Skip to content
2000
image of Plant Species with Antimicrobial Effects and the Importance of a Standardization of Protocols for Antimicrobial Agents

Abstract

In modern times, microbial resistance is a global threat to health and development. The misuse and inappropriate use of antimicrobials is the main cause of developing drug-resistant pathogens. It requires multiple areas in direction to attain sustainable advance goals. As a result of microbial resistance, the necessity for costly medications and expenses are obstructed worldwide. Due to rising attention in the research of new antimicrobial medicaments from a variety of natural or synthetic sources to fight microbial resistance. Thus, natural antimicrobial agents have been used to a great extent nowadays because plant-derived antimicrobial agents are considered to be safer alternatives for health as compared to those synthetic antimicrobial agents. Overall, the active ingredients, water, essential oils, and ethanolic extracts from selected plants and the mixture of a variety of these natural extracts have been used for centuries, because they possess antimicrobial activity which inhibits the growth of microbes. Natural plants as an antimicrobial agent, like extracts of L., L., , , L., L., Roscoe, (L.) Kuntze, L., L., and many others have been preferred and used for ages because they are easily available worldwide. They are usually of low cost and have little or no side effects. Several antimicrobial screening approaches like the disk-diffusion method, well diffusion method, micro broth dilution assay, sterile disk method, and agar diffusion method are generally cast off for measurement of reproducibility and standardization of these antimicrobial agents. This review article is a comprehensive description of natural plants like L., L., , ., containing those extracts used as antimicrobial agents listed, and numerous in vitro antimicrobial susceptibility testing methods are reported. These identified plant species and antimicrobial screening techniques hold the potential for formulating these plants into antimicrobial drugs, warranting further study and exploration in the field of medicine.

Loading

Article metrics loading...

/content/journals/ctm/10.2174/0122150838261497231005115943
2024-12-02
2025-01-22
Loading full text...

Full text loading...

References

  1. Bhatia R. Narain J.P. The growing challenge of antimicrobial resistance in the South-East Asia Region--are we losing the battle? Indian J. Med. Res. 2010 132 5 482 486 21149995
    [Google Scholar]
  2. Boucher H.W. Talbot G.H. Bradley J.S. Edwards J.E. Gilbert D. Rice L.B. Scheld M. Spellberg B. Bartlett J. Bad bugs, no drugs: No ESKAPE! an update from the infectious diseases society of America. Clin. Infect. Dis. 2009 48 1 1 12 10.1086/595011 19035777
    [Google Scholar]
  3. Giamarellou H. Multidrug-resistant Gram-negative bacteria: how to treat and for how long. Int. J. Antimicrob. Agents 2010 36 Suppl. 2 S50 S54 10.1016/j.ijantimicag.2010.11.014 21129924
    [Google Scholar]
  4. Iwu M.W. Duncan A.R. Okunji C.O. New antimicrobials of plant origin. Perspectives on new crops and new uses. Alexandria, VA ASHS Press 1999 457 462
    [Google Scholar]
  5. World Health Organization The world health report 2002,reducing risks, promoting healthy life. 2002 Available from:https://www.who.int/publications/i/item/9241562072
  6. Medina A.L. Lucero M.E. Holguin F.O. Estell R.E. Posakony J.J. Simon J. O’Connell M.A. Composition and antimicrobial activity of anemopsis californica leaf oil. J. Agric. Food Chem. 2005 53 22 8694 8698 10.1021/jf0511244 16248573
    [Google Scholar]
  7. Romero C.D. Chopin S.F. Buck G. Martinez E. Garcia M. Bixby L. Antibacterial properties of common herbal remedies of the southwest. J. Ethnopharmacol. 2005 99 2 253 257 10.1016/j.jep.2005.02.028 15894135
    [Google Scholar]
  8. Duraipandiyan V. Ayyanar M. Ignacimuthu S. Antimicrobial activity of some ethnomedicinal plants used by Paliyar tribe from Tamil Nadu, India. BMC Complement. Altern. Med. 2006 6 1 35 10.1186/1472‑6882‑6‑35 17042964
    [Google Scholar]
  9. Djeussi D.E. Noumedem J.A.K. Seukep J.A. Fankam A.G. Voukeng I.K. Tankeo S.B. Nkuete A.H.L. Kuete V. Antibacterial activities of selected edible plants extracts against multidrug-resistant Gram-negative bacteria. BMC Complement. Altern. Med. 2013 13 1 164 10.1186/1472‑6882‑13‑164 23837916
    [Google Scholar]
  10. WHO WHO methods and data sources for global burden of disease estimates 2000-2011. Geneva Department of Health Statistics and Information Systems 2013
    [Google Scholar]
  11. Gupta M. Sharma R. Kumar A. Comparative potential of simvastatin, rosuvastatin and fluvastatin against bacterial infection: An in silico and in vitro study. Orient. Pharm. Exp. Med. 2019 19 3 259 275 10.1007/s13596‑019‑00359‑z
    [Google Scholar]
  12. Brown D. Antibiotic resistance breakers: Can repurposed drugs fill the antibiotic discovery void? Nat. Rev. Drug Discov. 2015 14 12 821 832 10.1038/nrd4675 26493767
    [Google Scholar]
  13. Rana R. Sharma R. Kumar A. Repurposing of existing statin drugs for treatment of microbial infections, how much promising? Infect Disord Drug Targets 2019 19 3 224 37 10.2174/1871526518666180806123230
    [Google Scholar]
  14. Geissman T.A. Flavonoid compounds, tannins, lignins and, related compounds. Comprehensive biochemistry. Elsevier 1963 213 250
    [Google Scholar]
  15. Thomson W.A. Schultes R.E. Medicines from the Earth. McGraw-Hill 1978
    [Google Scholar]
  16. Wild R. The complete book of natural and medicinal cures. Complement. Health Pract. Rev. 1994 3 139
    [Google Scholar]
  17. Brantner A. Maleš Ž. Pepeljnjak S. Antolić A. Antimicrobial activity of paliurus spina-christi Mill. (Christ’s thorn). J. Ethnopharmacol. 1996 52 2 119 122 10.1016/0378‑8741(96)01408‑0 8735457
    [Google Scholar]
  18. Mahbub K.R. Hoq M.M. Ahmed M.M. Sarker A. In vitro antibacterial activity of Crescentia cujete and Moringa oleifera. Bangladesh Res Pub J. 2011 5 4 337 343
    [Google Scholar]
  19. Duke J.A. Handbook of phytochemical constituent grass, herbs and other economic plants. CRC press 1992
    [Google Scholar]
  20. Rani N. Dahiya R.S. Kumar P. In silico studies of plant deriuved bioactive compounds of Wedelia species. Antiinfect. Agents 2022 20 5 e170522204885 10.2174/2211352520666220517094604
    [Google Scholar]
  21. Schmidt H. Phenol oxidase (EC 1.14.18.1). A marker enzyme for defense cells. Prog. Histochem. Cytochem. 1988 17 3 III 186 10.1016/S0079‑6336(88)80006‑8 3127860
    [Google Scholar]
  22. Wu J. Chen T. Luo X. Han D. Wang Z. Wu J. TG/FTIR analysis on co-pyrolysis behavior of PE, PVC and PS. Waste Manag. 2014 34 3 676 682 10.1016/j.wasman.2013.12.005 24411064
    [Google Scholar]
  23. Kazmi M.H. Malik A. Hameed S. Akhtar N. Noor Ali S. An anthraquinone derivative from cassia italica. Phytochemistry 1994 36 3 761 763 10.1016/S0031‑9422(00)89812‑X 7765689
    [Google Scholar]
  24. Duke J.A. Handbook of phytochemical constituent grass, herbs and other economic plants. CRC press 1992
    [Google Scholar]
  25. Rani N. Singh R. Kumar P. Molecular modelling study for the evaluation of natural compounds as potential lanosterol 14α-demethylase inhibitors. Lett. Drug Des. Discov. 2022 19 5 459 471 10.2174/1570180818666211027114007
    [Google Scholar]
  26. Sakanaka S. Shimura N. Aizawa M. Kim M. Yamamoto T. Preventive effect of green tea polyphenols against dental caries in conventional rats. Biosci. Biotechnol. Biochem. 1992 56 4 592 594 10.1271/bbb.56.592 27280653
    [Google Scholar]
  27. Tsuchiya H. Sato M. Iinuma M. Yokoyama J. Ohyama M. Tanaka T. Takase I. Namikawa I. Inhibition of the growth of cariogenic bacteria in vitro by plant falvanones. Experientia 1994 50 9 846 849 10.1007/BF01956469 7925853
    [Google Scholar]
  28. Thomson W.A. Schultes R.E. Medicines from the Earth. McGraw-Hill 1978
    [Google Scholar]
  29. Borris R.P. Natural products research: Perspectives from a major pharmaceutical company. J. Ethnopharmacol. 1996 51 1-3 29 38 10.1016/0378‑8741(95)01347‑4 9213624
    [Google Scholar]
  30. Asres K. Bucar F. Kartnig T. Witvrouw M. Pannecouque C. De Clercq E. Antiviral activity against human immunodeficiency virus type 1 (HIV-1) and type 2 (HIV-2) of ethnobotanically selected Ethiopian medicinal plants. Phytother. Res. 2001 15 1 62 69 10.1002/1099‑1573(200102)15:1<62::AID‑PTR956>3.0.CO;2‑X 11180526
    [Google Scholar]
  31. Barnard D.L. Huffman J.H. Meyerson L.R. Sidwell R.W. Mode of inhibition of respiratory syncytial virus by a plant flavonoid, SP-303. Chemotherapy 1993 39 3 212 217 10.1159/000239128 8508691
    [Google Scholar]
  32. Kaul T.N. Middleton E. Jr Ogra P.L. Antiviral effect of flavonoids on human viruses. J. Med. Virol. 1985 15 1 71 79 10.1002/jmv.1890150110 2981979
    [Google Scholar]
  33. Perrett S. Whitfield P.J. Sanderson L. Bartlett A. The plant molluscicide Millettia thonningii (Leguminosae) as a topical antischistosomal agent. J. Ethnopharmacol. 1995 47 1 49 54 10.1016/0378‑8741(95)01253‑A 7564421
    [Google Scholar]
  34. Hunter M.D. Hull L.A. Variation in concentrations of phloridzin and phloretin in apple foliage. Phytochemistry 1993 34 5 1251 1254 10.1016/0031‑9422(91)80010‑X
    [Google Scholar]
  35. Afolayan A.J. Meyer J.J.M. The antimicrobial activity of 3,5,7-trihydroxyflavone isolated from the shoots of Helichrysum aureonitens. J. Ethnopharmacol. 1997 57 3 177 181 10.1016/S0378‑8741(97)00065‑2 9292410
    [Google Scholar]
  36. Meyer J.J.M. Afolayan A.J. Taylor M.B. Erasmus D. Antiviral activity of galangin isolated from the aerial parts of Helichrysum aureonitens. J. Ethnopharmacol. 1997 56 2 165 169 10.1016/S0378‑8741(97)01514‑6 9174978
    [Google Scholar]
  37. Haslam E. Natural polyphenols (vegetable tannins) as drugs: Possible modes of action. J. Nat. Prod. 1996 59 2 205 215 10.1021/np960040+ 8991956
    [Google Scholar]
  38. Scalbert A. Antimicrobial properties of tannins. Phytochemistry 1991 30 12 3875 3883 10.1016/0031‑9422(91)83426‑L
    [Google Scholar]
  39. Serafini M. Del Rio D. Understanding the association between dietary antioxidants, redox status and disease: Is the total antioxidant capacity the right tool? Redox Rep. 2004 9 3 145 152 10.1179/135100004225004814 15327744
    [Google Scholar]
  40. Weinmann I. History of the development and applications of coumarin and coumarin-related compounds. Coumarins, biology, applications and mode of action. New York, NY John Wiley and Sons, Inc. 1997
    [Google Scholar]
  41. Brownlee H.E. McEuen A.R. Hedger J. Scott I.M. Anti-fungal effects of cocoa tannin on the witches’ broom pathogen Crinipellis perniciosa. Physiol. Mol. Plant Pathol. 1990 36 1 39 48 10.1016/0885‑5765(90)90090‑K
    [Google Scholar]
  42. Schultz J.C. Tannin-insect interactions. Chemistry and Significance of Condensed Tannins. Hemingway R.W. Karchesy J.J. Boston, MA Springer 1989 10.1007/978‑1‑4684‑7511‑1_26
    [Google Scholar]
  43. Butler L.G. Effects of condensed tannin on animal nutrition. Chemistry and significance of condensed tannins. Boston, MA Springer 1989 391 402 10.1007/978‑1‑4684‑7511‑1_24
    [Google Scholar]
  44. Jones G.A. McAllister T.A. Muir A.D. Cheng K.J. Effects of sainfoin (Onobrychis viciifolia Scop.) condensed tannins on growth and proteolysis by four strains of ruminal bacteria. Appl. Environ. Microbiol. 1994 60 4 1374 1378 10.1128/aem.60.4.1374‑1378.1994 16349244
    [Google Scholar]
  45. Lacy A. O’Kennedy R. Studies on coumarins and coumarin-related compounds to determine their therapeutic role in the treatment of cancer. Curr. Pharm. Des. 2004 10 30 3797 3811 10.2174/1381612043382693 15579072
    [Google Scholar]
  46. Piller N.B. A comparison of the effectiveness of some anti-inflammatory drugs on thermal oedema. Br. J. Exp. Pathol. 1975 56 6 554 560 1222119
    [Google Scholar]
  47. Thastrup O. Knudsen J.B. Lemmich J. Winther K. Inhibition of human platelet aggregation by dihydropyrano- and dihydrofuranocoumarins, a new class of cAMP-phosphodiesterase inhibitors. Biochem. Pharmacol. 1985 34 12 2137 2140 10.1016/0006‑2952(85)90407‑1 2988567
    [Google Scholar]
  48. Namba T. Morita O. Huang S.L. Goshima K. Hattori M. Kakiuchi N. Studies on cardio-active crude drugs; I. Effect of coumarins on cultured myocardial cells. Planta Med. 1988 54 4 277 282 10.1055/s‑2006‑962432 3222369
    [Google Scholar]
  49. Keating G.J. O’kennedy R. The chemistry and occurrence of coumarins. Coumarins, biology, applications and mode of action. New York, NY John Wiley and Sons, Inc. 1997 348
    [Google Scholar]
  50. Sher A. Antimicrobial activity of natural products from medicinal plants. Gomal J. Med.Sci. 2009 7 1
    [Google Scholar]
  51. Thornes R.D. Clinical and biological observations associated with coumarins. Coumarins, biology, applications and mode of action. New York, NY John Wiley and Sons, Inc. 1997 256
    [Google Scholar]
  52. Fernández M.A. García M.D. Sáenz M.T. Antibacterial activity of the phenolic acids fractions of Scrophularia frutescens and Scrophularia sambucifolia. J. Ethnopharmacol. 1996 53 1 11 14 10.1016/0378‑8741(96)01419‑5 8807471
    [Google Scholar]
  53. Hoult J.R.S. Payá M. Pharmacological and biochemical actions of simple coumarins: Natural products with therapeutic potential. Gen. Pharmacol. 1996 27 4 713 722 10.1016/0306‑3623(95)02112‑4 8853310
    [Google Scholar]
  54. Vishwakarma R.A. Stereoselective synthesis of α-arteether from artemisinin. J. Nat. Prod. 1990 53 1 216 217 10.1021/np50067a037
    [Google Scholar]
  55. Ayafor J.F. Tchuendem M.H.K. Nyasse B. Tillequin F. Anke H. Novel bioactive diterpenoids from Aframomum aulacocarpos. J. Nat. Prod. 1994 57 7 917 923 10.1021/np50109a007 7964787
    [Google Scholar]
  56. Habtemariam S. Gray A.I. Waterman P.G. A new antibacterial sesquiterpene from Premna oligotricha. J. Nat. Prod. 1993 56 1 140 143 10.1021/np50091a022 8450316
    [Google Scholar]
  57. Fujioka T. Kashiwada Y. Kilkuskie R.E. Cosentino L.M. Ballas L.M. Jiang J.B. Janzen W.P. Chen I.S. Lee K.H. Anti-AIDS agents, 11. Betulinic acid and platanic acid as anti-HIV principles from Syzigium claviflorum, and the anti-HIV activity of structurally related triterpenoids. J. Nat. Prod. 1994 57 2 243 247 10.1021/np50104a008 8176401
    [Google Scholar]
  58. Ghoshal S. Prasad B.N.K. Lakshmi V. Antiamoebic activity of piper longum fruits against entamoeba histolytica in vitro and in vivo. J. Ethnopharmacol. 1996 50 3 167 170 10.1016/0378‑8741(96)01382‑7 8691851
    [Google Scholar]
  59. Omulokoli E. Khan B. Chhabra S.C. Antiplasmodial activity of four Kenyan medicinal plants. J. Ethnopharmacol. 1997 56 2 133 137 10.1016/S0378‑8741(97)01521‑3 9174974
    [Google Scholar]
  60. Colilla F.J. Rocher A. Mendez E. γ‐Purothionins: Amino acid sequence of two polypeptides of a new family of thionins from wheat endosperm. FEBS Lett. 1990 270 1-2 191 194 10.1016/0014‑5793(90)81265‑P 2226781
    [Google Scholar]
  61. Mendez E. Moreno A. Colilla F. Pelaez F. Limas G.G. Mendez R. Soriano F. Salinas M. Haro C. Primary structure and inhibition of protein synthesis in eukaryotic cell-free system of a novel thionin, γ-hordothionin, from barley endosperm. Eur. J. Biochem. 1990 194 2 533 539 10.1111/j.1432‑1033.1990.tb15649.x 2176600
    [Google Scholar]
  62. De Caleya R.F. Gonzalez-Pascual B. García-Olmedo F. Carbonero P. Susceptibility of phytopathogenic bacteria to wheat purothionins in vitro. Appl. Microbiol. 1972 23 5 998 1000 10.1128/am.23.5.998‑1000.1972 5031563
    [Google Scholar]
  63. Kragh K.M. Nielsen J.E. Nielsen K.K. Dreboldt S. Mikkelsen J.D. Characterization and localization of new antifungal cysteine-rich proteins from Beta vulgaris. Mol. Plant Microbe Interact. 1995 8 3 424 434 10.1094/MPMI‑8‑0424 7655063
    [Google Scholar]
  64. Ahmad R.S. Hussain M.B. Sultan M.T. Arshad M.S. Waheed M. Shariati M.A. Plygun S. Hashempur M.H. Biochemistry, safety, pharmacological activities, and clinical applications of turmeric, a mechanistic review. Evid. Based Complement. Alternat. Med. 2020 2020 1 14 10.1155/2020/7656919 32454872
    [Google Scholar]
  65. Jahan R. Al-Nahain A. Majumder S. Rahmatullah M. Ethnopharmacological significance of Eclipta alba (L.) hassk.(Asteraceae). Int. Sch. Res. Notices 2014 2014 1 22 10.1155/2014/385969 27355071
    [Google Scholar]
  66. Cohen M. Sactum T.O. Tulsi - Ocimum sanctum: A herb for all reasons. J. Ayurveda Integr. Med. 2014 5 4 251 259 10.4103/0975‑9476.146554 25624701
    [Google Scholar]
  67. Chandorkar N. Tambe S. Amin P. Madankar C. A systematic and comprehensive review on current understanding of the pharmacological actions, molecular mechanisms, and clinical implications of the genus Eucalyptus. Phytomedicine Plus 2021 1 4 100089 10.1016/j.phyplu.2021.100089
    [Google Scholar]
  68. Faujdar S. Sati B. Sharma S. Pathak A.K. Paliwal S.K. Phytochemical evaluation and anti-hemorrhoidal activity of bark of Acacia ferruginea DC. J. Tradit. Complement. Med. 2019 9 2 85 89 10.1016/j.jtcme.2018.02.003 30963042
    [Google Scholar]
  69. Moreno-Cadena P. Hoogenboom G. Cock J.H. Ramirez-Villegas J. Pypers P. Kreye C. Tariku M. Ezui K.S. Becerra Lopez-Lavalle L.A. Asseng S. Modeling growth, development and yield of cassava: A review. Field Crops Res. 2021 267 108140 10.1016/j.fcr.2021.108140 34140751
    [Google Scholar]
  70. Musa M.S.M. Sulaiman W.R.W. Majid Z.A. Majid Z.A. Idris A.K. Rajaei K. Henna extract as a potential sacrificial agent in reducing surfactant adsorption on kaolinite: The role of salinity. J King Saud Univ - EngSci 2020 32 8 543 547 10.1016/j.jksues.2019.06.001
    [Google Scholar]
  71. Anh N.H. Kim S.J. Long N.P. Min J.E. Yoon Y.C. Lee E.G. Kim M. Kim T.J. Yang Y.Y. Son E.Y. Yoon S.J. Diem N.C. Kim H.M. Kwon S.W. Ginger on human health, a comprehensive systematic review of 109 randomized controlled trials. Nutrients 2020 12 1 157 10.3390/nu12010157 31935866
    [Google Scholar]
  72. Prasanth M. Sivamaruthi B. Chaiyasut C. Tencomnao T. A review of the role of green tea (Camellia sinensis) in antiphotoaging, stress resistance, neuroprotection, and autophagy. Nutrients 2019 11 2 474 10.3390/nu11020474 30813433
    [Google Scholar]
  73. Vij T. Prashar Y. A review on medicinal properties of Carica papaya Linn. Asian Pac. J. Trop. Dis. 2015 5 1 1 6 10.1016/S2222‑1808(14)60617‑4
    [Google Scholar]
  74. Singletary K. Bay Leaf. Nutr. Today 2021 56 4 202 208 10.1097/NT.0000000000000493
    [Google Scholar]
  75. Aung E.E. Kristanti A.N. Aminah N.S. Takaya Y. Ramadhan R. Plant description, phytochemical constituents and bioactivities of Syzygium genus: A review. Open Chem. 2020 18 1 1256 1281 10.1515/chem‑2020‑0175
    [Google Scholar]
  76. Morales-González J.A. Madrigal-Bujaidar E. Sánchez-Gutiérrez M. Izquierdo-Vega J.A. Valadez-Vega M.C. Álvarez-González I. Morales-González Á. Madrigal-Santillán E. Garlic (Allium sativum L.).; A brief review of its antigenotoxic effects. Foods 2019 8 8 343 10.3390/foods8080343 31412555
    [Google Scholar]
  77. Mohiuddin A.K. Alternative Measures for IBS Management. J. Gastroenterol. Hepatol. Res. 2019 8 6 3025 3032
    [Google Scholar]
  78. Bairwa R. Rajawat B.S. Sodha R.S. Trachyspermum ammi. Pharmacogn. Rev. 2012 6 11 56 60 10.4103/0973‑7847.95871 22654405
    [Google Scholar]
  79. Islas J.F. Acosta E. G-Buentello Z. Delgado-Gallegos J.L. Moreno-Treviño M.G. Escalante B. Moreno-Cuevas J.E. An overview of Neem (Azadirachta indica) and its potential impact on health. J. Funct. Foods 2020 74 104171 10.1016/j.jff.2020.104171
    [Google Scholar]
  80. Sajjad A. Aloe vera, An ancient herb for modern dentistry-A literature review. J. Dental Surg. 2014 6
    [Google Scholar]
  81. Verma N. Gupta S.K. Tiwari S. Mishra A.K. Safety of ashwagandha root extract: A randomized, placebo-controlled, study in healthy volunteers. Complement. Ther. Med. 2021 57 102642 10.1016/j.ctim.2020.102642 33338583
    [Google Scholar]
  82. Whayne T.F. Jr Clinical use of digitalis, a state-of-the-art review. Am. J. Cardiovasc. Drugs 2018 18 6 427 440 10.1007/s40256‑018‑0292‑1 30066080
    [Google Scholar]
  83. Variya B.C. Bakrania A.K. Patel S.S. Emblica officinalis (Amla): A review for its phytochemistry, ethnomedicinal uses and medicinal potentials with respect to molecular mechanisms. Pharmacol. Res. 2016 111 180 200 10.1016/j.phrs.2016.06.013 27320046
    [Google Scholar]
  84. Gaire B.P. Subedi L. A review on the pharmacological and toxicological aspects of Datura stramonium L. J. Integr. Med. 2013 11 2 73 79 10.3736/jintegrmed2013016 23506688
    [Google Scholar]
  85. Heatley N.G. A method for the assay of penicillin. Biochem. J. 1944 38 1 61 65 10.1042/bj0380061 16747749
    [Google Scholar]
  86. Balouiri M. Sadiki M. Ibnsouda S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016 6 2 71 79 10.1016/j.jpha.2015.11.005 29403965
    [Google Scholar]
  87. Wayne P.A. Method for antifungal disk diffusion susceptibility testing of yeasts. CLSI m44-a 2004 23 6
    [Google Scholar]
  88. Jorgensen J.H. Ferraro M.J. Jorgensen J.H. Ferraro M.J. Antimicrobial susceptibility testing: A review of general principles and contemporary practices. Clin. Infect. Dis. 2009 49 11 1749 1755 10.1086/647952 19857164
    [Google Scholar]
  89. Caron F. Antimicrobial susceptibility testing, a four facets tool for the clinician. J. Anti-Infect. 2012 14 4 168 174 10.1016/j.antinf.2012.10.002
    [Google Scholar]
  90. Hombach M. Zbinden R. Böttger E.C. Standardisation of disk diffusion results for antibiotic susceptibility testing using the sirscan automated zone reader. BMC Microbiol. 2013 13 1 225 10.1186/1471‑2180‑13‑225 24099061
    [Google Scholar]
  91. Kreger B.E. Craven D.E. McCabe W.R. Gram-negative bacteremia. Am. J. Med. 1980 68 3 344 355 10.1016/0002‑9343(80)90102‑3 6987871
    [Google Scholar]
  92. López-Oviedo E. Aller A.I. Martín C. Castro C. Ramirez M. Pemán J.M. Cantón E. Almeida C. Martín-Mazuelos E. Evaluation of disk diffusion method for determining posaconazole susceptibility of filamentous fungi: Comparison with CLSI broth microdilution method. Antimicrob. Agents Chemother. 2006 50 3 1108 1111 10.1128/AAC.50.3.1108‑1111.2006 16495281
    [Google Scholar]
  93. Arikan S. Yurdakul P. Hascelik G. Comparison of two methods and three end points in determination of in vitro activity of micafungin against Aspergillus spp. Antimicrob. Agents Chemother. 2003 47 8 2640 2643 10.1128/AAC.47.8.2640‑2643.2003 12878531
    [Google Scholar]
  94. Arikan S. Paetznick V. Rex J.H. Comparative evaluation of disk diffusion with microdilution assay in susceptibility testing of caspofungin against Aspergillus and Fusarium isolates. Antimicrob. Agents Chemother. 2002 46 9 3084 3087 10.1128/AAC.46.9.3084‑3087.2002 12183278
    [Google Scholar]
  95. Espinel-Ingroff A. Canton E. Fothergill A. Ghannoum M. Johnson E. Jones R.N. Ostrosky-Zeichner L. Schell W. Gibbs D.L. Wang A. Turnidge J. Quality control guidelines for amphotericin B, Itraconazole, posaconazole, and voriconazole disk diffusion susceptibility tests with nonsupplemented Mueller-Hinton Agar (CLSI M51-A document) for nondermatophyte Filamentous Fungi. J. Clin. Microbiol. 2011 49 7 2568 2571 10.1128/JCM.00393‑11 21543581
    [Google Scholar]
  96. Fourati-Ben Fguira L. Fotso S. Ben Ameur-Mehdi R. Mellouli L. Laatsch H. Purification and structure elucidation of antifungal and antibacterial activities of newly isolated Streptomyces sp. strain US80. Res. Microbiol. 2005 156 3 341 347 10.1016/j.resmic.2004.10.006 15808937
    [Google Scholar]
  97. Konaté K. Mavoungou J. Lepengué A. Aworet-Samseny R.R.R. Hilou A. Souza A. Dicko M.H. M’Batchi B. Antibacterial activity against β- lactamase producing Methicillin and Ampicillin-resistants Staphylococcus aureus: Fractional Inhibitory Concentration Index (FICI) determination. Ann. Clin. Microbiol. Antimicrob. 2012 11 1 18 10.1186/1476‑0711‑11‑18 22716026
    [Google Scholar]
  98. de Billerbeck V.G. Huiles essentielles et bactéries résistantes aux antibiotiques. Phytotherapie 2007 5 5 249 253 10.1007/s10298‑007‑0265‑z
    [Google Scholar]
  99. Das K. Tiwari R.K. Shrivastava D.K. Techniques for evaluation of medicinal plant products as antimicrobial agents, current methods and future trends. J. Med. Plants Res. 2010 4 2 104 111
    [Google Scholar]
  100. Esteban J. Ortiz A. Jiménez M.S. Usefulness of E-test strips for testing susceptibility of Mycobacterium tuberculosis complex strains. Eur. J. Clin. Microbiol. Infect. Dis. 2005 24 12 856 857 10.1007/s10096‑005‑0042‑6 16315010
    [Google Scholar]
  101. Baker C.N. Stocker S.A. Culver D.H. Thornsberry C. Comparison of the E Test to agar dilution, broth microdilution, and agar diffusion susceptibility testing techniques by using a special challenge set of bacteria. J. Clin. Microbiol. 1991 29 3 533 538 10.1128/jcm.29.3.533‑538.1991 2037671
    [Google Scholar]
  102. Berghaus L.J. Giguère S. Guldbech K. Warner E. Ugorji U. Berghaus R.D. Comparison of Etest, disk diffusion, and broth macrodilution for in vitro susceptibility testing of Rhodococcus equi. J. Clin. Microbiol. 2015 53 1 314 318 10.1128/JCM.02673‑14 25378571
    [Google Scholar]
  103. Gupta P. Khare V. Kumar D. Ahmad A. Banerjee G. Singh M. Comparative evaluation of disc diffusion and E-test with broth micro-dilution in susceptibility testing of amphotericin B, voriconazole and caspofungin against clinical Aspergillus isolates. J. Clin. Diagn. Res. 2015 9 1 DC04 DC07 10.7860/JCDR/2015/10467.5395 25737984
    [Google Scholar]
  104. White R.L. Burgess D.S. Manduru M. Bosso J.A. Comparison of three different in vitro methods of detecting synergy: Time-kill, checkerboard, and E test. Antimicrob. Agents Chemother. 1996 40 8 1914 1918 10.1128/AAC.40.8.1914 8843303
    [Google Scholar]
  105. Denes É. Hidri N. Synergie et antagonisme en antibiothérapie. Antibiotiques 2009 11 2 106 115 10.1016/j.antib.2009.02.001
    [Google Scholar]
  106. Gülmez D. Çakar A. Şener B. Hasçelik G. Karakaya J. Gülmez D. Comparison of different antimicrobial susceptibility testing methods for Stenotrophomonas maltophilia and results of synergy testing. J. Infect. Chemother. 2010 16 5 322 328 10.1007/s10156‑010‑0068‑2 20449623
    [Google Scholar]
  107. Bassolé I.H.N. Juliani H.R. Essential oils in combination and their antimicrobial properties. Molecules 2012 17 4 3989 4006 10.3390/molecules17043989 22469594
    [Google Scholar]
  108. Magaldi S. Mata-Essayag S. Hartung de Capriles C. Pérez C. Colella M.T. Olaizola C. Ontiveros Y. Well diffusion for antifungal susceptibility testing. Int. J. Infect. Dis. 2004 8 1 39 45 10.1016/j.ijid.2003.03.002 14690779
    [Google Scholar]
  109. Valgas C. Souza S.M. Smânia E.F.A. Smânia A. Jr Screening methods to determine antibacterial activity of natural products. Braz. J. Microbiol. 2007 38 2 369 380 10.1590/S1517‑83822007000200034
    [Google Scholar]
  110. Jiménez-Esquilín A.E. Roane T.M. Antifungal activities of actinomycete strains associated with high-altitude sagebrush rhizosphere. J. Ind. Microbiol. Biotechnol. 2005 32 8 378 381 10.1007/s10295‑005‑0007‑x 16044290
    [Google Scholar]
  111. Elleuch L. Shaaban M. Smaoui S. Mellouli L. Karray-Rebai I. Fourati-Ben Fguira L. Shaaban K.A. Laatsch H. Bioactive secondary metabolites from a new terrestrial Streptomyces sp. TN262. Appl. Biochem. Biotechnol. 2010 162 2 579 593 10.1007/s12010‑009‑8808‑4 19842066
    [Google Scholar]
  112. Lertcanawanichakul M. Sawangnop S. A comparison of two methods used for measuring the antagonistic activity of Bacillus species. Walailak J. Sci. Technol. 2008 5 2 161 171
    [Google Scholar]
  113. Ali‐Shtayeh M.S. Abu Ghdeib S.I. Antifungal activity of plant extracts against dermatophytes. Mycoses 1999 42 (11‐12) 665 72
    [Google Scholar]
  114. Mukherjee P.K. Raghu K. Effect of temperature on antagonistic and biocontrol potential of Trichoderma sp. on Sclerotium rolfsii. Mycopathologia 1997 139 3 151 155 10.1023/A:1006868009184 16283454
    [Google Scholar]
  115. Kumar S.N. Nambisan B. Sundaresan A. Mohandas C. Anto R.J. Isolation and identification of antimicrobial secondary metabolites from Bacillus cereus associated with a rhabditid entomopathogenic nematode. Ann. Microbiol. 2014 64 1 209 218 10.1007/s13213‑013‑0653‑6
    [Google Scholar]
  116. Goodall R.R. Levi A.A. A microchromatographic method for the detection and approximate determination of the different penicillins in a mixture. Nature 1946 158 4019 675 676 10.1038/158675a0 20274358
    [Google Scholar]
  117. Fischer R. Lautner H. [On the paper chromatographic detection of penicillin preparations]. Arch. Pharm. 1961 294 1 1 7 10.1002/ardp.19612940102 13699864
    [Google Scholar]
  118. Horváth G. Jámbor N. Végh A. Böszörményi A. Lemberkovics É. Héthelyi É. Kovács K. Kocsis B. Antimicrobial activity of essential oils: The possibilities of TLC–bioautography. Flavour Fragrance J. 2010 25 3 178 182 10.1002/ffj.1993
    [Google Scholar]
  119. Mehrabani M. Kazemi A. Ayatollahi Mousavi S.A. Rezaifar M. Alikhah H. Nosky A. Evaluation of antifungal activities of Myrtus communis L. by bioautography method. Jundishapur J. Microbiol. 2013 6 8 10.5812/jjm.8316
    [Google Scholar]
  120. Marston A. Thin-layer chromatography with biological detection in phytochemistry. J. Chromatogr. A 2011 1218 19 2676 2683 10.1016/j.chroma.2010.12.068 21236438
    [Google Scholar]
  121. Dewanjee S. Gangopadhyay M. Bhattacharya N. Khanra R. Dua T.K. Bioautography and its scope in the field of natural product chemistry. J. Pharm. Anal. 2015 5 2 75 84 10.1016/j.jpha.2014.06.002 29403918
    [Google Scholar]
  122. Choma I.M. Grzelak E.M. Bioautography detection in thin-layer chromatography. J. Chromatogr. A 2011 1218 19 2684 2691 10.1016/j.chroma.2010.12.069 21232747
    [Google Scholar]
  123. Grzelak E.M. Majer-Dziedzic B. Choma I.M. Development of a novel direct bioautography-thin-layer chromatography test: Optimization of growth conditions for gram-negative bacteria, Escherichia coli. J. AOAC Int. 2011 94 5 1567 1572 10.5740/jaoac.10‑385 22165022
    [Google Scholar]
  124. Brantner A.H. Influence of various parameters on the evaluation of antibacterial compounds by the bioautographic TLC assay. Pharmaceut Pharmacol Lett. 1997 7 4 152 154
    [Google Scholar]
  125. Silva M.T.G. Simas S.M. Batista T.G.F.M. Cardarelli P. Tomassini T.C.B. Studies on antimicrobial activity, in vitro, of Physalis angulata L. (Solanaceae) fraction and physalin B bringing out the importance of assay determination. Mem. Inst. Oswaldo Cruz 2005 100 7 779 782 10.1590/S0074‑02762005000700018 16410969
    [Google Scholar]
  126. Shahat A.A. El-Barouty G. Hassan R.A. Hammouda F.M. Abdel-Rahman F.H. Saleh M.A. Chemical composition and antimicrobial activities of the essential oil from the seeds of Enterolobium contortisiliquum (leguminosae). J. Environ. Sci. Health B 2008 43 6 519 525 10.1080/03601230802174714 18665989
    [Google Scholar]
  127. Suleimana M.M. McGaw L.J. Naidoo V. Eloff J.N. Detection of antimicrobial compounds by bioautography of different extracts of leaves of selected South African tree species. Afr. J. Tradit. Complement. Altern. Med. 2009 7 1 64 78 21304615
    [Google Scholar]
  128. Homans A.L. Fuchs A. Direct bioautography on thin-layer chromatograms as a method for detecting fungitoxic substances. J. Chromatogr. A 1970 51 2 327 329 10.1016/S0021‑9673(01)96877‑3 5507078
    [Google Scholar]
  129. Hamburger M.O. Cordell G.A. A direct bioautographic tlc assay for compounds possessing antibacterial activity. J. Nat. Prod. 1987 50 1 19 22 10.1021/np50049a003 3110376
    [Google Scholar]
  130. Balouiri M.O. Bouhdid S.A. Harki E. Sadiki M.O. Ouedrhiri W.E. Ibnsouda S.K. Antifungal activity of Bacillus spp. isolated from Calotropis procera AIT. Rhizosphere against Candida albicans. Asian J. Pharm. Clin. Res. 2015 8 213 217
    [Google Scholar]
  131. Pfaller M.A. Sheehan D.J. Rex J.H. Determination of fungicidal activities against yeasts and molds: Lessons learned from bactericidal testing and the need for standardization. Clin. Microbiol. Rev. 2004 17 2 268 280 10.1128/CMR.17.2.268‑280.2004 15084501
    [Google Scholar]
  132. Wikler M.A. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, approved standard. CLSI (NCCLS) 2006 26 M7 A7
    [Google Scholar]
  133. Al-Bakri A.G. Afifi F.U. Evaluation of antimicrobial activity of selected plant extracts by rapid XTT colorimetry and bacterial enumeration. J. Microbiol. Methods 2007 68 1 19 25 10.1016/j.mimet.2006.05.013 16831479
    [Google Scholar]
  134. Liang H. Xing Y. Chen J. Zhang D. Guo S. Wang C. Antimicrobial activities of endophytic fungi isolated from Ophiopogon japonicus (Liliaceae). BMC Complement. Altern. Med. 2012 12 1 238 10.1186/1472‑6882‑12‑238 23190550
    [Google Scholar]
  135. Monteiro M.C. de la Cruz M. Cantizani J. Moreno C. Tormo J.R. Mellado E. De Lucas J.R. Asensio F. Valiante V. Brakhage A.A. Latgé J.P. Genilloud O. Vicente F. A new approach to drug discovery: High-throughput screening of microbial natural extracts against Aspergillus fumigatus using resazurin. SLAS Discov. 2012 17 4 542 549 10.1177/1087057111433459 22233645
    [Google Scholar]
  136. Kuhn D.M. Balkis M. Chandra J. Mukherjee P.K. Ghannoum M.A. Uses and limitations of the XTT assay in studies of Candida growth and metabolism. J. Clin. Microbiol. 2003 41 1 506 508 10.1128/JCM.41.1.506‑508.2003 12517908
    [Google Scholar]
  137. Reis R.S. Neves I. Jr Lourenço S.L.S. Fonseca L.S. Lourenço M.C.S. Comparison of flow cytometric and Alamar Blue tests with the proportional method for testing susceptibility of Mycobacterium tuberculosis to rifampin and isoniazid. J. Clin. Microbiol. 2004 42 5 2247 2248 10.1128/JCM.42.5.2247‑2248.2004 15131202
    [Google Scholar]
  138. Ouedrhiri W. Bouhdid S. Balouiri M. Lalami A.E. Moja S. Chahdi F.O. Greche H. Chemical composition of Citrus aurantium L. leaves and zest essential oils, their antioxidant, antibacterial single and combined effects. J. Chem. Pharm. Res. 2015 7 1 78 84
    [Google Scholar]
  139. Bouhdid S. Abrini J. Zhiri A. Espuny M.J. Manresa A. Investigation of functional and morphological changes in Pseudomonas aeruginosa and Staphylococcus aureus cells induced by Origanum compactum essential oil. J. Appl. Microbiol. 2009 106 5 1558 1568 10.1111/j.1365‑2672.2008.04124.x 19226402
    [Google Scholar]
  140. Castilho A.L. Caleffi-Ferracioli K.R. Canezin P.H. Dias Siqueira V.L. de Lima Scodro R.B. Cardoso R.F. Detection of drug susceptibility in rapidly growing mycobacteria by resazurin broth microdilution assay. J. Microbiol. Methods 2015 111 119 121 10.1016/j.mimet.2015.02.007 25683207
    [Google Scholar]
  141. Gehrt A. Peter J. Pizzo P.A. Walsh T.J. Effect of increasing inoculum sizes of pathogenic filamentous fungi on MICs of antifungal agents by broth microdilution method. J. Clin. Microbiol. 1995 33 5 1302 1307 10.1128/jcm.33.5.1302‑1307.1995 7615745
    [Google Scholar]
  142. Meletiadis J. Meis J.F.G.M. Mouton J.W. Verweij P.E. Analysis of growth characteristics of filamentous fungi in different nutrient media. J. Clin. Microbiol. 2001 39 2 478 484 10.1128/JCM.39.2.478‑484.2001 11158093
    [Google Scholar]
  143. Gomez-Lopez A. Aberkane A. Petrikkou E. Mellado E. Rodriguez-Tudela J.L. Cuenca-Estrella M. Analysis of the influence of Tween concentration, inoculum size, assay medium, and reading time on susceptibility testing of Aspergillus spp. J. Clin. Microbiol. 2005 43 3 1251 1255 10.1128/JCM.43.3.1251‑1255.2005 15750092
    [Google Scholar]
  144. Rodriguez-Tudela J.L. Chryssanthou E. Petrikkou E. Mosquera J. Denning D.W. Cuenca-Estrella M. Interlaboratory evaluation of hematocytometer method of inoculum preparation for testing antifungal susceptibilities of filamentous fungi. J. Clin. Microbiol. 2003 41 11 5236 5237 10.1128/JCM.41.11.5236‑5237.2003 14605171
    [Google Scholar]
  145. Clinical and Laboratory Standards Institute Reference method for broth dilution antifungal susceptibility testing of yeasts. Approved standard M27-A3. 2008 Available from:https://clsi.org/media/1461/m27a3_sample.pdf
  146. Wayne P.A. Reference method for broth dilution antifungal susceptibility testing of filamentous fungi; approved standard CLSI document M38-A2. New Jersey, NJ, USA Clinical and Laboratory Standards Institute 2008 53
    [Google Scholar]
  147. Arikan S. Current status of antifungal susceptibility testing methods. Med. Mycol. 2007 45 7 569 587 10.1080/13693780701436794 17885947
    [Google Scholar]
  148. Lass-Flörl C. Cuenca-Estrella M. Denning D.W. Rodriguez-Tudela J.L. Antifungal susceptibility testing in Aspergillus spp. according to EUCAST methodology. Med. Mycol. 2006 44 s1 319 325 10.1080/13693780600779401 30408924
    [Google Scholar]
  149. Petrikkou E. Rodríguez-Tudela J.L. Cuenca-Estrella M. Gómez A. Molleja A. Mellado E. Inoculum standardization for antifungal susceptibility testing of filamentous fungi pathogenic for humans. J. Clin. Microbiol. 2001 39 4 1345 1347 10.1128/JCM.39.4.1345‑1347.2001 11283054
    [Google Scholar]
  150. Aberkane A. Cuenca-Estrella M. Gomez-Lopez A. Petrikkou E. Mellado E. Monzón A. Rodriguez-Tudela J.L. Comparative evaluation of two different methods of inoculum preparation for antifungal susceptibility testing of filamentous fungi. J. Antimicrob. Chemother. 2002 50 5 719 722 10.1093/jac/dkf187 12407129
    [Google Scholar]
  151. National Committee for Clinical Laboratory Standards Methods for determining bactericidal activity of antimicrobial agents, approved guideline. 1999 Available from:https://clsi.org/media/1462/m26a_sample.pdf
  152. Cantón E. Pemán J. Viudes A. Quindós G. Gobernado M. Espinel-Ingroff A. Minimum fungicidal concentrations of amphotericin B for bloodstream Candida species. Diagn. Microbiol. Infect. Dis. 2003 45 3 203 206 10.1016/S0732‑8893(02)00525‑4 12663162
    [Google Scholar]
  153. Espinel-Ingroff A. Fothergill A. Peter J. Rinaldi M.G. Walsh T.J. Testing conditions for determination of minimum fungicidal concentrations of new and established antifungal agents for Aspergillus spp.: NCCLS collaborative study. J. Clin. Microbiol. 2002 40 9 3204 3208 10.1128/JCM.40.9.3204‑3208.2002 12202554
    [Google Scholar]
  154. Arikan-Akdagli S. Rex J.H. Fungal drug resistance assays. Antimicrobial Drug Resistance. Cham Springer 2017 1367 1387 10.1007/978‑3‑319‑47266‑9_34
    [Google Scholar]
  155. Hindler J.A. Richter S.S. Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated Or Fastidious Bacteria, M45. Clinical and Laboratory Standards Institute 2016
    [Google Scholar]
  156. Menon T. Umamaheswari K. Kumarasamy N. Solomon S. Thyagarajan S.P. Efficacy of fluconazole and itraconazole in the treatment of oral candidiasis in HIV patients. Acta Trop. 2001 80 2 151 154 10.1016/S0001‑706X(01)00170‑X 11600094
    [Google Scholar]
  157. Imhof A. Balajee S.A. Marr K.A. New methods to assess susceptibilities of Aspergillus isolates to caspofungin. J. Clin. Microbiol. 2003 41 12 5683 5688 10.1128/JCM.41.12.5683‑5688.2003 14662961
    [Google Scholar]
  158. Mock M. Monod M. Baudraz-Rosselet F. Panizzon R.G. Tinea capitis dermatophytes: Susceptibility to antifungal drugs tested in vitro and in vivo. Dermatology 1998 197 4 361 367 10.1159/000018032 9873175
    [Google Scholar]
  159. Speeleveld E. Gordts B. Landuyt H.W.V. Vroey C.D. Raes-Wuytack C. Susceptibility of clinical isolates of Fusarium to antifungal drugs. Mycoses 1996 39 1-2 37 40 10.1111/j.1439‑0507.1996.tb00081.x 8786755
    [Google Scholar]
  160. Clancy C.J. Huang H. Cheng S. Derendorf H. Nguyen M.H. Characterizing the effects of caspofungin on candida albicans, Candida parapsilosis, and Candida glabrata isolates by simultaneous time-kill and postantifungal-effect experiments. Antimicrob. Agents Chemother. 2006 50 7 2569 2572 10.1128/AAC.00291‑06 16801448
    [Google Scholar]
  161. Klepser M.E. Ernst E.J. Lewis R.E. Ernst M.E. Pfaller M.A. Influence of test conditions on antifungal time-kill curve results: Proposal for standardized methods. Antimicrob. Agents Chemother. 1998 42 5 1207 1212 10.1128/AAC.42.5.1207 9593151
    [Google Scholar]
  162. Crouch S.P.M. Kozlowski R. Slater K.J. Fletcher J. The use of ATP bioluminescence as a measure of cell proliferation and cytotoxicity. J. Immunol. Methods 1993 160 1 81 88 10.1016/0022‑1759(93)90011‑U 7680699
    [Google Scholar]
  163. Bozorg A. Gates I.D. Sen A. Using bacterial bioluminescence to evaluate the impact of biofilm on porous media hydraulic properties. J. Microbiol. Methods 2015 109 84 92 10.1016/j.mimet.2014.11.015 25479429
    [Google Scholar]
  164. Paloque L. Vidal N. Casanova M. Dumètre A. Verhaeghe P. Parzy D. Azas N. A new, rapid and sensitive bioluminescence assay for drug screening on Leishmania. J. Microbiol. Methods 2013 95 3 320 323 10.1016/j.mimet.2013.09.006 24055386
    [Google Scholar]
  165. Finger S. Wiegand C. Buschmann H.J. Hipler U.C. Antibacterial properties of cyclodextrin-antiseptics-complexes determined by microplate laser nephelometry and ATP bioluminescence assay. Int. J. Pharm. 2013 452 1-2 188 193 10.1016/j.ijpharm.2013.04.080 23665083
    [Google Scholar]
  166. Andreu N. Fletcher T. Krishnan N. Wiles S. Robertson B.D. Rapid measurement of antituberculosis drug activity in vitro and in macrophages using bioluminescence. J. Antimicrob. Chemother. 2012 67 2 404 414 10.1093/jac/dkr472 22101217
    [Google Scholar]
  167. Beckers B. Lang H.R.M. Schimke D. Lammers A. Evaluation of a bioluminescence assay for rapid antimicrobial susceptibility testing of mycobacteria. Eur. J. Clin. Microbiol. 1985 4 6 556 561 10.1007/BF02013394 3937733
    [Google Scholar]
  168. Finger S. Wiegand C. Buschmann H.J. Hipler U.C. Antimicrobial properties of cyclodextrin-antiseptics-complexes determined by microplate laser nephelometry and ATP bioluminescence assay. Int. J. Pharm. 2012 436 1-2 851 856 10.1016/j.ijpharm.2012.07.009 22877865
    [Google Scholar]
  169. Galiger C. Brock M. Jouvion G. Savers A. Parlato M. Ibrahim-Granet O. Assessment of efficacy of antifungals against Aspergillus fumigatus: Value of real-time bioluminescence imaging. Antimicrob. Agents Chemother. 2013 57 7 3046 3059 10.1128/AAC.01660‑12 23587947
    [Google Scholar]
  170. Vojtek L. Dobeš P. Büyükgüzel E. Atosuo J. Hyršl P. Bioluminescent assay for evaluating antimicrobial activity in insect haemolymph. Europ. J. Entomol. 2014 111 3 335 40 10.14411/eje.2014.045
    [Google Scholar]
  171. Paparella A. Taccogna L. Aguzzi I. Chaves-López C. Serio A. Marsilio F. Suzzi G. Flow cytometric assessment of the antimicrobial activity of essential oils against Listeria monocytogenes. Food Control 2008 19 12 1174 1182 10.1016/j.foodcont.2008.01.002
    [Google Scholar]
  172. Ramani R. Chaturvedi V. Flow cytometry antifungal susceptibility testing of pathogenic yeasts other than Candida albicans and comparison with the NCCLS broth microdilution test. Antimicrob. Agents Chemother. 2000 44 10 2752 2758 10.1128/AAC.44.10.2752‑2758.2000 10991856
    [Google Scholar]
  173. Green L.J. Marder P. Mann L.L. Chio L.C. Current W.L. LY303366 exhibits rapid and potent fungicidal activity in flow cytometric assays of yeast viability. Antimicrob. Agents Chemother. 1999 43 4 830 835 10.1128/AAC.43.4.830 10103187
    [Google Scholar]
  174. Green L. Petersen B. Steimel L. Haeber P. Current W. Rapid determination of antifungal activity by flow cytometry. J. Clin. Microbiol. 1994 32 4 1088 1091 10.1128/jcm.32.4.1088‑1091.1994 8027319
    [Google Scholar]
  175. Ramani R. Ramani A. Wong S.J. Rapid flow cytometric susceptibility testing of Candida albicans. J. Clin. Microbiol. 1997 35 9 2320 2324 10.1128/jcm.35.9.2320‑2324.1997 9276410
    [Google Scholar]
  176. Yousef A.E. Courtney P.D. Basics of stress adaptation and implications in new-generation foods. Microb. Stress Adaptat. Food Safe. 2003 1 1 30
    [Google Scholar]
/content/journals/ctm/10.2174/0122150838261497231005115943
Loading
/content/journals/ctm/10.2174/0122150838261497231005115943
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test