Skip to content
2000
image of A Study on the Regulation of TRPM8 Signaling Pathway by Interior-warming Medicines in Traditional Chinese Medicine

Abstract

Background

Interior-warming medicines () have the effect of warming the interior of the body and dispelling cold, and they are traditionally used for interior cold syndrome. Currently, they are used for treating gastrointestinal disorders, rheumatoid arthritis, tumors, . Transient receptor potential channel M8 (TRPM8) is a non-selective cation channel that can be activated by low temperature and menthol. However, the mechanism of temperature regulation of interior-warming medicines is not clear. This study designed an experiment on the TRPM8 signaling pathway using interior-warming medicines, aiming to investigate the relationship between the hot property of interior-warming medicines and the regulatory effect of TRPM8.

Methods

The breast cancer cell line 7 was cultured at different temperatures as a research model, six kinds of interior-warming medicines were used, and medicated serums from rats were prepared as test drugs. PCR and western blotting were carried out to investigate their effects on TRPM8 mRNA and protein expression. ELISA and flow cytometry were conducted to detect intracellular cAMP and Ca2+ concentration.

Results

Compared with the blank-containing serum group, interior-warming medicines had no significant effect on the expression of TRPM8 at 37°C, while they could inhibit the expression of TRPM8 at low temperatures (30°C). Moreover, the six herbs could increase intracellular cAMP content and reduce Ca2+ concentration at different temperatures.

Conclusion

The natural hot property of interior-warming medicines may be associated with the regulation of the TRPM8 signaling pathway, causing Ca2+ influx blocking, which provides a deeper experimental basis for their clinical application and new drug development.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/ctm/10.2174/0122150838349351241203105103
2025-01-03
2025-04-22
The full text of this item is not currently available.

References

  1. Moran M.M. TRP channels as potential drug targets. Annu. Rev. Pharmacol. Toxicol. 2018 58 1 309 330 10.1146/annurev‑pharmtox‑010617‑052832 28945977
    [Google Scholar]
  2. Tsavaler L. Shapero M.H. Morkowski S. Laus R. Trp-p8, a novel prostate-specific gene, is up-regulated in prostate cancer and other malignancies and shares high homology with transient receptor potential calcium channel proteins. Cancer Res. 2001 61 9 3760 3769 11325849
    [Google Scholar]
  3. Aierken A. Xie Y.K. Dong W. Apaer A. Lin J.J. Zhao Z. Yang S. Xu Z.Z. Yang F. Rational design of a modality-specific inhibitor of TRPM8 channel against oxaliplatin-induced cold allodynia. Adv. Sci. (Weinh.) 2021 8 22 2101717 10.1002/advs.202101717 34658162
    [Google Scholar]
  4. Rivera B. Campos M. Orio P. Madrid R. Pertusa M. Negative modulation of TRPM8 channel function by protein kinase C in trigeminal cold thermoreceptor neurons. Int. J. Mol. Sci. 2020 21 12 4420 10.3390/ijms21124420 32580281
    [Google Scholar]
  5. De Caro C. Cristiano C. Avagliano C. Bertamino A. Ostacolo C. Campiglia P. Gomez-Monterrey I. La Rana G. Gualillo O. Calignano A. Russo R. Characterization of new TRPM8 modulators in pain perception. Int. J. Mol. Sci. 2019 20 22 5544 10.3390/ijms20225544 31703254
    [Google Scholar]
  6. Watanabe S. Fujimori Y. Matsuzawa A. Kobayashi J. Hirasawa H. Mutai Y. Tanada F. KPR-5714, a selective transient receptor potential melastatin 8 antagonist, improves voiding dysfunction in rats with bladder overactivity but does not affect voiding behavior in normal rats. Neurourol. Urodyn. 2022 41 6 1336 1343 10.1002/nau.24951 35537073
    [Google Scholar]
  7. Deval E. Gasull X. Noël J. Salinas M. Baron A. Diochot S. Lingueglia E. Acid-sensing ion channels (ASICs): Pharmacology and implication in pain. Pharmacol. Ther. 2010 128 3 549 558 10.1016/j.pharmthera.2010.08.006 20807551
    [Google Scholar]
  8. Molliver D.C. Immke D.C. Fierro L. Paré M. Rice F.L. McCleskey E.W. ASIC3, an acid-sensing ion channel, is expressed in metaboreceptive sensory neurons. Mol. Pain 2005 1 1744-8069-1-35 10.1186/1744‑8069‑1‑35 16305749
    [Google Scholar]
  9. Xing H. Ling J. Chen M. Gu J.G. Chemical and cold sensitivity of two distinct populations of TRPM8-expressing somatosensory neurons. J. Neurophysiol. 2006 95 2 1221 1230 10.1152/jn.01035.2005 16424459
    [Google Scholar]
  10. Weyer A. Lehto S. Development of TRPM8 antagonists to treat chronic pain and migraine. Pharmaceuticals (Basel) 2017 10 2 37 10.3390/ph10020037 28358322
    [Google Scholar]
  11. Zhao C. Xie Y. Xu L. Ye F. Xu X. Yang W. Yang F. Guo J. Structures of a mammalian TRPM8 in closed state. Nat. Commun. 2022 13 1 3113 10.1038/s41467‑022‑30919‑y 35662242
    [Google Scholar]
  12. Huang S.S. Su H.H. Chien S.Y. Chung H.Y. Luo S.T. Chu Y.T. Wang Y.H. MacDonald I.J. Lee H.H. Chen Y.H. Activation of peripheral TRPM8 mitigates ischemic stroke by topically applied menthol. J. Neuroinflammation 2022 19 1 192 10.1186/s12974‑022‑02553‑4 35897101
    [Google Scholar]
  13. Liu Y. Mikrani R. He Y. Faran Ashraf Baig M.M. Abbas M. Naveed M. Tang M. Zhang Q. Li C. Zhou X. TRPM8 channels: A review of distribution and clinical role. Eur. J. Pharmacol. 2020 882 173312 10.1016/j.ejphar.2020.173312 32610057
    [Google Scholar]
  14. Izquierdo C. Martín-Martínez M. Gómez-Monterrey I. González-Muñiz R. TRPM8 channels: Advances in structural studies and pharmacological modulation. Int. J. Mol. Sci. 2021 22 16 8502 10.3390/ijms22168502 34445208
    [Google Scholar]
  15. González-Muñiz R. Bonache M.A. Martín-Escura C. Gómez-Monterrey I. Recent progress in TRPM8 modulation: An update. Int. J. Mol. Sci. 2019 20 11 2618 10.3390/ijms20112618 31141957
    [Google Scholar]
  16. He J. Zhang Y. Yang C. Li K. Yuan X. Zhang Z. Gu C. Chen Y. Effects of Alpinia officinarum and Euodia rutaecarpa on the expression of TRPA1 and TRPM8 in rats with irritable bowel syndrome. J. Holistic Integr. Pharm. 2023 4 1 1 13 10.1016/S2707‑3688(23)00091‑2
    [Google Scholar]
  17. Kong X. Wan H. Su X. Zhang C. Yang Y. Li X. Yao L. Lin N. Rheum palmatum L. and Coptis chinensis Franch., exert antipyretic effect on yeast-induced pyrexia rats involving regulation of TRPV1 and TRPM8 expression. J. Ethnopharmacol. 2014 153 1 160 168 10.1016/j.jep.2014.02.007 24530855
    [Google Scholar]
  18. Chodon D. Guilbert A. Dhennin-Duthille I. Gautier M. Telliez M.S. Sevestre H. Ouadid-Ahidouch H. Estrogen regulation of TRPM8 expression in breast cancer cells. BMC Cancer 2010 10 1 212 10.1186/1471‑2407‑10‑212 20482834
    [Google Scholar]
  19. Yan S. Huang Y. Xiao Q. Su Z. Xia L. Xie J. Zhang F. Du Z. Hou X. Deng J. Hao E. Regulation of transient receptor potential channels by traditional Chinese medicines and their active ingredients. Front. Pharmacol. 2022 13 1039412 10.3389/fphar.2022.1039412 36313301
    [Google Scholar]
  20. Liu X-L. Lv C. Zhang W-S. Advance in studies on TRPV1 and analgesic effect of traditional Chinese medicines. Zhongguo Zhongyao Zazhi 2014 39 10 1757 1760 25282877
    [Google Scholar]
  21. Zhan Y-R. Xiong C-C. Chen Y-F. Wu Z-J. Yang C-Y. Re-evaluation of literature on the effects of Wenli medicine on the digestive system. Guangdong Yaoxueyuan Xuebao 2018 34 3 398 402 10.16809/j.cnki.2096‑3653.2018030604
    [Google Scholar]
  22. Ming L. Tang C-P. Chen Y-F. Yin Y-Q. Han B. Yang Q. Yang C-Y. Chen J-X. Evaluation of the pain relieving effect of warm inner medicine by principal component analysis. Lishizhen Med. Mater. Med. Res. 2015 26 4 1008 1010
    [Google Scholar]
  23. Shang G. Niu X. Tong Q. Zhao Y. Yin J. Zhou X. Xu J. Cao Y. Cheng F. Bao B. Li Z. Yao W. Integrated metabolomic and lipidomic analysis revealed the protective mechanisms of Erzhi Wan on senescent NRK cells through BRL cells. J. Ethnopharmacol. 2024 320 117482 10.1016/j.jep.2023.117482 38000520
    [Google Scholar]
  24. Bai X. Zheng E. Tong L. Liu Y. Li X. Yang H. Jiang J. Chang Z. Yang H. Angong Niuhuang Wan inhibit ferroptosis on ischemic and hemorrhagic stroke by activating PPARγ/AKT/GPX4 pathway. J. Ethnopharmacol. 2024 321 117438 10.1016/j.jep.2023.117438 37984544
    [Google Scholar]
  25. He W-X. Zhang C-L. Xiang D. Yang J-Y. Xu Y-J. Ren X-H. Liu D. Mechanism of Calculus Bovis Sativus in inhibiting hepatocyte lipid deposition based on serum pharmacology. Zhongguo Zhongyao Zazhi 2019 44 17 3780 3785 10.19540/j.cnki.cjcmm.20190416.402 31602953
    [Google Scholar]
  26. Yiping Y. Huaqiang Z. Tian Z. Zhaojuan G. Liting K. Xiaoyu J. Ning-ning W. Ying D. Guoxiu L. Yanping W. Effects of Mahuang (Herba Ephedra Sinica) and Wuweizi (Fructus Schisandrae Chinensis) medicated serum on chemotactic migration of alveolar macrophages and inters regions macrophages in rats. J. Tradit. Chin. Med. 2017 37 5 607 615 10.1016/S0254‑6272(17)30313‑8 32188220
    [Google Scholar]
  27. Ordás P. Hernández-Ortego P. Vara H. Fernández-Peña C. Reimúndez A. Morenilla-Palao C. Guadaño-Ferraz A. Gomis A. Hoon M. Viana F. Señarís R. Expression of the cold thermoreceptor TRPM8 in rodent brain thermoregulatory circuits. J. Comp. Neurol. 2021 529 1 234 256 10.1002/cne.24694 30942489
    [Google Scholar]
  28. Tokuda M. Tatsuyama S. Fujisawa M. Morimoto-Yamashita Y. Kawakami Y. Shibukawa Y. Torii M. Dentin and pulp sense cold stimulus. Med. Hypotheses 2015 84 5 442 444 10.1016/j.mehy.2015.01.039 25665859
    [Google Scholar]
  29. Yin Y. Le S.C. Hsu A.L. Borgnia M.J. Yang H. Lee S.Y. Structural basis of cooling agent and lipid sensing by the cold-activated TRPM8 channel. Science 2019 363 6430 eaav9334 10.1126/science.aav9334 30733385
    [Google Scholar]
  30. De Caro C. Russo R. Avagliano C. Cristiano C. Calignano A. Aramini A. Bianchini G. Allegretti M. Brandolini L. Antinociceptive effect of two novel transient receptor potential melastatin 8 antagonists in acute and chronic pain models in rat. Br. J. Pharmacol. 2018 175 10 1691 1706 10.1111/bph.14177 29485712
    [Google Scholar]
  31. Ren L. Dhaka A. Cao Y.Q. Function and postnatal changes of dural afferent fibers expressing TRPM8 channels. Mol. Pain 2015 11 s12990-015-0043-0 10.1186/s12990‑015‑0043‑0 26111800
    [Google Scholar]
  32. Wang J. Yang G. Li M. Zhou X. Transient receptor potential melastatin 8 (TRPM8)-based mechanisms underlie both the cold temperature-induced inflammatory reactions and the synergistic effect of cigarette smoke in human bronchial epithelial (16HBE) cells. Front. Physiol. 2019 10 285 10.3389/fphys.2019.00285 31001124
    [Google Scholar]
  33. Liu J.J. Li L.Z. Xu P. Upregulation of TRPM8 can promote the colon cancer liver metastasis through mediating Akt/GSK-3 signal pathway. Biotechnol. Appl. Biochem. 2022 69 1 230 239 10.1002/bab.2102 33432591
    [Google Scholar]
  34. Bochu W. Liancai Z. Qi C. Primary study on the application of Serum Pharmacology in Chinese traditional medicine. Colloids Surf. B Biointerfaces 2005 43 3-4 194 197 10.1016/j.colsurfb.2005.04.013 15964749
    [Google Scholar]
  35. Wang L-D. Sun M-Y. Zhang F. Li P-P. Shi W. Xu L. Research progress of the traditional Chinese medicine intervention technique of the in vitro cell experiment. Zhonghua Zhongyiyao Zazhi 2018 33 4 1448 1451
    [Google Scholar]
  36. Pan W.-S. Liu M.-F. Shi Y. Xing D.-M. Du L.-J. He X.-H. Zhang H.-Y. Plasma pharmacology and plasma chemistry and pharmacokinetics of traditional Chinese Medicines. World Sci. Technol.- Modern. Trad. Chin. Med. Materia Medica 2002 3 53 56
    [Google Scholar]
  37. Antoni F.A. Interactions between intracellular free Ca2+ and cyclic AMP in neuroendocrine cells. Cell Calcium 2012 51 3-4 260 266 10.1016/j.ceca.2011.12.013 22385836
    [Google Scholar]
  38. Bidaux G. Gordienko D. Shapovalov G. Farfariello V. Borowiec A. Iamshanova O. Lemonnier L. Gueguinou M. Guibon R. Fromont G. Paillard M. Gouriou Y. Chouabe C. Dewailly E. Gkika D. López-Alvarado P. Carlos Menéndez J. Héliot L. Slomianny C. Prevarskaya N. 4TM-TRPM8 channels are new gatekeepers of the ER-mitochondria Ca2+ transfer. Biochim. Biophys. Acta Mol. Cell Res. 2018 1865 7 981 994 10.1016/j.bbamcr.2018.04.007 29678654
    [Google Scholar]
  39. Launay P. Fleig A. Perraud A.L. Scharenberg A.M. Penner R. Kinet J.P. TRPM4 is a Ca2+-activated nonselective cation channel mediating cell membrane depolarization. Cell 2002 109 3 397 407 10.1016/S0092‑8674(02)00719‑5 12015988
    [Google Scholar]
  40. McHugh D. Flemming R. Xu S.Z. Perraud A.L. Beech D.J. Critical intracellular Ca2+ dependence of transient receptor potential melastatin 2 (TRPM2) cation channel activation. J. Biol. Chem. 2003 278 13 11002 11006 10.1074/jbc.M210810200 12529379
    [Google Scholar]
  41. Noncovich A. Priest C. Ung J. Patron A.P. Servant G. Brust P. Servant N. Faber N. Liu H. Gonsalves N.S. Ditschun T.L. Discovery and development of a novel class of phenoxyacetyl amides as highly potent TRPM8 agonists for use as cooling agents. Bioorg. Med. Chem. Lett. 2017 27 16 3931 3938 10.1016/j.bmcl.2017.04.003 28662813
    [Google Scholar]
  42. Yang J.M. Li F. Liu Q. Rüedi M. Wei E.T. Lentsman M. Lee H.S. Choi W. Kim S.J. Yoon K.C. A novel TRPM8 agonist relieves dry eye discomfort. BMC Ophthalmol. 2017 17 1 101 10.1186/s12886‑017‑0495‑2 28651550
    [Google Scholar]
  43. Bianchini G. Tomassetti M. Lillini S. Sirico A. Bovolenta S. Za L. Liberati C. Novelli R. Aramini A. Discovery of novel TRPM8 blockers suitable for the treatment of somatic and ocular painful conditions: A journey through pKa and LogD modulation. J. Med. Chem. 2021 64 22 16820 16837 10.1021/acs.jmedchem.1c01647 34762442
    [Google Scholar]
  44. Li M-Q. Huang J. Zhou G-F. Li K-P. Feng Y-F. Ming L. Gao Z-H. Chen Y-F. Effect of Alpinia officinarum medicated serum and its main components on TRPA1 signaling pathway. Chin. Pharmacol. Bull. 2021 37 10 1443 1449
    [Google Scholar]
  45. Kong Y.-D. Qi Y. Cui N. Zhang Z.-H. Sun Y.-P. Zeng Y.-N. Wang C.-F. Kuang H.-X. Wang Q.-H. Research progress on modern chemical constituents and pharmacological effects of Evodia rutaecarpa. Info. Tradit. Chin. Med. 2023 40 5 79 83 10.19656/j.cnki.1002‑2406.20230513
    [Google Scholar]
  46. Yin J. Yu Z. Hou C. Peng Y. Xiao J. Jiang J. Protective effect of Zuojin Fang on lung injury induced by sepsis through downregulating the JAK1/STAT3 signaling pathway. BioMed Res. Int. 2021 2021 1 12 10.1155/2021/1419631 33506010
    [Google Scholar]
  47. Chae H.K. Kim W. Kim S.K. Phytochemicals of cinnamomi cortex: Cinnamic acid, but not cinnamaldehyde, attenuates oxaliplatin-induced cold and mechanical hypersensitivity in rats. Nutrients 2019 11 2 432 10.3390/nu11020432 30791474
    [Google Scholar]
  48. Fan H. Tian Y. Wei X-Z. Wang Q-H. Fu Y-Q. Sun K-F. Detection of paeoniflorin, paeonol, cinnamic acid in guizhifulingpill and medicated serum by HPLC. Asia-Pac. Trad. Med. 2012 8 12 12 14
    [Google Scholar]
  49. Li J. Zhang Y. Liu S. Li W. Sun Y. Cao H. Wang S. Meng J. A network pharmacology integrated pharmacokinetics strategy to investigate the pharmacological mechanism of absorbed components from crude and processed Zingiberis Rhizoma on deficiency-cold and hemorrhagic syndrome. J. Ethnopharmacol. 2023 301 115754 10.1016/j.jep.2022.115754 36195301
    [Google Scholar]
  50. Liu Y. Su Q. Chen S-Y. Chen J-Z. Fan G-R. Research progress of citral’s biological activity. South Forests 2013 1 43 46 10.16259/j.cnki.36‑1342/s.2013.01.008
    [Google Scholar]
  51. Zhang M-M. Wang D. Wei D-N. Ye X. He L. Pang W-Q. Peng W. Wu C-J. Study on quality markers of Zanthoxyli Pericarpium on warming middleenergizer to alleviate pain based on serum medicinal chemistry. Chin. Tradit. Herbal Drugs 2022 53 9 2731 2739
    [Google Scholar]
/content/journals/ctm/10.2174/0122150838349351241203105103
Loading
/content/journals/ctm/10.2174/0122150838349351241203105103
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test