Skip to content
2000
Volume 24, Issue 22
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Background

The synthesis of nanoparticles using the principle of green chemistry has achieved huge potential in nanomedicine. Here, we report the synthesis of silver nanoparticles (AgNPs) employing garlic essential oil (GEO) due to wide applications of GEO in the biomedical and pharmaceutical industry.

Objective

This study aimed to synthesise garlic essential oil-assisted silver nanoparticles and present their antimicrobial and antibiofilm activities with mechanistic assessment.

Methods

Initially, the formulation of AgNPs was confirmed using different optical techniques, such as XRD, FT-IR, DLS, zeta potential, SEM, and EDX analysis, which confirmed the formulation of well-dispersed, stable, and spherical AgNPs. The antimicrobial and antibiofilm activity of GEO-assisted AgNPs was evaluated against a spectrum of pathogenic microorganisms, such as Gram-positive ( and ) and Gram-negative ( and ) bacteria.

Results

The AgNPs exhibited remarkable antimicrobial and anti-biofilm activity against all tested strains. The mechanism behind the antimicrobial activity of AgNPs was explored by estimating the amount of reactive oxygen species (ROS) generated due to the interaction of AgNP with bacterial cells and observing the morphological changes of bacteria upon AgNP interaction.

Conclusion

The findings of this study concluded that ROS generation due to the interaction of AgNPs with bacterial cells put stress on bacterial membranes, altering the morphology of bacteria, exhibiting remarkable antimicrobial activity, and preventing biofilm formation.

© 2024 The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266322180240712055727
2024-09-01
2024-11-12
Loading full text...

Full text loading...

/deliver/fulltext/ctmc/24/22/CTMC-24-22-2000.html?itemId=/content/journals/ctmc/10.2174/0115680266322180240712055727&mimeType=html&fmt=ahah

References

  1. AdorjanB. BuchbauerG. Biological properties of essential oils: An updated review.Flavour Fragrance J.201025640742610.1002/ffj.2024
    [Google Scholar]
  2. AlboofetilehM. RezaeiM. HosseiniH. AbdollahiM. Antimicrobial activity of alginate/clay nanocomposite films enriched with essential oils against three common foodborne pathogens.Food Cont20143611710.1016/j.foodcont.2013.07.037
    [Google Scholar]
  3. BiliaA.R. GuccioneC. IsacchiB. RigheschiC. FirenzuoliF. BergonziM.C. Essential oils loaded in nanosystems: A developing strategy for a successful therapeutic approach.Evid. Based Complement. Alternat. Med.2014201411410.1155/2014/65159324971152
    [Google Scholar]
  4. HassanA.M. Antibacterial efficacy of garlic oil nano-emulsion.AIMS Agric. Food2019419420510.3934/agrfood.2019.1.194
    [Google Scholar]
  5. LiuM. PanY. FengM. GuoW. FanX. FengL. HuangJ. CaoY. Garlic essential oil in water nanoemulsion prepared by high-power ultrasound: Properties, stability and its antibacterial mechanism against MRSA isolated from pork.Ultrason. Sonochem.20229010620110.1016/j.ultsonch.2022.10620136244094
    [Google Scholar]
  6. ZhangH. WangJ. Constituents of the essential oils of garlic and citronella and their vapor-phase inhibition mechanism against <i>S.aureus</i>.Food Sci. Technol. Res.2019251657410.3136/fstr.25.65
    [Google Scholar]
  7. FengS. EuckerT.P. HollyM.K. KonkelM.E. LuX. WangS. Investigating the responses of Cronobacter sakazakii to garlic-drived organosulfur compounds: A systematic study of pathogenic-bacterium injury by use of high-throughput whole-transcriptome sequencing and confocal micro-raman spectroscopy.Appl. Environ. Microbiol.201480395997110.1128/AEM.03460‑1324271174
    [Google Scholar]
  8. YangF.L. LiX.G. ZhuF. LeiC.L. Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae).J. Agric. Food Chem.20095721101561016210.1021/jf902311819835357
    [Google Scholar]
  9. Guidotti-TakeuchiM. de Morais RibeiroL.N.M. dos SantosF.A.L. RossiD.A. LuciaF.D. de MeloR.T. Essential oil-based nanoparticles as antimicrobial agents in the food industry.Microorganisms2022108150410.3390/microorganisms1008150435893562
    [Google Scholar]
  10. MorsyM.K. KhalafH.H. SharobaA.M. El-TanahiH.H. CutterC.N. Incorporation of essential oils and nanoparticles in pullulan films to control foodborne pathogens on meat and poultry products.J. Food Sci.2014794M675M68410.1111/1750‑3841.1240024621108
    [Google Scholar]
  11. MoosavyM.H. de la GuardiaM. MokhtarzadehA. KhatibiS.A. HosseinzadehN. HajipourN. Green synthesis, characterization, and biological evaluation of gold and silver nanoparticles using Mentha spicata essential oil.Sci. Rep.2023131723010.1038/s41598‑023‑33632‑y37142621
    [Google Scholar]
  12. SantajitS. IndrawattanaN. Mechanisms of antimicrobial resistance in ESKAPE pathogens.BioMed Res. Int.201620161810.1155/2016/247506727274985
    [Google Scholar]
  13. KimJ.W. KimY.S. KyungK.H. Inhibitory activity of essential oils of garlic and onion against bacteria and yeasts.J. Food Prot.200467349950410.4315/0362‑028X‑67.3.49915035364
    [Google Scholar]
  14. SarangiA. DasB.S. PatnaikG. SarkarS. DebnathM. MohanM. BhattacharyaD. Potent anti-mycobacterial and immunomodulatory activity of some bioactive molecules of Indian ethnomedicinal plants that have the potential to enter in TB management.J. Appl. Microbiol.202113141578159910.1111/jam.1508833772980
    [Google Scholar]
  15. YasinG. JasimS.A. MahmudionoT. Investigating the Effect of Garlic (Allium sativum) Essential Oil on Foodborne Pathogenic Microorganisms.Food Sci Technol2022423822
    [Google Scholar]
  16. DasM.C. PaulS. GuptaP. TribediP. SarkarS. MannaD. BhattacharjeeS. 3-Amino-4-aminoximidofurazan derivatives: Small molecules possessing antimicrobial and antibiofilm activity against Staphylococcus aureus and Pseudomonas aeruginosa.J. Appl. Microbiol.2016120484285910.1111/jam.1306326785169
    [Google Scholar]
  17. Clinical and Laboratory Standards Institute (CLSI)Performance standards for antimicrobial susceptibility testing: Twenty-fourth informational supplements M100.2013Available From: https://clsi.org/media/1930/m100ed28_sample.pdf
  18. Das MahapatraA. PatraC. PalK. MondalJ. SinhaC. ChattopadhyayD. Green synthesis of AgNPs from aqueous extract of Oxalis corniculata and its antibiofilm and antimicrobial activity.J. Indian Chem. Soc.202299710052910.1016/j.jics.2022.100529
    [Google Scholar]
  19. DuboisJ.M. OuanounouG. Rouzaire-DuboisB. The Boltzmann equation in molecular biology.Prog. Biophys. Mol. Biol.2009992-3879310.1016/j.pbiomolbio.2009.07.00119616022
    [Google Scholar]
  20. UrbainF. TangP. CarreteroN.M. AndreuT. ArbiolJ. MoranteJ.R. Tailoring Copper foam with silver dendrite catalysts for highly selective carbon dioxide conversion into carbon monoxide.ACS Appl. Mater. Interfaces20181050436504366010.1021/acsami.8b1537930480996
    [Google Scholar]
  21. LongY. HuangW. WangQ. YangG. Green synthesis of garlic oil nanoemulsion using ultrasonication technique and its mechanism of antifungal action against Penicillium italicum. Ultrason. Sonochem.20206410497010.1016/j.ultsonch.2020.10497032014757
    [Google Scholar]
  22. LuX. RascoB.A. JabalJ.M.F. AstonD.E. LinM. KonkelM.E. Investigating antibacterial effects of garlic (Allium sativum) concentrate and garlic-derived organosulfur compounds on Campylobacter jejuni by using Fourier transform infrared spectroscopy, Raman spectroscopy, and electron microscopy.Appl. Environ. Microbiol.201177155257526910.1128/AEM.02845‑1021642409
    [Google Scholar]
  23. SimW. BarnardR.T. BlaskovichM.A.T. ZioraZ.M. Antimicrobial silver in medicinal and consumer applications: A patent review of the past decade (2007–2017).Antibiotics (Basel)2018749310.3390/antibiotics704009330373130
    [Google Scholar]
  24. TakáčP. MichalkováR. ČižmárikováM. BedlovičováZ. BalážováĽ. TakáčováG. The role of silver nanoparticles in the diagnosis and treatment of cancer: Are there any perspectives for the future?Life202313246610.3390/life1302046636836823
    [Google Scholar]
  25. Vinicius de Oliveira Brisola MacielM. da Rosa AlmeidaA. MachadoM.H. EliasW.C. Gonçalves da RosaC. TeixeiraG.L. NoronhaC.M. BertoldiF.C. NunesM.R. Dutra de ArmasR. Manique BarretoP.L. Green synthesis, characteristics and antimicrobial activity of silver nanoparticles mediated by essential oils as reducing agents.Biocatal. Agric. Biotechnol.20202810174610.1016/j.bcab.2020.101746
    [Google Scholar]
  26. Al-ZahraniS. Astudillo-CalderónS. PintosB. Pérez-UrriaE. ManzaneraJ.A. MartínL. Gomez-GarayA. Role of synthetic plant extracts on the production of silver-derived nanoparticles.Plants2021108167110.3390/plants1008167134451715
    [Google Scholar]
  27. SarangiA. DasB.S. RoutS.S. SahooA. GirS. BhattacharyaD. Antimycobacterial and antibiofilm activity of garlic essential oil using vapor phase techniques.J. Appl. Biol. Biotechnol.202211667210.7324/JABB.2023.110109
    [Google Scholar]
  28. PattersonA.L. The Scherrer Formula for x-ray particle size determination.Phys. Rev.1939561097898210.1103/PhysRev.56.978
    [Google Scholar]
  29. ChoiH.J. AhnJ. JungB.K. ChoiY.K. ParkT. BangJ. ParkJ. YangY. SonG. OhS.J. Highly conductive and sensitive wearable strain sensors with metal/nanoparticle double layer for noninterference voice detection.ACS Appl. Mater. Interfaces20231536428364284410.1021/acsami.3c08050
    [Google Scholar]
  30. TavaresL. SantosL. NoreñaC.P.Z. Microencapsulation of organosulfur compounds from garlic oil using β-cyclodextrin and complex of soy protein isolate and chitosan as wall materials: A comparative study.Powder Technol.202139010311110.1016/j.powtec.2021.05.080
    [Google Scholar]
  31. VishwanathR. NegiB. Conventional and green methods of synthesis of silver nanoparticles and their antimicrobial properties.Curr Res Green Sust Chem2021410020510.1016/j.crgsc.2021.100205
    [Google Scholar]
  32. AhmedS. AhmadM. SwamiB.L. IkramS. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise.J. Adv. Res.201671172810.1016/j.jare.2015.02.00726843966
    [Google Scholar]
  33. BhattacharjeeS. DLS and zeta potential – What they are and what they are not?J. Control. Release201623533735110.1016/j.jconrel.2016.06.01727297779
    [Google Scholar]
  34. Al-MomaniH. AlmasriM. Al BalawiD.A. HamedS. AlbissB.A. AldabaibehN. IbrahimL. AlbalawiH. Al Haj MahmoudS. KhasawnehA.I. KilaniM. AldhafeeriM. Bani-HaniM. WilcoxM. PearsonJ. WardC. The efficacy of biosynthesized silver nanoparticles against Pseudomonas aeruginosa isolates from cystic fibrosis patients.Sci. Rep.2023131887610.1038/s41598‑023‑35919‑637264060
    [Google Scholar]
  35. HamidaR.S. AliM.A. GodaD.A. KhalilM.I. Al-ZabanM.I. Novel biogenic silver nanoparticle-induced reactive oxygen species inhibit the biofilm formation and virulence activities of methicillin-resistant Staphylococcus aureus (MRSA) strain.Front. Bioeng. Biotechnol.2020843310.3389/fbioe.2020.0043332548095
    [Google Scholar]
  36. HsuehY.H. LinK.S. KeW.J. HsiehC.T. ChiangC.L. TzouD.Y. LiuS.T. The antimicrobial properties of silver nanoparticles in Bacillus subtilis are mediated by released Ag+ Ions.PLoS One20151012e014430610.1371/journal.pone.014430626669836
    [Google Scholar]
  37. LiW.R. XieX.B. ShiQ.S. DuanS.S. OuyangY.S. ChenY.B. Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Biometals201124113514110.1007/s10534‑010‑9381‑620938718
    [Google Scholar]
  38. Campo-BeleñoC. Villamizar-GallardoR.A. López-JácomeL.E. GonzálezE.E. Muñoz-CarranzaS. FrancoB. Morales-EspinosaR. Coria-JimenezR. Franco-CendejasR. Hernández-DuránM. Lara-MartínezR. Jiménez-GarcíaL.F. Fernández-PresasA.M. García-ContrerasR. Biologically synthesized silver nanoparticles as potent antibacterial effective against multidrug-resistant Pseudomonas aeruginosa. Lett. Appl. Microbiol.202275368068810.1111/lam.1375935687297
    [Google Scholar]
  39. SelemE. MekkyA.F. HassaneinW.A. RedaF.M. SelimY.A. Antibacterial and antibiofilm effects of silver nanoparticles against the uropathogen Escherichia coli U12.Saudi J. Biol. Sci.2022291110345710.1016/j.sjbs.2022.10345736267912
    [Google Scholar]
  40. Ravindra KumarS. ImlayJ.A. How Escherichia coli tolerates profuse hydrogen peroxide formation by a catabolic pathway.J. Bacteriol.2013195204569457910.1128/JB.00737‑1323913322
    [Google Scholar]
  41. Godoy-GallardoM. EckhardU. DelgadoL.M. de Roo PuenteY.J.D. Hoyos-NoguésM. GilF.J. PerezR.A. Antibacterial approaches in tissue engineering using metal ions and nanoparticles: From mechanisms to applications.Bioact. Mater.20216124470449010.1016/j.bioactmat.2021.04.03334027235
    [Google Scholar]
  42. RaiM.K. DeshmukhS.D. IngleA.P. GadeA.K. Silver nanoparticles: The powerful nanoweapon against multidrug-resistant bacteria.J. Appl. Microbiol.2012112584185210.1111/j.1365‑2672.2012.05253.x22324439
    [Google Scholar]
  43. DuttY. DhimanR. SinghT. VibhutiA. GuptaA. PandeyR.P. RajV.S. ChangC.M. PriyadarshiniA. The association between biofilm formation and antimicrobial resistance with possible ingenious bio-remedial approaches.Antibiotics (Basel)202211793010.3390/antibiotics1107093035884186
    [Google Scholar]
  44. QiuZ. QiaoY. ZhangB. Sun-WaterhouseD. ZhengZ. Bioactive polysaccharides and oligosaccharides from garlic ( Allium sativum L.): Production, physicochemical and biological properties, and structure–function relationships.Compr. Rev. Food Sci. Food Saf.20222143033309510.1111/1541‑4337.1297235765769
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266322180240712055727
Loading
/content/journals/ctmc/10.2174/0115680266322180240712055727
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test