Skip to content
2000
Volume 24, Issue 22
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Neurological disorders, characterized by oxidative stress (OS) and inflammation, have become a major global health concern. Redox reactions play a vital role in regulating the balance of the neuronal microenvironment. Specifically, the imbalance leads to a significant weakening of the organism's natural defensive mechanisms. This, in turn, causes the development of harmful oxidative stress, which plays a crucial role in the onset and progression of neurodegenerative diseases. The quest for effective therapeutic agents has led to significant advancements in the synthesis of antioxidant derivatives. This review provides a comprehensive overview of the recent developments in the use of novel antioxidant compounds with potential pharmacological applications in the management of neurological disorders. The discussed compounds encompass a diverse range of chemical structures, including polyphenols, vitamins, flavonoids, and hybrid molecules, highlighting their varied mechanisms of action. This review also focuses on the mechanism of oxidative stress in developing neurodegenerative disease. The neuroprotective effects of these antioxidant derivatives are explored in the context of specific neurological disorders, including Alzheimer's disease, Parkinson's disease, and Huntington's disease. The ultimate goal is to provide effective treatments for these debilitating conditions and improve the quality of life for patients.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266305736240725052825
2024-09-01
2025-01-10
Loading full text...

Full text loading...

References

  1. BirbenE. SahinerU.M. SackesenC. ErzurumS. KalayciO. Oxidative stress and antioxidant defense.World Allergy Organ. J.20125191910.1097/WOX.0b013e3182439613 23268465
    [Google Scholar]
  2. ChandelN.S. TuvesonD.A. The promise and perils of antioxidants for cancer patients.N. Engl. J. Med.2014371217717810.1056/NEJMcibr1405701 25006725
    [Google Scholar]
  3. SamantarayP.K. IndrakumarS. ChatterjeeK. AgarwalV. BoseS. ‘Template-free’ hierarchical MoS 2 foam as a sustainable ‘green’ scavenger of heavy metals and bacteria in point of use water purification.Nanoscale Adv.2020272824283410.1039/C9NA00747D 36132388
    [Google Scholar]
  4. SaikolappanS. KumarB. ShishodiaG. KoulS. KoulH.K. Reactive oxygen species and cancer: A complex interaction.Cancer Lett.201945213214310.1016/j.canlet.2019.03.020 30905813
    [Google Scholar]
  5. AgarwalV. ChatterjeeK. Recent advances in the field of transition metal dichalcogenides for biomedical applications.Nanoscale20181035163651639710.1039/C8NR04284E 30151537
    [Google Scholar]
  6. SimpsonD.S.A. OliverP.L. ROS generation in microglia: understanding oxidative stress and inflammation in neurodegenerative disease.Antioxidants20209874310.3390/antiox9080743 32823544
    [Google Scholar]
  7. NadeemA. MasoodA. SiddiquiN. Review: Oxidant—antioxidant imbalance in asthma: Scientific evidence, epidemiological data and possible therapeutic options.Ther. Adv. Respir. Dis.20082421523510.1177/1753465808094971 19124374
    [Google Scholar]
  8. DiazM.N. FreiB. VitaJ.A. KeaneyJ.F.Jr Antioxidants and atherosclerotic heart disease.N. Engl. J. Med.1997337640841610.1056/NEJM199708073370607 9241131
    [Google Scholar]
  9. LuL.Y. OuN. LuQ.B. Antioxidant induces DNA damage, cell death and mutagenicity in human lung and skin normal cells.Sci. Rep.201331316910.1038/srep03169 24201298
    [Google Scholar]
  10. MilbournH.R. ToomeyL.M. GavrielN. GrayC.G.G. GoughA.H. FehilyB. GiacciM.K. FitzgeraldM. Limiting oxidative stress following neurotrauma with a combination of ion channel inhibitors.Discov. Med.201723129361369 28877447
    [Google Scholar]
  11. GiacciM.K. BartlettC.A. SmithN.M. IyerK.S. ToomeyL.M. JiangH. GuagliardoP. KilburnM.R. FitzgeraldM. Oligodendroglia are particularly vulnerable to oxidative damage after neurotrauma in vivo.J. Neurosci.201838296491650410.1523/JNEUROSCI.1898‑17.2018 29915135
    [Google Scholar]
  12. LiuZ. ZhouT. ZieglerA.C. DimitrionP. ZuoL. Oxidative stress in neurodegenerative diseases: From molecular mechanisms to clinical applications.Oxid Med Cell Longev.20172017252596710.1155/2017/2525967
    [Google Scholar]
  13. YeungA.W.K. TzvetkovN.T. GeorgievaM.G. OgnyanovI.V. KordosK. JóźwikA. KühlT. PerryG. PetraliaM.C. MazzonE. AtanasovA.G. Reactive oxygen species and their impact in neurodegenerative diseases: Literature landscape analysis.Antioxid. Redox Signal.202134540242010.1089/ars.2019.7952 32030995
    [Google Scholar]
  14. LeeY.M. HeW. LiouY.C. The redox language in neurodegenerative diseases: Oxidative post-translational modifications by hydrogen peroxide.Cell Death Dis.20211215810.1038/s41419‑020‑03355‑3 33431811
    [Google Scholar]
  15. HalliwellB. Role of free radicals in the neurodegenerative diseases: Therapeutic implications for antioxidant treatment.Drugs Aging200118968571610.2165/00002512‑200118090‑00004 11599635
    [Google Scholar]
  16. GreenleeH. KwanM.L. KushiL.H. SongJ. CastilloA. WeltzienE. QuesenberryC.P.Jr CaanB.J. Antioxidant supplement use after breast cancer diagnosis and mortality in the life after cancer epidemiology (LACE) cohort.Cancer201211882048205810.1002/cncr.26526 21953120
    [Google Scholar]
  17. PantavosA. RuiterR. FeskensE.F. de KeyserC.E. HofmanA. StrickerB.H. FrancoO.H. Kiefte-de JongJ.C. Total dietary antioxidant capacity, individual antioxidant intake and breast cancer risk: The R otterdam study.Int. J. Cancer201513692178218610.1002/ijc.29249 25284450
    [Google Scholar]
  18. MilisavI. RibaričS. PoljsakB. Antioxidant vitamins and ageing.Subcell. Biochem.20189012310.1007/978‑981‑13‑2835‑0_1
    [Google Scholar]
  19. RistowM. Unraveling the truth about antioxidants: Mitohormesis explains ROS-induced health benefits.Nat. Med.201420770971110.1038/nm.3624 24999941
    [Google Scholar]
  20. SeifriedH.E. AndersonD.E. FisherE.I. MilnerJ.A. A review of the interaction among dietary antioxidants and reactive oxygen species.J. Nutr. Biochem.200718956757910.1016/j.jnutbio.2006.10.007 17360173
    [Google Scholar]
  21. ParekattilS.J. EstevesS.C. AgarwalA. Eds.; Male Infertility: Contemporary clinical approaches, andrology, ART & antioxidants.New YorkSpringer201210.1007/978‑1‑4614‑3335‑4
    [Google Scholar]
  22. CalejaC. BarrosL. AntonioA.L. OliveiraM.B.P.P. FerreiraI.C.F.R. A comparative study between natural and synthetic antioxidants: Evaluation of their performance after incorporation into biscuits.Food Chem.201721634234610.1016/j.foodchem.2016.08.075 27596429
    [Google Scholar]
  23. NimseS.B. PalD. Free radicals, natural antioxidants, and their reaction mechanisms.RSC Advances2015535279862800610.1039/C4RA13315C
    [Google Scholar]
  24. WangX. MichaelisE.K. Selective neuronal vulnerability to oxidative stress in the brain.Front. Aging Neurosci.201021210.3389/fnagi.2010.00012 20552050
    [Google Scholar]
  25. PatkiG. AllamF.H. AtroozF. DaoA.T. SolankiN. ChughG. AsgharM. JafriF. BohatR. AlkadhiK.A. SalimS. Grape powder intake prevents ovariectomy-induced anxiety-like behavior, memory impairment and high blood pressure in female Wistar rats.PLoS One201389e7452210.1371/journal.pone.0074522 24040270
    [Google Scholar]
  26. MasoodA. NadeemA. MustafaS.J. O’DonnellJ.M. Reversal of oxidative stress-induced anxiety by inhibition of phosphodiesterase-2 in mice.J. Pharmacol. Exp. Ther.2008326236937910.1124/jpet.108.137208 18456873
    [Google Scholar]
  27. McEwenB.S. Understanding the potency of stressful early life experiences on brain and body function.Metabolism200857Suppl. 2S11S1510.1016/j.metabol.2008.07.006 18803958
    [Google Scholar]
  28. HuangY. CouplandN.J. LebelR.M. CarterR. SeresP. WilmanA.H. MalykhinN.V. Structural changes in hippocampal subfields in major depressive disorder: A high-field magnetic resonance imaging study.Biol. Psychiatry2013741626810.1016/j.biopsych.2013.01.005 23419546
    [Google Scholar]
  29. ChangB.J. JangB.J. SonT.G. ChoI.H. QuanF.S. ChoeN.H. NahmS.S. LeeJ.H. Ascorbic acid ameliorates oxidative damage induced by maternal low-level lead exposure in the hippocampus of rat pups during gestation and lactation.Food Chem. Toxicol.201250210410810.1016/j.fct.2011.09.043 22056337
    [Google Scholar]
  30. LeunerB. ShorsT.J. Stress, anxiety, and dendritic spines: What are the connections?Neuroscience201325110811910.1016/j.neuroscience.2012.04.021 22522470
    [Google Scholar]
  31. ListonC. McEwenB.S. CaseyB.J. Psychosocial stress reversibly disrupts prefrontal processing and attentional control.Proc. Natl. Acad. Sci. USA2009106391291710.1073/pnas.0807041106 19139412
    [Google Scholar]
  32. RaiS. KamatP.K. NathC. ShuklaR. A study on neuroinflammation and NMDA receptor function in STZ (ICV) induced memory impaired rats.J. Neuroimmunol.20132541-21910.1016/j.jneuroim.2012.08.008 23021418
    [Google Scholar]
  33. HaxaireC. TurpinF.R. PotierB. KervernM. SinetP.M. BarbanelG. MothetJ.P. DutarP. BillardJ.M. Reversal of age‐related oxidative stress prevents hippocampal synaptic plasticity deficits by protecting d ‐serine‐dependent NMDA receptor activation.Aging Cell201211233634410.1111/j.1474‑9726.2012.00792.x 22230264
    [Google Scholar]
  34. AdibhatlaR.M. HatcherJ.F. Lipid oxidation and peroxidation in CNS health and disease: from molecular mechanisms to therapeutic opportunities.Antioxid. Redox Signal.201012112516910.1089/ars.2009.2668 19624272
    [Google Scholar]
  35. BochkovV.N. OskolkovaO.V. BirukovK.G. LevonenA.L. BinderC.J. StöcklJ. Generation and biological activities of oxidized phospholipids.Antioxid. Redox Signal.20101281009105910.1089/ars.2009.2597 19686040
    [Google Scholar]
  36. KuraB. Szeiffova BacovaB. KalocayovaB. SykoraM. SlezakJ. Oxidative stress-responsive microRNAs in heart injury.Int. J. Mol. Sci.202021135810.3390/ijms21010358 31948131
    [Google Scholar]
  37. MaF. WuT. ZhaoJ. JiL. SongA. ZhangM. HuangG. Plasma homocysteine and serum folate and vitamin B12 levels in mild cognitive impairment and Alzheimer’s disease: A case-control study.Nutrients20179772510.3390/nu9070725 28698453
    [Google Scholar]
  38. Peña-BautistaC. VentoM. BaqueroM. Cháfer-PericásC. Lipid peroxidation in neurodegeneration.Clin. Chim. Acta201949717818810.1016/j.cca.2019.07.037 31377127
    [Google Scholar]
  39. TongB.C.K. WuA.J. LiM. CheungK.H. Calcium signaling in Alzheimer’s disease & therapies.Biochim. Biophys. Acta Mol. Cell Res.20181865111745176010.1016/j.bbamcr.2018.07.018 30059692
    [Google Scholar]
  40. AbarikwuS.O. PantA.B. FarombiE.O. 4-Hydroxynonenal induces mitochondrial-mediated apoptosis and oxidative stress in SH-SY5Y human neuronal cells.Basic Clin. Pharmacol. Toxicol.2012110544144810.1111/j.1742‑7843.2011.00834.x 22118713
    [Google Scholar]
  41. HawkinsC.L. DaviesM.J. Detection, identification, and quantification of oxidative protein modifications.J. Biol. Chem.201929451196831970810.1074/jbc.REV119.006217 31672919
    [Google Scholar]
  42. HauckA.K. HuangY. HertzelA.V. BernlohrD.A. Adipose oxidative stress and protein carbonylation.J. Biol. Chem.201929441083108810.1074/jbc.R118.003214 30563836
    [Google Scholar]
  43. KierońM. ŻekanowskiC. FalkA. WężykM. Oxidative DNA damage signalling in neural stem cells in Alzheimer’s disease.Oxid. Med. Cell. Longev.2019201911010.1155/2019/2149812 31814869
    [Google Scholar]
  44. KeS. YangZ. YangF. WangX. TanJ. LiaoB. Long noncoding RNA NEAT1 aggravates Aβ-induced neuronal damage by targeting miR-107 in Alzheimer’s disease.Yonsei Med. J.201960764065010.3349/ymj.2019.60.7.640 31250578
    [Google Scholar]
  45. AhmadW. IjazB. ShabbiriK. AhmedF. RehmanS. Oxidative toxicity in diabetes and Alzheimer’s disease: Mechanisms behind ROS/RNS generation.J. Biomed. Sci.20172417610.1186/s12929‑017‑0379‑z 28927401
    [Google Scholar]
  46. SrikanthV. MaczurekA. PhanT. SteeleM. WestcottB. JuskiwD. MünchG. Advanced glycation endproducts and their receptor RAGE in Alzheimer’s disease.Neurobiol. Aging201132576377710.1016/j.neurobiolaging.2009.04.016 19464758
    [Google Scholar]
  47. BaloyannisS.J. CostaV. BaloyannisI.S. Morphological alterations of the synapses in the locus coeruleus in Parkinson’s disease.J. Neurol. Sci.20062481-2354110.1016/j.jns.2006.05.006 16753180
    [Google Scholar]
  48. WakabayashiK. TanjiK. MoriF. TakahashiH. The Lewy body in Parkinson’s disease: Molecules implicated in the formation and degradation of α‐synuclein aggregates.Neuropathology200727549450610.1111/j.1440‑1789.2007.00803.x 18018486
    [Google Scholar]
  49. SurendranS. RajasankarS. Parkinson’s disease: Oxidative stress and therapeutic approaches.Neurol. Sci.201031553154010.1007/s10072‑010‑0245‑1 20221655
    [Google Scholar]
  50. Manning-BogA.B. McCormackA.L. LiJ. UverskyV.N. FinkA.L. Di MonteD.A. The herbicide paraquat causes up-regulation and aggregation of alpha-synuclein in mice: Paraquat and alpha-synuclein.J. Biol. Chem.200227731641164410.1074/jbc.C100560200 11707429
    [Google Scholar]
  51. GilleG. ReichmannH. Iron-dependent functions of mitochondria—relation to neurodegeneration.J. Neural Transm. (Vienna)2011118334935910.1007/s00702‑010‑0503‑7 21161302
    [Google Scholar]
  52. WakamatsuK. FujikawaK. ZuccaF.A. ZeccaL. ItoS. The structure of neuromelanin as studied by chemical degradative methods.J. Neurochem.20038641015102310.1046/j.1471‑4159.2003.01917.x 12887698
    [Google Scholar]
  53. LothariusJ. BrundinP. Impaired dopamine storage resulting from alpha-synuclein mutations may contribute to the pathogenesis of Parkinson’s disease.Hum. Mol. Genet.200211202395240710.1093/hmg/11.20.2395 12351575
    [Google Scholar]
  54. BertramL. TanziR.E. Thirty years of Alzheimer’s disease genetics: The implications of systematic meta-analyses.Nat. Rev. Neurosci.200891076877810.1038/nrn2494 18802446
    [Google Scholar]
  55. AhmedN. AhmedU. ThornalleyP.J. HagerK. FleischerG. MünchG. Protein glycation, oxidation and nitration adduct residues and free adducts of cerebrospinal fluid in Alzheimer’s disease and link to cognitive impairment.J. Neurochem.200592225526310.1111/j.1471‑4159.2004.02864.x 15663474
    [Google Scholar]
  56. BondaD.J. LeeH. BlairJ.A. ZhuX. PerryG. SmithM.A. Role of metal dyshomeostasis in Alzheimer’s disease.Metallomics20113326727010.1039/c0mt00074d 21298161
    [Google Scholar]
  57. WangX. WangW. LiL. PerryG. LeeH. ZhuX. Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease.Biochim. Biophys. Acta Mol. Basis Dis.2014184281240124710.1016/j.bbadis.2013.10.015 24189435
    [Google Scholar]
  58. Niebrój-DoboszI. DziewulskaD. KwiecińskiH. Oxidative damage to proteins in the spinal cord in amyotrophic lateral sclerosis (ALS).Folia Neuropathol.2004423151156 15535033
    [Google Scholar]
  59. YeoW.S. KimY.J. KabirM.H. KangJ.W. KimK.P. KimK.P. Mass spectrometric analysis of protein tyrosine nitration in aging and neurodegenerative diseases.Mass Spectrom. Rev.201534216618310.1002/mas.21429 24889964
    [Google Scholar]
  60. ChicoL. IencoE.C. BisordiC. Lo GerfoA. PetrozziL. PetrucciA. MancusoM. SicilianoG. Amyotrophic lateral sclerosis and oxidative stress: A double-blind therapeutic trial after curcumin supplementation.CNS Neurol. Disord. Drug Targets2018171076777910.2174/1871527317666180720162029 30033879
    [Google Scholar]
  61. MitsumotoH. GarofaloD.C. SantellaR.M. SorensonE.J. OskarssonB. FernandesJ.M.Jr AndrewsH. HupfJ. GilmoreM. HeitzmanD. BedlackR.S. KatzJ.S. BarohnR.J. KasarskisE.J. lomen-Hoerth, C.; Mozaffar, T.; Nations, S.P.; Swenson, A.J.; Factor-Litvak, P. Plasma creatinine and oxidative stress biomarkers in amyotrophic lateral sclerosis.Amyotroph. Lateral Scler. Frontotemporal Degener.2020213-426327210.1080/21678421.2020.1746810 32276554
    [Google Scholar]
  62. Cunha-OliveiraT. MontezinhoL. MendesC. FiruziO. SasoL. OliveiraP.J. SilvaF.S.G. Oxidative stress in amyotrophic lateral sclerosis: Pathophysiology and opportunities for pharmacological intervention.Oxid. Med. Cell. Longev.2020202012910.1155/2020/5021694 33274002
    [Google Scholar]
  63. RianchoJ. GonzaloI. Ruiz-SotoM. BercianoJ. Why do motor neurons degenerate? Actualisation in the pathogenesis of amyotrophic lateral sclerosis.Neurología (English Edition)2019341273710.1016/j.nrleng.2015.12.019 26853842
    [Google Scholar]
  64. SquadroneS. BrizioP. AbeteM.C. BruscoA. Trace elements profile in the blood of Huntington’ disease patients.J. Trace Elem. Med. Biol.202057182010.1016/j.jtemb.2019.09.006 31546208
    [Google Scholar]
  65. DuranR. BarreroF.J. MoralesB. LunaJ.D. RamirezM. VivesF. Oxidative stress and plasma aminopeptidase activity in Huntington’s disease.J. Neural Transm. (Vienna)2010117332533210.1007/s00702‑009‑0364‑0 20094738
    [Google Scholar]
  66. EssaM.M. MoghadasM. Ba-OmarT. Walid QoronflehM. GuilleminG.J. ManivasagamT. Justin-ThenmozhiA. RayB. BhatA. ChidambaramS.B. FernandesA.J. SongB.J. AkbarM. Protective effects of antioxidants in Huntington’s disease: An extensive review.Neurotox. Res.201935373977410.1007/s12640‑018‑9989‑9 30632085
    [Google Scholar]
  67. ButterfieldD.A. CastegnaA. PocernichC.B. DrakeJ. ScapagniniG. CalabreseV. Nutritional approaches to combat oxidative stress in Alzheimer’s disease.J. Nutr. Biochem.200213844446110.1016/S0955‑2863(02)00205‑X 12165357
    [Google Scholar]
  68. MaríM. de GregorioE. de DiosC. Roca-AgujetasV. CucarullB. TutusausA. MoralesA. ColellA. Mitochondrial glutathione: Recent insights and role in disease.Antioxidants202091090910.3390/antiox9100909 32987701
    [Google Scholar]
  69. Barbero-CampsE. FernándezA. MartínezL. Fernández-ChecaJ.C. ColellA. APP/PS1 mice overexpressing SREBP-2 exhibit combined Aβ accumulation and tau pathology underlying Alzheimer’s disease.Hum. Mol. Genet.201322173460347610.1093/hmg/ddt201 23648430
    [Google Scholar]
  70. LloretA. EsteveD. MonllorP. Cervera-FerriA. LloretA. The effectiveness of vitamin E treatment in Alzheimer’s disease.Int. J. Mol. Sci.201920487910.3390/ijms20040879 30781638
    [Google Scholar]
  71. TeixeiraJ.P. de CastroA.A. SoaresF.V. da CunhaE.F.F. RamalhoT.C. Future therapeutic perspectives into the alzheimer’s disease targeting the oxidative stress hypothesis.Molecules20192423441010.3390/molecules24234410 31816853
    [Google Scholar]
  72. DongY. ChenX. LiuY. ShuY. ChenT. XuL. LiM. GuanX. Do low‐serum vitamin E levels increase the risk of Alzheimer disease in older people? Evidence from a meta‐analysis of case‐control studies.Int. J. Geriatr. Psychiatry2018332e257e26310.1002/gps.4780 28833475
    [Google Scholar]
  73. CowanC.M. SealeyM.A. MudherA. Suppression of tau‐induced phenotypes by vitamin E demonstrates the dissociation of oxidative stress and phosphorylation in mechanisms of tau toxicity.J. Neurochem.2021157368469410.1111/jnc.15253 33251603
    [Google Scholar]
  74. CasatiM. BoccardiV. FerriE. BertagnoliL. BastianiP. CicconeS. MansiM. ScamosciM. RossiP.D. MecocciP. ArosioB. Vitamin E and Alzheimer’s disease: The mediating role of cellular aging.Aging Clin. Exp. Res.202032345946410.1007/s40520‑019‑01209‑3 31054115
    [Google Scholar]
  75. SangZ. WangK. HanX. CaoM. TanZ. LiuW. Design, synthesis, and evaluation of novel ferulic acid derivatives as multi-target-directed ligands for the treatment of alzheimer’s disease.ACS Chem. Neurosci.20191021008102410.1021/acschemneuro.8b00530 30537804
    [Google Scholar]
  76. TripathiA. ChoubeyP.K. SharmaP. SethA. SarafP. ShrivastavaS.K. Design, synthesis, and biological evaluation of ferulic acid based 1,3,4-oxadiazole hybrids as multifunctional therapeutics for the treatment of Alzheimer’s disease.Bioorg. Chem.20209510350610.1016/j.bioorg.2019.103506 31887472
    [Google Scholar]
  77. ZhuJ. YangH. ChenY. LinH. LiQ. MoJ. BianY. PeiY. SunH. Synthesis, pharmacology and molecular docking on multifunctional tacrine-ferulic acid hybrids as cholinesterase inhibitors against Alzheimer’s disease.J. Enzyme Inhib. Med. Chem.201833149650610.1080/14756366.2018.1430691 29405075
    [Google Scholar]
  78. PiR. MaoX. ChaoX. ChengZ. LiuM. DuanX. YeM. ChenX. MeiZ. LiuP. LiW. HanY. Tacrine-6-ferulic acid, a novel multifunctional dimer, inhibits amyloid-β-mediated Alzheimer’s disease-associated pathogenesis in vitro and in vivo.PLoS One201272e3192110.1371/journal.pone.0031921 22384101
    [Google Scholar]
  79. DhimanP. MalikN. KhatkarA. Hybrid caffeic acid derivatives as monoamine oxidases inhibitors: synthesis, radical scavenging activity, molecular docking studies and in silico ADMET analysis.Chem. Cent. J.201812111210.1186/s13065‑018‑0481‑7 30413989
    [Google Scholar]
  80. BenchekrounM. Pachón-AngonaI. LuzetV. MartinH. Oset-GasqueM.J. Marco-ContellesJ. IsmailiL. Synthesis, antioxidant and Aβ anti-aggregation properties of new ferulic, caffeic and lipoic acid derivatives obtained by the Ugi four-component reaction.Bioorg. Chem.20198522122810.1016/j.bioorg.2018.12.029 30640071
    [Google Scholar]
  81. BaschieraE. SorrentinoU. CalderanC. DesbatsM.A. SalviatiL. The multiple roles of coenzyme Q in cellular homeostasis and their relevance for the pathogenesis of coenzyme Q deficiency.Free Radic. Biol. Med.202116627728610.1016/j.freeradbiomed.2021.02.039 33667628
    [Google Scholar]
  82. SeoJ.S. KimT.K. LeemY.H. LeeK.W. ParkS.K. BaekI.S. KimK.S. Im, G.J.; Lee, S.M.; Park, Y.H.; Han, P.L. SK-PC-B70M confers anti-oxidant activity and reduces Aβ levels in the brain of Tg2576 mice.Brain Res.2009126110010810.1016/j.brainres.2009.01.019 19401163
    [Google Scholar]
  83. SinghS.K. SrikrishnaS. CastellaniR.J. PerryG. Antioxidants in the prevention and treatment of Alzheimer’s disease.Nutritional Antioxidant Therapies: Treatments and Perspectives.Cham, SwitzerlandSpringer201752355310.1007/978‑3‑319‑67625‑8_20
    [Google Scholar]
  84. ArboB.D. André-MiralC. Nasre-NasserR.G. SchimithL.E. SantosM.G. Costa-SilvaD. Muccillo-BaischA.L. HortM.A. Resveratrol derivatives as potential treatments for alzheimer’s and parkinson’s disease.Front. Aging Neurosci.20201210310.3389/fnagi.2020.00103 32362821
    [Google Scholar]
  85. GomesB.A.Q. SilvaJ.P.B. RomeiroC.F.R. dos SantosS.M. RodriguesC.A. GonçalvesP.R. SakaiJ.T. MendesP.F.S. VarelaE.L.P. MonteiroM.C. Neuroprotective mechanisms of resveratrol in Alzheimer’s disease: Role of SIRT1.Oxid. Med. Cell. Longev.2018201811510.1155/2018/8152373 30510627
    [Google Scholar]
  86. DuanS. GuanX. LinR. LiuX. YanY. LinR. ZhangT. ChenX. HuangJ. SunX. LiQ. FangS. XuJ. YaoZ. GuH. Silibinin inhibits acetylcholinesterase activity and amyloid β peptide aggregation: A dual-target drug for the treatment of Alzheimer’s disease.Neurobiol. Aging20153651792180710.1016/j.neurobiolaging.2015.02.002 25771396
    [Google Scholar]
  87. LiuP. CuiL. LiuB. LiuW. HayashiT. MizunoK. HattoriS. Ushiki-KakuY. OnoderaS. IkejimaT. Silibinin ameliorates STZ-induced impairment of memory and learning by up- regulating insulin signaling pathway and attenuating apoptosis.Physiol. Behav.202021311268910.1016/j.physbeh.2019.112689 31669775
    [Google Scholar]
  88. RosiniM. AndrisanoV. BartoliniM. BolognesiM.L. HreliaP. MinariniA. TarozziA. MelchiorreC. Rational approach to discover multipotent anti-Alzheimer drugs.J. Med. Chem.200548236036310.1021/jm049112h 15658850
    [Google Scholar]
  89. WangR. ZhangL. LiaoR. LiQ. PiR. YangX. N2L, a novel lipoic acid-niacin dimer protects HT22 cells against β-amyloid peptide-induced damage through attenuating apoptosis.Metab. Brain Dis.20193461761177010.1007/s11011‑019‑00482‑5 31478183
    [Google Scholar]
  90. PagoniA. MarinelliL. Di StefanoA. CiullaM. TurkezH. MardinogluA. VassiliouS. CacciatoreI. Novel anti-Alzheimer phenol-lipoyl hybrids: Synthesis, physico-chemical characterization, and biological evaluation.Eur. J. Med. Chem.202018611188010.1016/j.ejmech.2019.111880 31753513
    [Google Scholar]
  91. Jalili-BalehL. ForootanfarH. KüçükkılınçT.T. NadriH. AbdolahiZ. AmeriA. JafariM. AyazgokB. BaeeriM. RahimifardM. Abbas BukhariS.N. AbdollahiM. GanjaliM.R. EmamiS. KhoobiM. ForoumadiA. Design, synthesis and evaluation of novel multi-target-directed ligands for treatment of Alzheimer’s disease based on coumarin and lipoic acid scaffolds.Eur. J. Med. Chem.201815260061410.1016/j.ejmech.2018.04.058 29763808
    [Google Scholar]
  92. MichalskaP. TentiG. SatrianiM. CoresA. RamosM.T. GarcíaA.G. MenéndezJ.C. LeónR. Aza‐CGP37157‐lipoic hybrids designed as novel Nrf2‐inducers and antioxidants exert neuroprotection against oxidative stress and show neuroinflammation inhibitory properties.Drug Dev. Res.202081328329410.1002/ddr.21618 31693218
    [Google Scholar]
  93. UppakaraK. JamornwanS. DuanL. YueK. SunratC. DentE.W. WanS. SaengsawangW. Novel α-Lipoic Acid/3- n -Butylphthalide Conjugate enhances protective effects against oxidative stress and 6-OHDA induced neuronal damage.ACS Chem. Neurosci.202011111634164210.1021/acschemneuro.0c00105 32374999
    [Google Scholar]
  94. JiaW. SuQ. ChengQ. PengQ. QiaoA. LuoX. ZhangJ. WangY. Neuroprotective effects of palmatine via the enhancement of antioxidant defense and small heat shock protein expression in Aβ-Transgenic Caenorhabditis elegans.Oxid. Med. Cell. Longev.2021202111810.1155/2021/9966223 34567416
    [Google Scholar]
  95. TangC. HongJ. HuC. HuangC. GaoJ. HuangJ. WangD. GengQ. DongY. Palmatine protects against cerebral ischemia/reperfusion injury by activation of the AMPK/Nrf2 pathway.Oxid. Med. Cell. Longev.2021202111210.1155/2021/6660193 33777318
    [Google Scholar]
  96. TripathiP.N. SrivastavaP. SharmaP. TripathiM.K. SethA. TripathiA. RaiS.N. SinghS.P. ShrivastavaS.K. Biphenyl-3-oxo-1,2,4-triazine linked piperazine derivatives as potential cholinesterase inhibitors with anti-oxidant property to improve the learning and memory.Bioorg. Chem.201985829610.1016/j.bioorg.2018.12.017 30605887
    [Google Scholar]
  97. TeponnouG.A.K. JoubertJ. MalanS.F. Tacrine, trolox and tryptoline as lead compounds for the design and synthesis of multi-target agents for Alzheimer’s disease therapy.Open Med. Chem. J.2017111243710.2174/1874104501711010024 28567126
    [Google Scholar]
  98. MachhiJ. SinhaA. PatelP. KanhedA.M. UpadhyayP. TripathiA. ParikhZ.S. ChruvattilR. PillaiP.P. GuptaS. PatelK. GiridharR. YadavM.R. Neuroprotective potential of novel multi-targeted isoalloxazine derivatives in rodent models of Alzheimer’s disease through activation of canonical wnt/β-catenin signalling pathway.Neurotox. Res.201629449551310.1007/s12640‑016‑9598‑4 26797524
    [Google Scholar]
  99. MiyakeY. FukushimaW. TanakaK. SasakiS. KiyoharaC. TsuboiY. YamadaT. OedaT. MikiT. KawamuraN. SakaeN. FukuyamaH. HirotaY. NagaiM. Dietary intake of antioxidant vitamins and risk of Parkinson’s disease: a case–control study in Japan.Eur. J. Neurol.201118110611310.1111/j.1468‑1331.2010.03088.x 20491891
    [Google Scholar]
  100. de RijkM.C. BretelerM.M.B. den BreeijenJ.H. LaunerL.J. GrobbeeD.E. van der MechéF.G. HofmanA. Dietary antioxidants and Parkinson disease. The Rotterdam study.Arch. Neurol.199754676276510.1001/archneur.1997.00550180070015 9193212
    [Google Scholar]
  101. ZhangS.M. HernánM.A. ChenH. SpiegelmanD. WillettW.C. AscherioA. Intakes of vitamins E and C, carotenoids, vitamin supplements, and PD risk.Neurology20025981161116910.1212/01.WNL.0000028688.75881.12 12391343
    [Google Scholar]
  102. SchirinziT. MartellaG. ImbrianiP. Di LazzaroG. FrancoD. ColonaV.L. AlwardatM. SalimeiP.S. MercuriN.B. PierantozziM. PisaniA. Dietary Vitamin E as a protective factor for parkinson's disease: Clinical and experimental evidence.Front. Neurol.20191010.3389/fneur.2019.00148
    [Google Scholar]
  103. GoesA.T.R. JesseC.R. AntunesM.S. Lobo LaddF.V. Lobo LaddA.A.B. LucheseC. ParoulN. BoeiraS.P. Protective role of chrysin on 6-hydroxydopamine-induced neurodegeneration a mouse model of Parkinson’s disease: Involvement of neuroinflammation and neurotrophins.Chem. Biol. Interact.201827911112010.1016/j.cbi.2017.10.019 29054324
    [Google Scholar]
  104. KrishnamoorthyA. SevananM. ManiS. BaluM. BalajiS. P, R. Chrysin restores MPTP induced neuroinflammation, oxidative stress and neurotrophic factors in an acute Parkinson’s disease mouse model.Neurosci. Lett.201970913438210.1016/j.neulet.2019.134382 31325581
    [Google Scholar]
  105. NguyenT.T. VuuM.D. HuynhM.A. YamaguchiM. TranL.T. DangT.P.T. Curcumin effectively rescued parkinson's disease-like phenotypes in a novel Drosophila melanogaster model with dUCH knockdown.Oxid Med Cell Longev.20182018203826710.1155/2018/2038267
    [Google Scholar]
  106. RamkumarM. RajasankarS. Swaminathan JohnsonW.M. PrabuK. Venkatesh GobiV. Demethoxycurcumin ameliorates rotenone-induced toxicity in rats.Front. Biosci. (Elite Ed.)2019111111 30468633
    [Google Scholar]
  107. ZhangL. YuX. JiM. LiuS. WuX. WangY. LiuR. Resveratrol alleviates motor and cognitive deficits and neuropathology in the A53T α-synuclein mouse model of Parkinson’s disease.Food Funct.20189126414642610.1039/C8FO00964C 30462117
    [Google Scholar]
  108. AbolajiA.O. AdedaraA.O. AdieM.A. Vicente-CrespoM. FarombiE.O. Resveratrol prolongs lifespan and improves 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced oxidative damage and behavioural deficits in Drosophila melanogaster.Biochem. Biophys. Res. Commun.201850321042104810.1016/j.bbrc.2018.06.114 29935183
    [Google Scholar]
  109. WangH. DongX. LiuZ. ZhuS. LiuH. FanW. HuY. HuT. YuY. LiY. LiuT. XieC. GaoQ. LiG. ZhangJ. DingZ. SunJ. Resveratrol suppresses rotenone-induced neurotoxicity through activation of SIRT1/Akt1 signaling pathway.Anat. Rec. (Hoboken)201830161115112510.1002/ar.23781 29350822
    [Google Scholar]
  110. ArdahM.T. MerghaniM.M. HaqueM.E. Thymoquinone prevents neurodegeneration against MPTP in vivo and modulates α-synuclein aggregation in vitro.Neurochem. Int.201912811512610.1016/j.neuint.2019.04.014 31028778
    [Google Scholar]
  111. WangY. YuX. ZhangP. MaY. WangL. XuH. SuiD. Neuroprotective effects of pramipexole transdermal patch in the MPTP-induced mouse model of Parkinson’s disease.J. Pharmacol. Sci.20181381313710.1016/j.jphs.2018.08.008 30241783
    [Google Scholar]
  112. MotylJ. PrzykazaŁ. BoguszewskiP.M. KossonP. StrosznajderJ.B. Pramipexole and Fingolimod exert neuroprotection in a mouse model of Parkinson’s disease by activation of sphingosine kinase 1 and Akt kinase.Neuropharmacology201813513915010.1016/j.neuropharm.2018.02.023 29481916
    [Google Scholar]
  113. BhurtelS. KatilaN. NeupaneS. SrivastavS. ParkP.H. ChoiD.Y. Methylene blue protects dopaminergic neurons against MPTP‐induced neurotoxicity by upregulating brain‐derived neurotrophic factor.Ann. N. Y. Acad. Sci.201814311587110.1111/nyas.13870 29882218
    [Google Scholar]
  114. TapiasV. McCoyJ.L. GreenamyreJ.T. Phenothiazine normalizes the NADH/NAD+ ratio, maintains mitochondrial integrity and protects the nigrostriatal dopamine system in a chronic rotenone model of Parkinson’s disease.Redox Biol.20192410116410.1016/j.redox.2019.101164 30925294
    [Google Scholar]
  115. XuL.L. WuY.F. YanF. LiC.C. DaiZ. YouQ.D. JiangZ.Y. DiB. 5-(3,4-Difluorophenyl)-3-(6-methylpyridin-3-yl)-1,2,4-oxadiazole (DDO-7263), a novel Nrf2 activator targeting brain tissue, protects against MPTP-induced subacute Parkinson’s disease in mice by inhibiting the NLRP3 inflammasome and protects PC12 cells against oxidative stress.Free Radic. Biol. Med.201913428830310.1016/j.freeradbiomed.2019.01.003 30615919
    [Google Scholar]
  116. AnisE. ZafeerM.F. FirdausF. IslamS.N. Anees KhanA. AliA. HossainM.M. Ferulic acid reinstates mitochondrial dynamics through PGC1α expression modulation in 6‐hydroxydopamine lesioned rats.Phytother. Res.202034121422610.1002/ptr.6523 31657074
    [Google Scholar]
  117. ZhangY. WuQ. ZhangL. WangQ. YangZ. LiuJ. FengL. Caffeic acid reduces A53T α-synuclein by activating JNK/Bcl-2-mediated autophagy in vitro and improves behaviour and protects dopaminergic neurons in a mouse model of Parkinson’s disease.Pharmacol. Res.201915010453810.1016/j.phrs.2019.104538 31707034
    [Google Scholar]
  118. dos Santos NunesR.G. PereiraP.S. ElekofehintiO.O. FidelisK.R. da SilvaC.S. IbrahimM. BarrosL.M. da CunhaF.A.B. LukongK.E. de MenezesI.R.A. TsopmoA. DuarteA.E. KamdemJ.P. Possible involvement of transcriptional activation of nuclear factor erythroid 2-related factor 2 (Nrf2) in the protective effect of caffeic acid on paraquat-induced oxidative damage in Drosophila melanogaster.Pestic. Biochem. Physiol.201915716116810.1016/j.pestbp.2019.03.017 31153464
    [Google Scholar]
  119. ZhouT. ZhuM. LiangZ. (-)-Epigallocatechin-3-gallate modulates peripheral immunity in the MPTP-induced mouse model of Parkinson’s disease.Mol. Med. Rep.20181744883488810.3892/mmr.2018.8470 29363729
    [Google Scholar]
  120. EbrahimiS.S. OryanS. IzadpanahE. HassanzadehK. Thymoquinone exerts neuroprotective effect in animal model of Parkinson’s disease.Toxicol. Lett.201727610811410.1016/j.toxlet.2017.05.018 28526446
    [Google Scholar]
  121. SantamaríaA. Salvatierra-SánchezR. Vázquez-RománB. Santiago-LópezD. Villeda-HernándezJ. Galván-ArzateS. Jiménez-CapdevilleM.E. AliS.F. Protective effects of the antioxidant selenium on quinolinic acid‐induced neurotoxicity in rats: in vitro and in vivo studies.J. Neurochem.200386247948810.1046/j.1471‑4159.2003.01857.x 12871589
    [Google Scholar]
  122. SolovyevN.D. Importance of selenium and selenoprotein for brain function: From antioxidant protection to neuronal signalling.J. Inorg. Biochem.201515311210.1016/j.jinorgbio.2015.09.003 26398431
    [Google Scholar]
  123. LuZ. MarksE. ChenJ. MolineJ. BarrowsL. RaisbeckM. VolitakisI. ChernyR.A. ChopraV. BushA.I. HerschS. FoxJ.H. Altered selenium status in Huntington’s disease: Neuroprotection by selenite in the N171-82Q mouse model.Neurobiol. Dis.201471344210.1016/j.nbd.2014.06.022 25014023
    [Google Scholar]
  124. CastroM.A. BeltránF.A. BrauchiS. ConchaI.I. A metabolic switch in brain: glucose and lactate metabolism modulation by ascorbic acid.J. Neurochem.2009110242344010.1111/j.1471‑4159.2009.06151.x 19457103
    [Google Scholar]
  125. HusseinM. FathyW. HassanA. ElkareemR.A. MarzoukS. KamalY.S. Zinc deficiency correlates with severity of diabetic polyneuropathy.Brain Behav.20211110e234910.1002/brb3.2349 34521153
    [Google Scholar]
  126. CastroM.A. PozoM. CortésC. GarcíaM.A. ConchaI.I. NualartF. Intracellular ascorbic acid inhibits transport of glucose by neurons, but not by astrocytes.J. Neurochem.2007102377378210.1111/j.1471‑4159.2007.04631.x 17630983
    [Google Scholar]
  127. RebecG.V. BartonS.J. MarseillesA.M. CollinsK. Ascorbate treatment attenuates the Huntington behavioral phenotype in mice.Neuroreport20031491263126510.1097/00001756‑200307010‑00015 12824772
    [Google Scholar]
  128. StefaniG.P. NunesR.B. DornellesA.Z. AlvesJ.P. PivaM.O. DomenicoM.D. RhodenC.R. LagoP.D. Effects of creatine supplementation associated with resistance training on oxidative stress in different tissues of rats.J. Int. Soc. Sports Nutr.20141111110.1186/1550‑2783‑11‑11 24655435
    [Google Scholar]
  129. AndreassenO.A. DedeogluA. FerranteR.J. JenkinsB.G. FerranteK.L. ThomasM. FriedlichA. BrowneS.E. SchillingG. BorcheltD.R. HerschS.M. RossC.A. BealM.F. Creatine increase survival and delays motor symptoms in a transgenic animal model of Huntington’s disease.Neurobiol. Dis.20018347949110.1006/nbdi.2001.0406 11447996
    [Google Scholar]
  130. KumarP. KumarA. Effect of lycopene and epigallocatechin-3-gallate against 3-nitropropionic acid induced cognitive dysfunction and glutathione depletion in rat: A novel nitric oxide mechanism.Food Chem. Toxicol.200947102522253010.1016/j.fct.2009.07.011 19616597
    [Google Scholar]
  131. JainD. GangshettiwarA. Combination of lycopene, quercetin and poloxamer188 alleviates anxiety and depression in 3-nitropropionic acid-induced Huntingtons disease in rats.J. Intercult. Ethnopharmacol.20143418619110.5455/jice.20140903012921 26401371
    [Google Scholar]
  132. PetersonB. NguyenH.St.St. John’s Wort.StatPearls.Treasure Island, FL, USAStatPearls Publishing2023
    [Google Scholar]
  133. WrightD.J. GrayL.J. FinkelsteinD.I. CrouchP.J. PowD. PangT.Y. LiS. SmithZ.M. FrancisP.S. RenoirT. HannanA.J. N-acetylcysteine modulates glutamatergic dysfunction and depressive behavior in Huntington’s disease.Hum. Mol. Genet.20162514ddw14410.1093/hmg/ddw144 27179791
    [Google Scholar]
  134. A randomised controlled trial, of n-acetyl cysteine (NAC), for premanifest huntingtin gene expansion carriers.2022Available from: https://checkorphan.org/clinicaltrial/a-randomised-controlled- trial-of-n-acetyl-cysteine-nac-for-premanifest-huntingtin-gene-expansion-carriers/
  135. RosenstockT.R. de BritoO.M. LombardiV. LourosS. RibeiroM. AlmeidaS. FerreiraI.L. OliveiraC.R. RegoA.C. FK506 ameliorates cell death features in Huntington’s disease striatal cell models.Neurochem. Int.201159560060910.1016/j.neuint.2011.04.009 21703318
    [Google Scholar]
  136. KumarP. KumarA. Protective effect of hesperidin and naringin against 3-nitropropionic acid induced Huntington’s like symptoms in rats: Possible role of nitric oxide.Behav. Brain Res.20102061384610.1016/j.bbr.2009.08.028 19716383
    [Google Scholar]
  137. ChabrierP.E. AuguetM. Pharmacological properties of BN82451: A novel multitargeting neuroprotective agent.CNS Drug Rev.200713331733210.1111/j.1527‑3458.2007.00018.x 17894648
    [Google Scholar]
  138. ColleD. SantosD.B. MoreiraE.L.G. HartwigJ.M. dos SantosA.A. ZimmermannL.T. HortM.A. FarinaM. Probucol increases striatal glutathione peroxidase activity and protects against 3-nitropropionic acid-induced pro-oxidative damage in rats.PLoS One201386e6765810.1371/journal.pone.0067658 23799154
    [Google Scholar]
  139. de Paula Nascimento-CastroC. WinkA.C. da FônsecaV.S. BiancoC.D. Winkelmann-DuarteE.C. FarinaM. RodriguesA.L.S. Gil-MohapelJ. de BemA.F. BrocardoP.S. Antidepressant effects of probucol on early-symptomatic YAC128 transgenic mice for huntington’s disease.Neural Plast.2018201811710.1155/2018/4056383 30186318
    [Google Scholar]
  140. ZoccolellaS. SantamatoA. LambertiP. Current and emerging treatments for amyotrophic lateral sclerosis.Neuropsychiatr. Dis. Treat.2009557759510.2147/NDT.S7788 19966906
    [Google Scholar]
  141. GurneyM.E. CuttingF.B. ZhaiP. DobleA. TaylorC.P. AndrusP.K. HallE.D. Benefit of vitamin E, riluzole, and gababapentin in a transgenic model of familial amyotrophic lateral sclerosis.Ann. Neurol.199639214715710.1002/ana.410390203 8967745
    [Google Scholar]
  142. Michal FreedmanD. KunclR.W. WeinsteinS.J. MalilaN. VirtamoJ. AlbanesD. Vitamin E serum levels and controlled supplementation and risk of amyotrophic lateral sclerosis.Amyotroph. Lateral Scler. Frontotemporal Degener.201314424625110.3109/21678421.2012.745570 23286756
    [Google Scholar]
  143. WangH. O’ReillyE.J. WeisskopfM.G. LogroscinoG. McCulloughM.L. SchatzkinA. KolonelL.N. AscherioA. Vitamin E intake and risk of amyotrophic lateral sclerosis: A pooled analysis of data from 5 prospective cohort studies.Am. J. Epidemiol.2011173659560210.1093/aje/kwq416 21335424
    [Google Scholar]
  144. DoT.Q. SchultzJ.R. ClarkeC.F. Enhanced sensitivity of ubiquinone-deficient mutants of Saccharomyces cerevisiae to products of autoxidized polyunsaturated fatty acids.Proc. Natl. Acad. Sci. USA199693157534753910.1073/pnas.93.15.7534 8755509
    [Google Scholar]
  145. SohmiyaM. TanakaM. SuzukiY. TaninoY. OkamotoK. YamamotoY. An increase of oxidized coenzyme Q-10 occurs in the plasma of sporadic ALS patients.J. Neurol. Sci.20052281495310.1016/j.jns.2004.09.030 15607210
    [Google Scholar]
  146. MolinaJ.A. de BustosF. Jiménez-JiménezF.J. Gómez-EscalonillaC. García-RedondoA. EstebanJ. Guerrero-SolaA. del HoyoP. Martínez-SalioA. Ramírez-RamosC. Ruiz IndurainG. ArenasJ. Serum levels of coenzyme Q 10 in patients with amyotrophic lateral sclerosis.J. Neural Transm. (Vienna)20001078-91021102610.1007/s007020070050 11041280
    [Google Scholar]
  147. Neves CarvalhoA. FiruziO. Joao GamaM. van HorssenJ. SasoL. Oxidative stress and antioxidants in neurological diseases: is there still hope?Curr. Drug Targets201718670571810.2174/1389450117666160401120514 27033198
    [Google Scholar]
  148. BhatiaN.K. SrivastavaA. KatyalN. JainN. KhanM.A.I. KunduB. DeepS. Curcumin binds to the pre-fibrillar aggregates of Cu/Zn superoxide dismutase (SOD1) and alters its amyloidogenic pathway resulting in reduced cytotoxicity.Biochim. Biophys. Acta. Proteins Proteomics20151854542643610.1016/j.bbapap.2015.01.014 25666897
    [Google Scholar]
  149. AhmadiM. AgahE. NafissiS. JaafariM.R. HarirchianM.H. SarrafP. Faghihi-KashaniS. HosseiniS.J. GhoreishiA. AghamollaiiV. HosseiniM. TafakhoriA. Safety and efficacy of nanocurcumin as add-on therapy to riluzole in patients with amyotrophic lateral sclerosis: A pilot randomized clinical trial.Neurotherapeutics201815243043810.1007/s13311‑018‑0606‑7 29352425
    [Google Scholar]
  150. RakotoarisoaM. AngelovaA. Amphiphilic nanocarrier systems for curcumin delivery in neurodegenerative disorders.Medicines (Basel)20185412610.3390/medicines5040126 30477087
    [Google Scholar]
  151. CudkowiczM. BozikM.E. IngersollE.W. MillerR. MitsumotoH. ShefnerJ. MooreD.H. SchoenfeldD. MatherJ.L. ArchibaldD. SullivanM. AmburgeyC. MoritzJ. GribkoffV.K. The effects of dexpramipexole (KNS-760704) in individuals with amyotrophic lateral sclerosis.Nat. Med.201117121652165610.1038/nm.2579 22101764
    [Google Scholar]
  152. Ferrari-ToninelliG. MaccarinelliG. UbertiD. BuergerE. MemoM. Mitochondria-targeted antioxidant effects of S(-) and R(+) pramipexole.BMC Pharmacol.2010101210.1186/1471‑2210‑10‑2 20137065
    [Google Scholar]
  153. BozikM.E. MatherJ.L. KramerW.G. GribkoffV.K. IngersollE.W. Safety, tolerability, and pharmacokinetics of KNS-760704 (dexpramipexole) in healthy adult subjects.J. Clin. Pharmacol.20115181177118510.1177/0091270010379412 20959524
    [Google Scholar]
  154. RudnickiS.A. BerryJ.D. IngersollE. ArchibaldD. CudkowiczM.E. KerrD.A. DongY. Dexpramipexole effects on functional decline and survival in subjects with amyotrophic lateral sclerosis in a Phase II study: Subgroup analysis of demographic and clinical characteristics.Amyotroph. Lateral Scler. Frontotemporal Degener.2013141445110.3109/17482968.2012.723723 22985432
    [Google Scholar]
  155. ZhangX. ZhouW. ZhangY. Improvements in SOD mimic AEOL-10150, a potent broad-spectrum antioxidant.Mil. Med. Res.2018513010.1186/s40779‑018‑0176‑3 30185231
    [Google Scholar]
  156. CrowJ.P. CalingasanN.Y. ChenJ. HillJ.L. BealM.F. Manganese porphyrin given at symptom onset markedly extends survival of ALS mice.Ann. Neurol.200558225826510.1002/ana.20552 16049935
    [Google Scholar]
  157. JacksonM. LladóJ. RothsteinJ.D. Therapeutic developments in the treatment of amyotrophic lateral sclerosis.Expert Opin. Investig. Drugs200211101343136410.1517/13543784.11.10.1343 12387699
    [Google Scholar]
  158. JaiswalM.K. Riluzole and edaravone: A tale of two amyotrophic lateral sclerosis drugs.Med. Res. Rev.201939273374810.1002/med.21528 30101496
    [Google Scholar]
  159. AbeK. ItoyamaY. SobueG. TsujiS. AokiM. DoyuM. HamadaC. KondoK. YoneokaT. AkimotoM. YoshinoH. Confirmatory double-blind, parallel-group, placebo-controlled study of efficacy and safety of edaravone (MCI-186) in amyotrophic lateral sclerosis patients.Amyotroph. Lateral Scler. Frontotemporal Degener.2014157-861061710.3109/21678421.2014.959024 25286015
    [Google Scholar]
  160. TakayasuY. NakakiJ. KawasakiT. KodaK. AgoY. BabaA. MatsudaT. Edaravone, a radical scavenger, inhibits mitochondrial permeability transition pore in rat brain.J. Pharmacol. Sci.2007103443443710.1254/jphs.SC0070014 17409627
    [Google Scholar]
  161. ZhangM. TengC.H. WuF.F. GeL.Y. XiaoJ. ZhangH.Y. ChenD.Q. Edaravone attenuates traumatic brain injury through anti-inflammatory and anti-oxidative modulation.Exp. Ther. Med.201918146747410.3892/etm.2022.11394 31281440
    [Google Scholar]
  162. XuW. TanL. WangH.F. JiangT. TanM.S. TanL. ZhaoQ.F. LiJ.Q. WangJ. YuJ.T. Meta-analysis of modifiable risk factors for Alzheimer’s disease.J. Neurol. Neurosurg. Psychiatry20158612jnnp-2015-31054810.1136/jnnp‑2015‑310548 26294005
    [Google Scholar]
  163. LatourteA. SoumaréA. BardinT. Perez-RuizF. DebetteS. RichetteP. Uric acid and incident dementia over 12 years of follow-up: A population-based cohort study.Ann. Rheum. Dis.201877332833510.1136/annrheumdis‑2016‑210767 28754803
    [Google Scholar]
  164. LuN. DubreuilM. ZhangY. NeogiT. RaiS.K. AscherioA. HernánM.A. ChoiH.K. Gout and the risk of Alzheimer’s disease: A population-based, BMI-matched cohort study.Ann. Rheum. Dis.201675354755110.1136/annrheumdis‑2014‑206917 25739830
    [Google Scholar]
  165. Lopes da SilvaS. VellasB. ElemansS. LuchsingerJ. KamphuisP. YaffeK. SijbenJ. GroenendijkM. StijnenT. Plasma nutrient status of patients with Alzheimer’s disease: Systematic review and meta‐analysis.Alzheimers Dement.201410448550210.1016/j.jalz.2013.05.1771 24144963
    [Google Scholar]
  166. WilliamsD.M. HäggS. PedersenN.L. Circulating antioxidants and Alzheimer disease prevention: A Mendelian randomization study.Am. J. Clin. Nutr.20191091909810.1093/ajcn/nqy225 30596810
    [Google Scholar]
  167. ZhangQ. LiQ. ZhaoH. ShuM. LuoM. LiY. DingY. ShiS. ChengX. NiuQ. Neurodegenerative disease and antioxidant biomarkers: A bidirectional Mendelian randomization study.Front. Neurol.202314115836610.3389/fneur.2023.1158366 37034095
    [Google Scholar]
  168. ChewE.Y. ClemonsT.E. AgrónE. LaunerL.J. GrodsteinF. BernsteinP.S. Effect of Omega-3 fatty acids, lutein/zeaxanthin, or other nutrient supplementation on cognitive function.JAMA2015314879180110.1001/jama.2015.9677 26305649
    [Google Scholar]
  169. LuoJ. le CessieS. van HeemstD. NoordamR. Diet-derived circulating antioxidants and risk of coronary heart disease.J. Am. Coll. Cardiol.2021771455410.1016/j.jacc.2020.10.048 33413940
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266305736240725052825
Loading
/content/journals/ctmc/10.2174/0115680266305736240725052825
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test