019.1584622 30836795
    [Google Scholar]
  227. KokoW.S. Al NasrI.S. KhanT. ElghazaliG. In vitro antitoxoplasmal activity of some medicinal plants.Pharmacogn. Mag.2019156556857210.4103/pm.pm_646_18
    [Google Scholar]
  228. RosenbergA. LuthM.R. WinzelerE.A. BehnkeM. SibleyL.D. Evolution of resistance in vitro reveals mechanisms of artemisinin activity in Toxoplasma gondii. Proc. Natl. Acad. Sci. USA201911652268812689110.1073/pnas.1914732116 31806760
    [Google Scholar]
  229. AtolaniO. AdamuN. OguntoyeO.S. ZubairM.F. FabiyiO.A. OyegokeR.A. AdeyemiO.S. ArehE.T. TarighaD.E. KambiziL. OlatunjiG.A. Chemical characterization, antioxidant, cytotoxicity, Anti-Toxoplasma gondii and antimicrobial potentials of the Citrus sinensis seed oil for sustainable cosmeceutical production.Heliyon202062e0339910.1016/j.heliyon.2020.e03399 32099925
    [Google Scholar]
  230. NasrA.I. Evaluation of in vitro antitoxoplasmal activity of some medicinal plants collected from Al Qassim, Saudi Arabia.Indian J. Tradit. Knowl.2020194744750
    [Google Scholar]
  231. SpalenkaJ. HubertJ. Voutquenne-NazabadiokoL. Escotte-BinetS. BorieN. VelardF. VillenaI. AubertD. RenaultJ.H. In Vitro and In Vivo Activity of Anogeissus leiocarpa Bark Extract and Isolated Metabolites against Toxoplasma gondii. Planta Med.202086429430210.1055/a‑1088‑8449 31994148
    [Google Scholar]
  232. TeixeiraS.C. de SouzaG. BorgesB.C. de AraújoT.E. RosiniA.M. AguilaF.A. AmbrósioS.R. VenezianiR.C.S. BastosJ.K. SilvaM.J.B. MartinsC.H.G. de Freitas BarbosaB. FerroE.A.V. Copaifera spp. oleoresins impair Toxoplasma gondii infection in both human trophoblastic cells and human placental explants.Sci. Rep.20201011515810.1038/s41598‑020‑72230‑0 32938966
    [Google Scholar]
  233. BanzragchgaravO. BatkhuuJ. MyagmarsurenP. BattsetsegB. BatturB. NishikawaY. In Vitro Potently Active Anti-Plasmodium and Anti-Toxoplasma Mongolian Plant Extracts.Acta Parasitol.20216641442144710.1007/s11686‑021‑00401‑8 34023977
    [Google Scholar]
  234. HuangS.Y. YaoN. HeJ.K. PanM. HouZ.F. FanY.M. DuA. TaoJ.P. In vitro anti-parasitic activity of Pelargonium X. asperum essential oil against Toxoplasma gondii. Front. Cell Dev. Biol.2021961634010.3389/fcell.2021.616340 33681197
    [Google Scholar]
  235. KhanT.A. Al NasrI.S. MujawahA.H. KokoW.S. Assessment of Euphorbia retusa and Pulicaria undulata activity against Leishmania major and Toxoplasma gondii. Trop. Biomed.202138113514110.47665/tb.38.1.023 33797536
    [Google Scholar]
  236. NishiL SanfeliceRS da Silva BortoletiBT Moringa oleifera extract promotes apoptosis-like death in Toxoplasma gondii tachyzoites in vitro. Parasitology2021148121447145710.1017/S0031182021001086
    [Google Scholar]
  237. SaadatmandM. Al-AwsiG.R.L. AlanaziA.D. SepahvandA. ShakibaieM. ShojaeeS. MohammadiR. MahmoudvandH. Green synthesis of zinc nanoparticles using Lavandula angustifolia Vera. Extract by microwave method and its prophylactic effects on Toxoplasma gondii infection.Saudi J. Biol. Sci.202128116454646010.1016/j.sjbs.2021.07.007 34764762
    [Google Scholar]
  238. AbdouAM SeddekAS AbdelmageedN BadryMO Nishikawa, Y Extracts of wild Egyptian plants from the desert inhibit the growth of Toxoplasma gondii and Neospora caninumin vitro. J Vet Med Sci20228471034104010.1292/jvms.22‑0159
    [Google Scholar]
  239. DarmeP. SpalenkaJ. HubertJ. Escotte-BinetS. DebelleL. VillenaI. SayaghC. BorieN. MartinezA. BertauxB. Voutquenne-NazabadiokoL. RenaultJ.H. AubertD. Investigation of Antiparasitic Activity of 10 European Tree Bark Extracts on Toxoplasma gondii and Bioguided Identification of Triterpenes in Alnus glutinosa Barks.Antimicrob. Agents Chemother.2022661e010982110.1128/AAC.01098‑21 34633849
    [Google Scholar]
  240. ElazabS.T. ArafaF.M. Anti-Toxoplasma Activities of Some Egyptian Plant Extracts: An In Vitro Study.Acta Parasitol.20226741800180610.1007/s11686‑022‑00633‑2 36309926
    [Google Scholar]
  241. GhanadianM. KhamesipourF. HejaziS.H. RazaviS.M. SadraeiH. NamdarF. In Vitro and In Vivo Anti-Toxoplasma Activities of Dracocephalum kotschyi Extract in Experimental Models of Acute Toxoplasmosis.Acta Parasitol.202267148749510.1007/s11686‑021‑00491‑4 34800216
    [Google Scholar]
  242. HematizadehA. EbrahimzadehM.A. SarviS. SadeghiM. DaryaniA. GholamiS. NayeriT. HosseiniS.A. In Vitro and In Vivo Anti-parasitic Activity of Sambucus ebulus and Feijoa sellowiana Extracts Silver Nanoparticles on Toxoplasma gondii Tachyzoites.Acta Parasitol.202368355756510.1007/s11686‑023‑00689‑8 37330943
    [Google Scholar]
  243. TeixeiraS.C. RosiniA.M. de SouzaG. MartínezA.F. SilvaR.J. AmbrósioS.R. VenezianiR.C. BastosJ.K. MartinsC.H. BarbosaB.F. FerroE.A. Polyalthic acid and oleoresin from Copaifera trapezifolia Hayne reduce Toxoplasma gondii growth in human villous explants, even triggering an anti-inflammatory profile.Exp. Parasitol.202325010853410.1016/j.exppara.2023.108534 37100271
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266299409240606062235
Loading
/content/journals/ctmc/10.2174/0115680266299409240606062235
Loading

Data & Media loading...

Supplements


  • Article Type:
    Review Article
Keyword(s): Immunocompetent; Phytotherapy; Plant extract; Toxicity; Toxoplasma gondii; Toxoplasmosis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test