Skip to content
2000
Volume 11, Issue 6
  • ISSN: 2215-0838
  • E-ISSN: 2215-0846

Abstract

In modern times, microbial resistance is a global threat to health and development. The misuse and inappropriate use of antimicrobials is the main cause of developing drug-resistant pathogens. It requires multiple areas in direction to attain sustainable advance goals. As a result of microbial resistance, the necessity for costly medications and expenses are obstructed worldwide. Due to rising attention in the research of new antimicrobial medicaments from a variety of natural or synthetic sources to fight microbial resistance. Thus, natural antimicrobial agents have been used to a great extent nowadays because plant-derived antimicrobial agents are considered to be safer alternatives for health as compared to those synthetic antimicrobial agents. Overall, the active ingredients, water, essential oils, and ethanolic extracts from selected plants and the mixture of a variety of these natural extracts have been used for centuries, because they possess antimicrobial activity which inhibits the growth of microbes. Natural plants as an antimicrobial agent, like extracts of L., L., , , L., L., Roscoe, (L.) Kuntze, L., L., and many others have been preferred and used for ages because they are easily available worldwide. They are usually of low cost and have little or no side effects. Several antimicrobial screening approaches like the disk-diffusion method, well diffusion method, micro broth dilution assay, sterile disk method, and agar diffusion method are generally cast off for measurement of reproducibility and standardization of these antimicrobial agents. This review article is a comprehensive description of natural plants like L., L., , ., containing those extracts used as antimicrobial agents listed, and numerous antimicrobial susceptibility testing methods are reported. These identified plant species and antimicrobial screening techniques hold the potential for formulating these plants into antimicrobial drugs, warranting further study and exploration in the field of medicine.

Loading

Article metrics loading...

/content/journals/ctm/10.2174/0122150838261497231005115943
2024-12-02
2026-02-18
Loading full text...

Full text loading...

References

  1. BhatiaR. NarainJ.P. The growing challenge of antimicrobial resistance in the South-East Asia Region--are we losing the battle?Indian J. Med. Res.20101325482486 21149995
    [Google Scholar]
  2. BoucherH.W. TalbotG.H. BradleyJ.S. Bad bugs, no drugs: No ESKAPE! an update from the infectious diseases society of America.Clin. Infect. Dis.200948111210.1086/595011 19035777
    [Google Scholar]
  3. GiamarellouH. Multidrug-resistant Gram-negative bacteria: how to treat and for how long.Int. J. Antimicrob. Agents201036Suppl. 2S50S5410.1016/j.ijantimicag.2010.11.014 21129924
    [Google Scholar]
  4. IwuM.W. DuncanA.R. OkunjiC.O. New antimicrobials of plant origin.Perspectives on new crops and new uses.Alexandria, VAASHS Press1999457462
    [Google Scholar]
  5. World Health OrganizationThe world health report 2002,reducing risks, promoting healthy life.2002Available from: https://www.who.int/publications/i/item/9241562072
    [Google Scholar]
  6. MedinaA.L. LuceroM.E. HolguinF.O. Composition and antimicrobial activity of anemopsis californica leaf oil.J. Agric. Food Chem.200553228694869810.1021/jf0511244 16248573
    [Google Scholar]
  7. RomeroC.D. ChopinS.F. BuckG. MartinezE. GarciaM. BixbyL. Antibacterial properties of common herbal remedies of the southwest.J. Ethnopharmacol.200599225325710.1016/j.jep.2005.02.028 15894135
    [Google Scholar]
  8. DuraipandiyanV. AyyanarM. IgnacimuthuS. Antimicrobial activity of some ethnomedicinal plants used by Paliyar tribe from Tamil Nadu, India.BMC Complement. Altern. Med.2006613510.1186/1472‑6882‑6‑35 17042964
    [Google Scholar]
  9. DjeussiD.E. NoumedemJ.A.K. SeukepJ.A. Antibacterial activities of selected edible plants extracts against multidrug-resistant Gram-negative bacteria.BMC Complement. Altern. Med.201313116410.1186/1472‑6882‑13‑164 23837916
    [Google Scholar]
  10. WHO. WHO methods and data sources for global burden of disease estimates 2000-2011.GenevaDepartment of Health Statistics and Information Systems2013
    [Google Scholar]
  11. GuptaM. SharmaR. KumarA. Comparative potential of simvastatin, rosuvastatin and fluvastatin against bacterial infection: An in silico and in vitro study.Orient. Pharm. Exp. Med.201919325927510.1007/s13596‑019‑00359‑z
    [Google Scholar]
  12. BrownD. Antibiotic resistance breakers: Can repurposed drugs fill the antibiotic discovery void?Nat. Rev. Drug Discov.2015141282183210.1038/nrd4675 26493767
    [Google Scholar]
  13. RanaR. SharmaR. KumarA. Repurposing of existing statin drugs for treatment of microbial infections, how much promising?Infect. Disord. Drug Targets201919322423710.2174/1871526518666180806123230
    [Google Scholar]
  14. GeissmanT.A. Flavonoid compounds, tannins, lignins and, related compounds.In: Comprehensive biochemistry.Elsevier1963213250
    [Google Scholar]
  15. ThomsonW.A. SchultesR.E. Medicines from the Earth.McGraw-Hill1978
    [Google Scholar]
  16. WildR. The complete book of natural and medicinal cures.Complement. Health Pract. Rev.19943139
    [Google Scholar]
  17. BrantnerA. MalešŽ. PepeljnjakS. AntolićA. Antimicrobial activity of paliurus spina-christi Mill. (Christ’s thorn).J. Ethnopharmacol.199652211912210.1016/0378‑8741(96)01408‑0 8735457
    [Google Scholar]
  18. MahbubK.R. HoqM.M. AhmedM.M. SarkerA. In vitro antibacterial activity of Crescentia cujete and Moringa oleifera.Bangladesh Res Pub J201154337343
    [Google Scholar]
  19. DukeJ.A. Handbook of phytochemical constituent grass, herbs and other economic plants.CRC press1992
    [Google Scholar]
  20. RaniN. DahiyaR.S. KumarP. In silico studies of plant deriuved bioactive compounds of Wedelia species.Antiinfect. Agents2022205e17052220488510.2174/2211352520666220517094604
    [Google Scholar]
  21. SchmidtH. Phenol oxidase (EC 1.14.18.1). A marker enzyme for defense cells.Prog. Histochem. Cytochem.1988173III-18610.1016/S0079‑6336(88)80006‑8 3127860
    [Google Scholar]
  22. WuJ. ChenT. LuoX. HanD. WangZ. WuJ. TG/FTIR analysis on co-pyrolysis behavior of PE, PVC and PS.Waste Manag.201434367668210.1016/j.wasman.2013.12.005 24411064
    [Google Scholar]
  23. KazmiM.H. MalikA. HameedS. AkhtarN. Noor AliS. An anthraquinone derivative from cassia italica.Phytochemistry199436376176310.1016/S0031‑9422(00)89812‑X 7765689
    [Google Scholar]
  24. DukeJ.A. Handbook of phytochemical constituent grass, herbs and other economic plants.CRC press1992
    [Google Scholar]
  25. RaniN. SinghR. KumarP. Molecular modelling study for the evaluation of natural compounds as potential lanosterol 14α-demethylase inhibitors.Lett. Drug Des. Discov.202219545947110.2174/1570180818666211027114007
    [Google Scholar]
  26. SakanakaS. ShimuraN. AizawaM. KimM. YamamotoT. Preventive effect of green tea polyphenols against dental caries in conventional rats.Biosci. Biotechnol. Biochem.199256459259410.1271/bbb.56.592 27280653
    [Google Scholar]
  27. TsuchiyaH. SatoM. IinumaM. Inhibition of the growth of cariogenic bacteria in vitro by plant falvanones.Experientia199450984684910.1007/BF01956469 7925853
    [Google Scholar]
  28. ThomsonW.A. SchultesR.E. Medicines from the Earth.McGraw-Hill1978
    [Google Scholar]
  29. BorrisR.P. Natural products research: Perspectives from a major pharmaceutical company.J. Ethnopharmacol.1996511-3293810.1016/0378‑8741(95)01347‑4 9213624
    [Google Scholar]
  30. AsresK. BucarF. KartnigT. WitvrouwM. PannecouqueC. De ClercqE. Antiviral activity against human immunodeficiency virus type 1 (HIV-1) and type 2 (HIV-2) of ethnobotanically selected Ethiopian medicinal plants.Phytother. Res.2001151626910.1002/1099‑1573(200102)15:1<62::AID‑PTR956>3.0.CO;2‑X 11180526
    [Google Scholar]
  31. BarnardD.L. HuffmanJ.H. MeyersonL.R. SidwellR.W. Mode of inhibition of respiratory syncytial virus by a plant flavonoid, SP-303.Chemotherapy199339321221710.1159/000239128 8508691
    [Google Scholar]
  32. KaulT.N. MiddletonE.Jr OgraP.L. Antiviral effect of flavonoids on human viruses.J. Med. Virol.1985151717910.1002/jmv.1890150110 2981979
    [Google Scholar]
  33. PerrettS. WhitfieldP.J. SandersonL. BartlettA. The plant molluscicide Millettia thonningii (Leguminosae) as a topical antischistosomal agent.J. Ethnopharmacol.1995471495410.1016/0378‑8741(95)01253‑A 7564421
    [Google Scholar]
  34. HunterM.D. HullL.A. Variation in concentrations of phloridzin and phloretin in apple foliage.Phytochemistry19933451251125410.1016/0031‑9422(91)80010‑X
    [Google Scholar]
  35. AfolayanA.J. MeyerJ.J.M. The antimicrobial activity of 3,5,7-trihydroxyflavone isolated from the shoots of Helichrysum aureonitens.J. Ethnopharmacol.199757317718110.1016/S0378‑8741(97)00065‑2 9292410
    [Google Scholar]
  36. MeyerJ.J.M. AfolayanA.J. TaylorM.B. ErasmusD. Antiviral activity of galangin isolated from the aerial parts of Helichrysum aureonitens.J. Ethnopharmacol.199756216516910.1016/S0378‑8741(97)01514‑6 9174978
    [Google Scholar]
  37. HaslamE. Natural polyphenols (vegetable tannins) as drugs: Possible modes of action.J. Nat. Prod.199659220521510.1021/np960040+ 8991956
    [Google Scholar]
  38. ScalbertA. Antimicrobial properties of tannins.Phytochemistry199130123875388310.1016/0031‑9422(91)83426‑L
    [Google Scholar]
  39. SerafiniM. Del RioD. Understanding the association between dietary antioxidants, redox status and disease: Is the total antioxidant capacity the right tool?Redox Rep.20049314515210.1179/135100004225004814 15327744
    [Google Scholar]
  40. WeinmannI. History of the development and applications of coumarin and coumarin-related compounds.Coumarins, biology, applications and mode of action.New York, NYJohn Wiley and Sons, Inc.1997
    [Google Scholar]
  41. BrownleeH.E. McEuenA.R. HedgerJ. ScottI.M. Anti-fungal effects of cocoa tannin on the witches’ broom pathogen Crinipellis perniciosa.Physiol. Mol. Plant Pathol.1990361394810.1016/0885‑5765(90)90090‑K
    [Google Scholar]
  42. SchultzJ.C. Tannin-insect interactions.In: Hemingway RW, Karchesy JJ, Eds Chemistry and Significance of Condensed Tannins. HemingwayR.W. KarchesyJ.J. Boston, MASpringer198910.1007/978‑1‑4684‑7511‑1_26
    [Google Scholar]
  43. ButlerL.G. Effects of condensed tannin on animal nutrition.Chemistry and significance of condensed tannins.Boston, MASpringer198939140210.1007/978‑1‑4684‑7511‑1_24
    [Google Scholar]
  44. JonesG.A. McAllisterT.A. MuirA.D. ChengK.J. Effects of sainfoin (Onobrychis viciifolia Scop.) condensed tannins on growth and proteolysis by four strains of ruminal bacteria.Appl. Environ. Microbiol.19946041374137810.1128/aem.60.4.1374‑1378.1994 16349244
    [Google Scholar]
  45. LacyA. O’KennedyR. Studies on coumarins and coumarin-related compounds to determine their therapeutic role in the treatment of cancer.Curr. Pharm. Des.200410303797381110.2174/1381612043382693 15579072
    [Google Scholar]
  46. PillerN.B. A comparison of the effectiveness of some anti-inflammatory drugs on thermal oedema.Br. J. Exp. Pathol.1975566554560 1222119
    [Google Scholar]
  47. ThastrupO. KnudsenJ.B. LemmichJ. WintherK. Inhibition of human platelet aggregation by dihydropyrano- and dihydrofuranocoumarins, a new class of cAMP-phosphodiesterase inhibitors.Biochem. Pharmacol.198534122137214010.1016/0006‑2952(85)90407‑1 2988567
    [Google Scholar]
  48. NambaT. MoritaO. HuangS.L. GoshimaK. HattoriM. KakiuchiN. Studies on cardio-active crude drugs; I. Effect of coumarins on cultured myocardial cells.Planta Med.198854427728210.1055/s‑2006‑962432 3222369
    [Google Scholar]
  49. KeatingG.J. O’kennedyR. The chemistry and occurrence of coumarins.In: Coumarins, biology, applications and mode of action.New York, NYJohn Wiley and Sons, Inc.1997348
    [Google Scholar]
  50. SherA. Antimicrobial activity of natural products from medicinal plants.Gomal J MedSci200971
    [Google Scholar]
  51. ThornesR.D. Clinical and biological observations associated with coumarins.Coumarins, biology, applications and mode of action.New York, NYJohn Wiley and Sons, Inc.1997256
    [Google Scholar]
  52. FernándezM.A. GarcíaM.D. SáenzM.T. Antibacterial activity of the phenolic acids fractions of Scrophularia frutescens and Scrophularia sambucifolia.J. Ethnopharmacol.1996531111410.1016/0378‑8741(96)01419‑5 8807471
    [Google Scholar]
  53. HoultJ.R.S. PayáM. Pharmacological and biochemical actions of simple coumarins: Natural products with therapeutic potential.Gen. Pharmacol.199627471372210.1016/0306‑3623(95)02112‑4 8853310
    [Google Scholar]
  54. VishwakarmaR.A. Stereoselective synthesis of α-arteether from artemisinin.J. Nat. Prod.199053121621710.1021/np50067a037
    [Google Scholar]
  55. AyaforJ.F. TchuendemM.H.K. NyasseB. TillequinF. AnkeH. Novel bioactive diterpenoids from Aframomum aulacocarpos.J. Nat. Prod.199457791792310.1021/np50109a007 7964787
    [Google Scholar]
  56. HabtemariamS. GrayA.I. WatermanP.G. A new antibacterial sesquiterpene from Premna oligotricha.J. Nat. Prod.199356114014310.1021/np50091a022 8450316
    [Google Scholar]
  57. FujiokaT. KashiwadaY. KilkuskieR.E. Anti-AIDS agents, 11. Betulinic acid and platanic acid as anti-HIV principles from Syzigium claviflorum, and the anti-HIV activity of structurally related triterpenoids.J. Nat. Prod.199457224324710.1021/np50104a008 8176401
    [Google Scholar]
  58. GhoshalS. PrasadB.N.K. LakshmiV. Antiamoebic activity of piper longum fruits against entamoeba histolytica in vitro and in vivo.J. Ethnopharmacol.199650316717010.1016/0378‑8741(96)01382‑7 8691851
    [Google Scholar]
  59. OmulokoliE. KhanB. ChhabraS.C. Antiplasmodial activity of four Kenyan medicinal plants.J. Ethnopharmacol.199756213313710.1016/S0378‑8741(97)01521‑3 9174974
    [Google Scholar]
  60. ColillaF.J. RocherA. MendezE. γ‐Purothionins: Amino acid sequence of two polypeptides of a new family of thionins from wheat endosperm.FEBS Lett.19902701-219119410.1016/0014‑5793(90)81265‑P 2226781
    [Google Scholar]
  61. MendezE. MorenoA. ColillaF. Primary structure and inhibition of protein synthesis in eukaryotic cell-free system of a novel thionin, γ-hordothionin, from barley endosperm.Eur. J. Biochem.1990194253353910.1111/j.1432‑1033.1990.tb15649.x 2176600
    [Google Scholar]
  62. De CaleyaR.F. Gonzalez-PascualB. García-OlmedoF. CarboneroP. Susceptibility of phytopathogenic bacteria to wheat purothionins in vitro.Appl. Microbiol.1972235998100010.1128/am.23.5.998‑1000.1972 5031563
    [Google Scholar]
  63. KraghK.M. NielsenJ.E. NielsenK.K. DreboldtS. MikkelsenJ.D. Characterization and localization of new antifungal cysteine-rich proteins from Beta vulgaris.Mol. Plant Microbe Interact.19958342443410.1094/MPMI‑8‑0424 7655063
    [Google Scholar]
  64. AhmadR.S. HussainM.B. SultanM.T. Biochemistry, safety, pharmacological activities, and clinical applications of turmeric, a mechanistic review.Evid. Based Complement. Alternat. Med.2020202011410.1155/2020/7656919 32454872
    [Google Scholar]
  65. JahanR. Al-NahainA. MajumderS. RahmatullahM. Ethnopharmacological significance of Eclipta alba (L.) hassk.(Asteraceae).Int. Sch. Res. Notices2014201412210.1155/2014/385969 27355071
    [Google Scholar]
  66. CohenM. SactumT.O. Tulsi - Ocimum sanctum: A herb for all reasons.J. Ayurveda Integr. Med.20145425125910.4103/0975‑9476.146554 25624701
    [Google Scholar]
  67. ChandorkarN. TambeS. AminP. MadankarC. A systematic and comprehensive review on current understanding of the pharmacological actions, molecular mechanisms, and clinical implications of the genus Eucalyptus.Phytomedicine Plus20211410008910.1016/j.phyplu.2021.100089
    [Google Scholar]
  68. FaujdarS. SatiB. SharmaS. PathakA.K. PaliwalS.K. Phytochemical evaluation and anti-hemorrhoidal activity of bark of Acacia ferruginea DC.J. Tradit. Complement. Med.201992858910.1016/j.jtcme.2018.02.003 30963042
    [Google Scholar]
  69. Moreno-CadenaP. HoogenboomG. CockJ.H. Modeling growth, development and yield of cassava: A review.Field Crops Res.202126710814010.1016/j.fcr.2021.108140 34140751
    [Google Scholar]
  70. MusaM.S.M. SulaimanW.R.W. MajidZ.A. MajidZ.A. IdrisA.K. RajaeiK. Henna extract as a potential sacrificial agent in reducing surfactant adsorption on kaolinite: The role of salinity.J. King Saud Univ. Eng. Sci.202032854354710.1016/j.jksues.2019.06.001
    [Google Scholar]
  71. AnhN.H. KimS.J. LongN.P. Ginger on human health, a comprehensive systematic review of 109 randomized controlled trials.Nutrients202012115710.3390/nu12010157 31935866
    [Google Scholar]
  72. PrasanthM. SivamaruthiB. ChaiyasutC. TencomnaoT. A review of the role of green tea (Camellia sinensis) in antiphotoaging, stress resistance, neuroprotection, and autophagy.Nutrients201911247410.3390/nu11020474 30813433
    [Google Scholar]
  73. VijT. PrasharY. A review on medicinal properties of Carica papaya Linn.Asian Pac. J. Trop. Dis.2015511610.1016/S2222‑1808(14)60617‑4
    [Google Scholar]
  74. SingletaryK. Bay Leaf.Nutr. Today202156420220810.1097/NT.0000000000000493
    [Google Scholar]
  75. AungE.E. KristantiA.N. AminahN.S. TakayaY. RamadhanR. Plant description, phytochemical constituents and bioactivities of Syzygium genus: A review.Open Chem.20201811256128110.1515/chem‑2020‑0175
    [Google Scholar]
  76. Morales-GonzálezJ.A. Madrigal-BujaidarE. Sánchez-GutiérrezM. Garlic (Allium sativum L.).; A brief review of its antigenotoxic effects.Foods20198834310.3390/foods8080343 31412555
    [Google Scholar]
  77. MohiuddinA.K. Alternative Measures for IBS Management.J. Gastroenterol. Hepatol. Res.20198630253032
    [Google Scholar]
  78. BairwaR. RajawatB.S. SodhaR.S. Trachyspermum ammi.Pharmacogn. Rev.2012611566010.4103/0973‑7847.95871 22654405
    [Google Scholar]
  79. IslasJF AcostaE G-BuentelloZ etal An overview of Neem (Azadirachta indica) and its potential impact on health.J. Funct. Foods20207410417110.1016/j.jff.2020.104171
    [Google Scholar]
  80. SajjadA. Aloe vera, An ancient herb for modern dentistry-A literature review.J Dental Surg20146
    [Google Scholar]
  81. VermaN. GuptaS.K. TiwariS. MishraA.K. Safety of ashwagandha root extract: A randomized, placebo-controlled, study in healthy volunteers.Complement. Ther. Med.20215710264210.1016/j.ctim.2020.102642 33338583
    [Google Scholar]
  82. WhayneT.F.Jr Clinical use of digitalis, a state-of-the-art review.Am. J. Cardiovasc. Drugs201818642744010.1007/s40256‑018‑0292‑1 30066080
    [Google Scholar]
  83. VariyaB.C. BakraniaA.K. PatelS.S. Emblica officinalis (Amla): A review for its phytochemistry, ethnomedicinal uses and medicinal potentials with respect to molecular mechanisms.Pharmacol. Res.201611118020010.1016/j.phrs.2016.06.013 27320046
    [Google Scholar]
  84. GaireB.P. SubediL. A review on the pharmacological and toxicological aspects of Datura stramonium L.J. Integr. Med.2013112737910.3736/jintegrmed2013016 23506688
    [Google Scholar]
  85. HeatleyN.G. A method for the assay of penicillin.Biochem. J.1944381616510.1042/bj0380061 16747749
    [Google Scholar]
  86. BalouiriM. SadikiM. IbnsoudaS.K. Methods for in vitro evaluating antimicrobial activity: A review.J. Pharm. Anal.201662717910.1016/j.jpha.2015.11.005 29403965
    [Google Scholar]
  87. WaynePA Method for antifungal disk diffusion susceptibility testing of yeasts.CLSI m44-a2004236
    [Google Scholar]
  88. JorgensenJ.H. FerraroM.J. JorgensenJ.H. FerraroM.J. Antimicrobial susceptibility testing: A review of general principles and contemporary practices.Clin. Infect. Dis.200949111749175510.1086/647952 19857164
    [Google Scholar]
  89. CaronF. Antimicrobial susceptibility testing, a four facets tool for the clinician.J. Anti-Infect.201214416817410.1016/j.antinf.2012.10.002
    [Google Scholar]
  90. HombachM. ZbindenR. BöttgerE.C. Standardisation of disk diffusion results for antibiotic susceptibility testing using the sirscan automated zone reader.BMC Microbiol.201313122510.1186/1471‑2180‑13‑225 24099061
    [Google Scholar]
  91. KregerB.E. CravenD.E. McCabeW.R. Gram-negative bacteremia.Am. J. Med.198068334435510.1016/0002‑9343(80)90102‑3 6987871
    [Google Scholar]
  92. López-OviedoE. AllerA.I. MartínC. Evaluation of disk diffusion method for determining posaconazole susceptibility of filamentous fungi: Comparison with CLSI broth microdilution method.Antimicrob. Agents Chemother.20065031108111110.1128/AAC.50.3.1108‑1111.2006 16495281
    [Google Scholar]
  93. ArikanS. YurdakulP. HascelikG. Comparison of two methods and three end points in determination of in vitro activity of micafungin against Aspergillus spp.Antimicrob. Agents Chemother.20034782640264310.1128/AAC.47.8.2640‑2643.2003 12878531
    [Google Scholar]
  94. ArikanS. PaetznickV. RexJ.H. Comparative evaluation of disk diffusion with microdilution assay in susceptibility testing of caspofungin against Aspergillus and Fusarium isolates.Antimicrob. Agents Chemother.20024693084308710.1128/AAC.46.9.3084‑3087.2002 12183278
    [Google Scholar]
  95. Espinel-IngroffA. CantonE. FothergillA. Quality control guidelines for amphotericin B, Itraconazole, posaconazole, and voriconazole disk diffusion susceptibility tests with nonsupplemented Mueller-Hinton Agar (CLSI M51-A document) for nondermatophyte Filamentous Fungi.J. Clin. Microbiol.20114972568257110.1128/JCM.00393‑11 21543581
    [Google Scholar]
  96. Fourati-Ben FguiraL. FotsoS. Ben Ameur-MehdiR. MellouliL. LaatschH. Purification and structure elucidation of antifungal and antibacterial activities of newly isolated Streptomyces sp. strain US80.Res. Microbiol.2005156334134710.1016/j.resmic.2004.10.006 15808937
    [Google Scholar]
  97. KonatéK. MavoungouJ. LepenguéA. Antibacterial activity against β- lactamase producing Methicillin and Ampicillin-resistants Staphylococcus aureus: Fractional Inhibitory Concentration Index (FICI) determination.Ann. Clin. Microbiol. Antimicrob.20121111810.1186/1476‑0711‑11‑18 22716026
    [Google Scholar]
  98. de BillerbeckV.G. Huiles essentielles et bactéries résistantes aux antibiotiques.Phytotherapie20075524925310.1007/s10298‑007‑0265‑z
    [Google Scholar]
  99. DasK. TiwariR.K. ShrivastavaD.K. Techniques for evaluation of medicinal plant products as antimicrobial agents, current methods and future trends.J. Med. Plants Res.201042104111
    [Google Scholar]
  100. EstebanJ. OrtizA. JiménezM.S. Usefulness of E-test strips for testing susceptibility of Mycobacterium tuberculosis complex strains.Eur. J. Clin. Microbiol. Infect. Dis.2005241285685710.1007/s10096‑005‑0042‑6 16315010
    [Google Scholar]
  101. BakerC.N. StockerS.A. CulverD.H. ThornsberryC. Comparison of the E Test to agar dilution, broth microdilution, and agar diffusion susceptibility testing techniques by using a special challenge set of bacteria.J. Clin. Microbiol.199129353353810.1128/jcm.29.3.533‑538.1991 2037671
    [Google Scholar]
  102. BerghausL.J. GiguèreS. GuldbechK. WarnerE. UgorjiU. BerghausR.D. Comparison of Etest, disk diffusion, and broth macrodilution for in vitro susceptibility testing of Rhodococcus equi.J. Clin. Microbiol.201553131431810.1128/JCM.02673‑14 25378571
    [Google Scholar]
  103. GuptaP. KhareV. KumarD. AhmadA. BanerjeeG. SinghM. Comparative evaluation of disc diffusion and E-test with broth micro-dilution in susceptibility testing of amphotericin B, voriconazole and caspofungin against clinical Aspergillus isolates.J. Clin. Diagn. Res.201591DC04DC0710.7860/JCDR/2015/10467.5395 25737984
    [Google Scholar]
  104. WhiteR.L. BurgessD.S. ManduruM. BossoJ.A. Comparison of three different in vitro methods of detecting synergy: Time-kill, checkerboard, and E test.Antimicrob. Agents Chemother.19964081914191810.1128/AAC.40.8.1914 8843303
    [Google Scholar]
  105. DenesÉ. HidriN. Synergie et antagonisme en antibiothérapie.Antibiotiques200911210611510.1016/j.antib.2009.02.001
    [Google Scholar]
  106. GülmezD. ÇakarA. ŞenerB. HasçelikG. KarakayaJ. GülmezD. Comparison of different antimicrobial susceptibility testing methods for Stenotrophomonas maltophilia and results of synergy testing.J. Infect. Chemother.201016532232810.1007/s10156‑010‑0068‑2 20449623
    [Google Scholar]
  107. BassoléI.H.N. JulianiH.R. Essential oils in combination and their antimicrobial properties.Molecules20121743989400610.3390/molecules17043989 22469594
    [Google Scholar]
  108. MagaldiS. Mata-EssayagS. Hartung de CaprilesC. Well diffusion for antifungal susceptibility testing.Int. J. Infect. Dis.200481394510.1016/j.ijid.2003.03.002 14690779
    [Google Scholar]
  109. ValgasC. SouzaS.M. SmâniaE.F.A. SmâniaA.Jr Screening methods to determine antibacterial activity of natural products.Braz. J. Microbiol.200738236938010.1590/S1517‑83822007000200034
    [Google Scholar]
  110. Jiménez-EsquilínA.E. RoaneT.M. Antifungal activities of actinomycete strains associated with high-altitude sagebrush rhizosphere.J. Ind. Microbiol. Biotechnol.200532837838110.1007/s10295‑005‑0007‑x 16044290
    [Google Scholar]
  111. ElleuchL. ShaabanM. SmaouiS. Bioactive secondary metabolites from a new terrestrial Streptomyces sp. TN262.Appl. Biochem. Biotechnol.2010162257959310.1007/s12010‑009‑8808‑4 19842066
    [Google Scholar]
  112. LertcanawanichakulM. SawangnopS. A comparison of two methods used for measuring the antagonistic activity of Bacillus species.Walailak J. Sci. Technol.200852161171
    [Google Scholar]
  113. Ali‐ShtayehM.S. Abu GhdeibS.I. Antifungal activity of plant extracts against dermatophytes.Mycoses19994211‐12665672
    [Google Scholar]
  114. MukherjeeP.K. RaghuK. Effect of temperature on antagonistic and biocontrol potential of Trichoderma sp. on Sclerotium rolfsii.Mycopathologia1997139315115510.1023/A:1006868009184 16283454
    [Google Scholar]
  115. KumarS.N. NambisanB. SundaresanA. MohandasC. AntoR.J. Isolation and identification of antimicrobial secondary metabolites from Bacillus cereus associated with a rhabditid entomopathogenic nematode.Ann. Microbiol.201464120921810.1007/s13213‑013‑0653‑6
    [Google Scholar]
  116. GoodallR.R. LeviA.A. A microchromatographic method for the detection and approximate determination of the different penicillins in a mixture.Nature1946158401967567610.1038/158675a0 20274358
    [Google Scholar]
  117. FischerR. LautnerH. On the paper chromatographic detection of penicillin preparationsArch Pharm196129411710.1002/ardp.19612940102s 13699864
    [Google Scholar]
  118. HorváthG. JámborN. VéghA. Antimicrobial activity of essential oils: The possibilities of TLC–bioautography.Flavour Fragrance J.201025317818210.1002/ffj.1993
    [Google Scholar]
  119. MehrabaniM. KazemiA. Ayatollahi MousaviS.A. RezaifarM. AlikhahH. NoskyA. Evaluation of antifungal activities of Myrtus communis L. by bioautography method.Jundishapur J. Microbiol.201368e831610.5812/jjm.8316
    [Google Scholar]
  120. MarstonA. Thin-layer chromatography with biological detection in phytochemistry.J. Chromatogr. A20111218192676268310.1016/j.chroma.2010.12.068 21236438
    [Google Scholar]
  121. DewanjeeS. GangopadhyayM. BhattacharyaN. KhanraR. DuaT.K. Bioautography and its scope in the field of natural product chemistry.J. Pharm. Anal.201552758410.1016/j.jpha.2014.06.002 29403918
    [Google Scholar]
  122. ChomaI.M. GrzelakE.M. Bioautography detection in thin-layer chromatography.J. Chromatogr. A20111218192684269110.1016/j.chroma.2010.12.069 21232747
    [Google Scholar]
  123. GrzelakE.M. Majer-DziedzicB. ChomaI.M. Development of a novel direct bioautography-thin-layer chromatography test: Optimization of growth conditions for gram-negative bacteria, Escherichia coli.J. AOAC Int.20119451567157210.5740/jaoac.10‑385 22165022
    [Google Scholar]
  124. BrantnerA.H. Influence of various parameters on the evaluation of antibacterial compounds by the bioautographic TLC assay.Pharmaceut Pharmacol Lett199774152154
    [Google Scholar]
  125. SilvaM.T.G. SimasS.M. BatistaT.G.F.M. CardarelliP. TomassiniT.C.B. Studies on antimicrobial activity, in vitro, of Physalis angulata L. (Solanaceae) fraction and physalin B bringing out the importance of assay determination.Mem. Inst. Oswaldo Cruz2005100777978210.1590/S0074‑02762005000700018 16410969
    [Google Scholar]
  126. ShahatA.A. El-BaroutyG. HassanR.A. HammoudaF.M. Abdel-RahmanF.H. SalehM.A. Chemical composition and antimicrobial activities of the essential oil from the seeds of Enterolobium contortisiliquum (leguminosae).J. Environ. Sci. Health B200843651952510.1080/03601230802174714 18665989
    [Google Scholar]
  127. SuleimanaM.M. McGawL.J. NaidooV. EloffJ.N. Detection of antimicrobial compounds by bioautography of different extracts of leaves of selected South African tree species.Afr. J. Tradit. Complement. Altern. Med.2009716478 21304615
    [Google Scholar]
  128. HomansA.L. FuchsA. Direct bioautography on thin-layer chromatograms as a method for detecting fungitoxic substances.J. Chromatogr. A197051232732910.1016/S0021‑9673(01)96877‑3 5507078
    [Google Scholar]
  129. HamburgerM.O. CordellG.A. A direct bioautographic tlc assay for compounds possessing antibacterial activity.J. Nat. Prod.1987501192210.1021/np50049a003 3110376
    [Google Scholar]
  130. BalouiriM.O. BouhdidS.A. HarkiE. SadikiM.O. OuedrhiriW.E. IbnsoudaS.K. Antifungal activity of Bacillus spp. isolated from Calotropis procera AIT. Rhizosphere against Candida albicans.Asian J. Pharm. Clin. Res.20158213217
    [Google Scholar]
  131. PfallerM.A. SheehanD.J. RexJ.H. Determination of fungicidal activities against yeasts and molds: Lessons learned from bactericidal testing and the need for standardization.Clin. Microbiol. Rev.200417226828010.1128/CMR.17.2.268‑280.2004 15084501
    [Google Scholar]
  132. WiklerMA Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, approved standard.CLSI (NCCLS)200626M7A7
    [Google Scholar]
  133. Al-BakriA.G. AfifiF.U. Evaluation of antimicrobial activity of selected plant extracts by rapid XTT colorimetry and bacterial enumeration.J. Microbiol. Methods2007681192510.1016/j.mimet.2006.05.013 16831479
    [Google Scholar]
  134. LiangH. XingY. ChenJ. ZhangD. GuoS. WangC. Antimicrobial activities of endophytic fungi isolated from Ophiopogon japonicus (Liliaceae).BMC Complement. Altern. Med.201212123810.1186/1472‑6882‑12‑238 23190550
    [Google Scholar]
  135. MonteiroM.C. de la CruzM. CantizaniJ. A new approach to drug discovery: High-throughput screening of microbial natural extracts against Aspergillus fumigatus using resazurin.SLAS Discov.201217454254910.1177/1087057111433459 22233645
    [Google Scholar]
  136. KuhnD.M. BalkisM. ChandraJ. MukherjeeP.K. GhannoumM.A. Uses and limitations of the XTT assay in studies of Candida growth and metabolism.J. Clin. Microbiol.200341150650810.1128/JCM.41.1.506‑508.2003 12517908
    [Google Scholar]
  137. ReisR.S. NevesI.Jr LourençoS.L.S. FonsecaL.S. LourençoM.C.S. Comparison of flow cytometric and Alamar Blue tests with the proportional method for testing susceptibility of Mycobacterium tuberculosis to rifampin and isoniazid.J. Clin. Microbiol.20044252247224810.1128/JCM.42.5.2247‑2248.2004 15131202
    [Google Scholar]
  138. OuedrhiriW. BouhdidS. BalouiriM. Chemical composition of Citrus aurantium L. leaves and zest essential oils, their antioxidant, antibacterial single and combined effects.J. Chem. Pharm. Res.2015717884
    [Google Scholar]
  139. BouhdidS. AbriniJ. ZhiriA. EspunyM.J. ManresaA. Investigation of functional and morphological changes in Pseudomonas aeruginosa and Staphylococcus aureus cells induced by Origanum compactum essential oil.J. Appl. Microbiol.200910651558156810.1111/j.1365‑2672.2008.04124.x 19226402
    [Google Scholar]
  140. CastilhoA.L. Caleffi-FerracioliK.R. CanezinP.H. Dias SiqueiraV.L. de Lima ScodroR.B. CardosoR.F. Detection of drug susceptibility in rapidly growing mycobacteria by resazurin broth microdilution assay.J. Microbiol. Methods201511111912110.1016/j.mimet.2015.02.007 25683207
    [Google Scholar]
  141. GehrtA. PeterJ. PizzoP.A. WalshT.J. Effect of increasing inoculum sizes of pathogenic filamentous fungi on MICs of antifungal agents by broth microdilution method.J. Clin. Microbiol.19953351302130710.1128/jcm.33.5.1302‑1307.1995 7615745
    [Google Scholar]
  142. MeletiadisJ. MeisJ.F.G.M. MoutonJ.W. VerweijP.E. Analysis of growth characteristics of filamentous fungi in different nutrient media.J. Clin. Microbiol.200139247848410.1128/JCM.39.2.478‑484.2001 11158093
    [Google Scholar]
  143. Gomez-LopezA. AberkaneA. PetrikkouE. MelladoE. Rodriguez-TudelaJ.L. Cuenca-EstrellaM. Analysis of the influence of Tween concentration, inoculum size, assay medium, and reading time on susceptibility testing of Aspergillus spp.J. Clin. Microbiol.20054331251125510.1128/JCM.43.3.1251‑1255.2005 15750092
    [Google Scholar]
  144. Rodriguez-TudelaJ.L. ChryssanthouE. PetrikkouE. MosqueraJ. DenningD.W. Cuenca-EstrellaM. Interlaboratory evaluation of hematocytometer method of inoculum preparation for testing antifungal susceptibilities of filamentous fungi.J. Clin. Microbiol.200341115236523710.1128/JCM.41.11.5236‑5237.2003 14605171
    [Google Scholar]
  145. Clinical and Laboratory Standards Institute. Reference method for broth dilution antifungal susceptibility testing of yeasts. Approved standard M27-A3.2008Available from: https://clsi.org/media/1461/m27a3_sample.pdf
  146. WayneP.A. Reference method for broth dilution antifungal susceptibility testing of filamentous fungi; approved standard CLSI document M38-A2.New Jersey, NJ, USAClinical and Laboratory Standards Institute200853
    [Google Scholar]
  147. ArikanS. Current status of antifungal susceptibility testing methods.Med. Mycol.200745756958710.1080/13693780701436794 17885947
    [Google Scholar]
  148. Lass-FlörlC. Cuenca-EstrellaM. DenningD.W. Rodriguez-TudelaJ.L. Antifungal susceptibility testing in Aspergillus spp. according to EUCAST methodology.Med. Mycol.200644s131932510.1080/13693780600779401 30408924
    [Google Scholar]
  149. PetrikkouE. Rodríguez-TudelaJ.L. Cuenca-EstrellaM. GómezA. MollejaA. MelladoE. Inoculum standardization for antifungal susceptibility testing of filamentous fungi pathogenic for humans.J. Clin. Microbiol.20013941345134710.1128/JCM.39.4.1345‑1347.2001 11283054
    [Google Scholar]
  150. AberkaneA. Cuenca-EstrellaM. Gomez-LopezA. Comparative evaluation of two different methods of inoculum preparation for antifungal susceptibility testing of filamentous fungi.J. Antimicrob. Chemother.200250571972210.1093/jac/dkf187 12407129
    [Google Scholar]
  151. National Committee for Clinical Laboratory Standards. Methods for determining bactericidal activity of antimicrobial agents, approved guideline.1999Available from: https://clsi.org/media/1462/m26a_sample.pdf
  152. CantónE. PemánJ. ViudesA. QuindósG. GobernadoM. Espinel-IngroffA. Minimum fungicidal concentrations of amphotericin B for bloodstream Candida species.Diagn. Microbiol. Infect. Dis.200345320320610.1016/S0732‑8893(02)00525‑4 12663162
    [Google Scholar]
  153. Espinel-IngroffA. FothergillA. PeterJ. RinaldiM.G. WalshT.J. Testing conditions for determination of minimum fungicidal concentrations of new and established antifungal agents for Aspergillus spp.: NCCLS collaborative study.J. Clin. Microbiol.20024093204320810.1128/JCM.40.9.3204‑3208.2002 12202554
    [Google Scholar]
  154. Arikan-AkdagliS. RexJ.H. Fungal drug resistance assays.Antimicrobial Drug Resistance.ChamSpringer20171367138710.1007/978‑3‑319‑47266‑9_34
    [Google Scholar]
  155. HindlerJ.A. RichterS.S. Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated Or Fastidious Bacteria, M45.Clinical and Laboratory Standards Institute2016
    [Google Scholar]
  156. MenonT. UmamaheswariK. KumarasamyN. SolomonS. ThyagarajanS.P. Efficacy of fluconazole and itraconazole in the treatment of oral candidiasis in HIV patients.Acta Trop.200180215115410.1016/S0001‑706X(01)00170‑X 11600094
    [Google Scholar]
  157. ImhofA. BalajeeS.A. MarrK.A. New methods to assess susceptibilities of Aspergillus isolates to caspofungin.J. Clin. Microbiol.200341125683568810.1128/JCM.41.12.5683‑5688.2003 14662961
    [Google Scholar]
  158. MockM. MonodM. Baudraz-RosseletF. PanizzonR.G. Tinea capitis dermatophytes: Susceptibility to antifungal drugs tested in vitro and in vivo.Dermatology1998197436136710.1159/000018032 9873175
    [Google Scholar]
  159. SpeeleveldE. GordtsB. LanduytH.W.V. VroeyC.D. Raes-WuytackC. Susceptibility of clinical isolates of Fusarium to antifungal drugs.Mycoses1996391-2374010.1111/j.1439‑0507.1996.tb00081.x 8786755
    [Google Scholar]
  160. ClancyC.J. HuangH. ChengS. DerendorfH. NguyenM.H. Characterizing the effects of caspofungin on candida albicans, Candida parapsilosis, and Candida glabrata isolates by simultaneous time-kill and postantifungal-effect experiments.Antimicrob. Agents Chemother.20065072569257210.1128/AAC.00291‑06 16801448
    [Google Scholar]
  161. KlepserM.E. ErnstE.J. LewisR.E. ErnstM.E. PfallerM.A. Influence of test conditions on antifungal time-kill curve results: Proposal for standardized methods.Antimicrob. Agents Chemother.19984251207121210.1128/AAC.42.5.1207 9593151
    [Google Scholar]
  162. CrouchS.P.M. KozlowskiR. SlaterK.J. FletcherJ. The use of ATP bioluminescence as a measure of cell proliferation and cytotoxicity.J. Immunol. Methods19931601818810.1016/0022‑1759(93)90011‑U 7680699
    [Google Scholar]
  163. BozorgA. GatesI.D. SenA. Using bacterial bioluminescence to evaluate the impact of biofilm on porous media hydraulic properties.J. Microbiol. Methods2015109849210.1016/j.mimet.2014.11.015 25479429
    [Google Scholar]
  164. PaloqueL. VidalN. CasanovaM. A new, rapid and sensitive bioluminescence assay for drug screening on Leishmania.J. Microbiol. Methods201395332032310.1016/j.mimet.2013.09.006 24055386
    [Google Scholar]
  165. FingerS. WiegandC. BuschmannH.J. HiplerU.C. Antibacterial properties of cyclodextrin-antiseptics-complexes determined by microplate laser nephelometry and ATP bioluminescence assay.Int. J. Pharm.20134521-218819310.1016/j.ijpharm.2013.04.080 23665083
    [Google Scholar]
  166. AndreuN. FletcherT. KrishnanN. WilesS. RobertsonB.D. Rapid measurement of antituberculosis drug activity in vitro and in macrophages using bioluminescence.J. Antimicrob. Chemother.201267240441410.1093/jac/dkr472 22101217
    [Google Scholar]
  167. BeckersB. LangH.R.M. SchimkeD. LammersA. Evaluation of a bioluminescence assay for rapid antimicrobial susceptibility testing of mycobacteria.Eur. J. Clin. Microbiol.19854655656110.1007/BF02013394 3937733
    [Google Scholar]
  168. FingerS. WiegandC. BuschmannH.J. HiplerU.C. Antimicrobial properties of cyclodextrin-antiseptics-complexes determined by microplate laser nephelometry and ATP bioluminescence assay.Int. J. Pharm.20124361-285185610.1016/j.ijpharm.2012.07.009 22877865
    [Google Scholar]
  169. GaligerC. BrockM. JouvionG. SaversA. ParlatoM. Ibrahim-GranetO. Assessment of efficacy of antifungals against Aspergillus fumigatus: Value of real-time bioluminescence imaging.Antimicrob. Agents Chemother.20135773046305910.1128/AAC.01660‑12 23587947
    [Google Scholar]
  170. VojtekL. DobešP. BüyükgüzelE. AtosuoJ. HyršlP. Bioluminescent assay for evaluating antimicrobial activity in insect haemolymph.Eur. J. Entomol.2014111333534010.14411/eje.2014.045
    [Google Scholar]
  171. PaparellaA. TaccognaL. AguzziI. Flow cytometric assessment of the antimicrobial activity of essential oils against Listeria monocytogenes.Food Control200819121174118210.1016/j.foodcont.2008.01.002
    [Google Scholar]
  172. RamaniR. ChaturvediV. Flow cytometry antifungal susceptibility testing of pathogenic yeasts other than Candida albicans and comparison with the NCCLS broth microdilution test.Antimicrob. Agents Chemother.200044102752275810.1128/AAC.44.10.2752‑2758.2000 10991856
    [Google Scholar]
  173. GreenL.J. MarderP. MannL.L. ChioL.C. CurrentW.L. LY303366 exhibits rapid and potent fungicidal activity in flow cytometric assays of yeast viability.Antimicrob. Agents Chemother.199943483083510.1128/AAC.43.4.830 10103187
    [Google Scholar]
  174. GreenL. PetersenB. SteimelL. HaeberP. CurrentW. Rapid determination of antifungal activity by flow cytometry.J. Clin. Microbiol.19943241088109110.1128/jcm.32.4.1088‑1091.1994 8027319
    [Google Scholar]
  175. RamaniR. RamaniA. WongS.J. Rapid flow cytometric susceptibility testing of Candida albicans.J. Clin. Microbiol.19973592320232410.1128/jcm.35.9.2320‑2324.1997 9276410
    [Google Scholar]
  176. YousefA.E. CourtneyP.D. Basics of stress adaptation and implications in new-generation foods.Microb Stress Adaptat Food Safe20031130
    [Google Scholar]
/content/journals/ctm/10.2174/0122150838261497231005115943
Loading
/content/journals/ctm/10.2174/0122150838261497231005115943
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test