Skip to content
2000
image of In silico ADMET and Molecular Docking Studies of Natural Analogues as AKT Inhibitors

Abstract

Background

AKT inhibition presents a promising avenue for cancer treatment strategies. By exploring natural analogues using docking and ADMET profiles, this work aims to design effective anti-cancer therapies shown by binding affinities and pharmacokinetic assessments.

Aims and Objectives

The aim of this research paper is to utilize ADMET profiling and molecular docking studies to investigate the potential of natural analogues as inhibitors of the AKT enzyme. By leveraging computational techniques, including Molegro Virtual Docker (MVD) 6.0 and computational techniques like pkCSM, we aim to identify promising compounds with strong binding affinities to the target protein (PDB ID: 3OCB) and favorable pharmacokinetic properties. Our objectives include identifying key molecular interactions, evaluating optimal molecular weight ranges, and prioritizing compounds based on their MolDock scores for cancer treatment. Through this approach, our goal is to contribute to the design and development of effective anti-cancer therapies targeting the AKT signaling pathway.

Method

The Protein Data Bank provided the target protein (PDB ID: 3OCB) for the molecular docking study, which was conducted using Molegro Virtual Docker (MVD) 6.0. The selection of ligands from PubChem was focused on natural analogues. ADMET profiling benefited from the use of computational techniques such as pkCSM.

Result

A molecular docking study of selected natural compounds was performed, and the top three compounds with higher MolDock scores were considered to be the best among all sixteen natural analogues. The compounds [00]UNX_16, [01]UNX_13, and [00]UNX_11 showed the highest MolDock score of -111.09, -98.31, and -96.37, respectively, and can show great potential in treating cancer.

Conclusion

The analysis primarily focuses on a docking study investigating the potential inhibition of the AKT enzyme by natural analogs. The study explores molecular interactions and ADMET properties, offering insights into their role in drug discovery. Key findings include strong binding affinities of selected analogs against the target 3OCB, with specific amino acid residues and steric/hydrogen bond interactions influencing binding success. Compounds within the 400-500 Da molecular weight range show favorable interactions, suggesting implications for future drug design. Additionally, ADMET analysis identifies compounds like [00]UNX_16, [01]UNX_13, and [00]UNX_11 with high MolDock scores, indicating potential as AKT inhibitors for cancer treatment.

Loading

Article metrics loading...

/content/journals/cst/10.2174/0115743624324677241104075338
2024-11-11
2025-01-27
Loading full text...

Full text loading...

References

  1. Alibert C. Goud B. Manneville J.B. Are cancer cells really softer than normal cells? Biol. Cell 2017 109 5 167 189 10.1111/boc.201600078 28244605
    [Google Scholar]
  2. Bianconi E. Piovesan A. Facchin F. Beraudi A. Casadei R. Frabetti F. Vitale L. Pelleri M.C. Tassani S. Piva F. Perez-Amodio S. Strippoli P. Canaider S. An estimation of the number of cells in the human body. Ann. Hum. Biol. 2013 40 6 463 471 10.3109/03014460.2013.807878 23829164
    [Google Scholar]
  3. Comisso E. OCT4 promotes the aggression of serious ovarian tumors to a high degree across the inactivation of pRB and the increase in genomic stability. 2016
    [Google Scholar]
  4. Nicholson K.M. Anderson N.G. The protein kinase B/Akt signalling pathway in human malignancy. Cell. Signal. 2002 14 5 381 395 10.1016/S0898‑6568(01)00271‑6 11882383
    [Google Scholar]
  5. Sahlberg S.H. Mortensen A.C. Haglöf J. Engskog M.K.R. Arvidsson T. Pettersson C. Glimelius B. Stenerlöw B. Nestor M. Different functions of AKT1 and AKT2 in molecular pathways, cell migration and metabolism in colon cancer cells. Int. J. Oncol. 2017 50 1 5 14 10.3892/ijo.2016.3771 27878243
    [Google Scholar]
  6. Brewer G.J. Torricelli J.R. Evege E.K. Price P.J. Optimized survival of hippocampal neurons in B27‐supplemented neurobasal™, a new serum‐free medium combination. J. Neurosci. Res. 1993 35 5 567 576 10.1002/jnr.490350513 8377226
    [Google Scholar]
  7. Martorana F. Motta G. Pavone G. Motta L. Stella S. Vitale S.R. Manzella L. Vigneri P. AKT inhibitors: new weapons in the fight against breast cancer? Front. Pharmacol. 2021 12 662232 10.3389/fphar.2021.662232 33995085
    [Google Scholar]
  8. Atanasov A.G. Zotchev S.B. Dirsch V.M. Supuran C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021 20 3 200 216 10.1038/s41573‑020‑00114‑z 33510482
    [Google Scholar]
  9. Huang M. Lu J.J. Ding J. Natural products in cancer therapy: Past, present and future. Nat. Prod. Bioprospect. 2021 11 1 5 13 10.1007/s13659‑020‑00293‑7 33389713
    [Google Scholar]
  10. Ocana A. Vera-Badillo F. Al-Mubarak M. Templeton A.J. Corrales-Sanchez V. Diez-Gonzalez L. Cuenca-Lopez M.D. Seruga B. Pandiella A. Amir E. Activation of the PI3K/mTOR/AKT pathway and survival in solid tumors: systematic review and meta-analysis. PLoS One 2014 9 4 e95219 10.1371/journal.pone.0095219 24777052
    [Google Scholar]
  11. Li Q. Li Z. Luo T. Shi H. Targeting the PI3K/AKT/mTOR and RAF/MEK/ERK pathways for cancer therapy. Molecular Biomedicine 2022 3 1 47 10.1186/s43556‑022‑00110‑2 36539659
    [Google Scholar]
  12. Vasudevan K.M. Garraway L.A. AKT signaling in physiology and disease. Curr Top Microbiol Immunol. 2011 347 105 33
    [Google Scholar]
  13. Manning B.D. Cantley L.C. AKT/PKB signaling: navigating downstream. Cell 2007 129 7 1261 1274 10.1016/j.cell.2007.06.009 17604717
    [Google Scholar]
  14. Song M. Bode A.M. Dong Z. Lee M.H. AKT as a therapeutic target for cancer. Cancer Res. 2019 79 6 1019 1031 10.1158/0008‑5472.CAN‑18‑2738 30808672
    [Google Scholar]
  15. Dumble M. Crouthamel M.C. Zhang S.Y. Schaber M. Levy D. Robell K. Liu Q. Figueroa D.J. Minthorn E.A. Seefeld M.A. Rouse M.B. Rabindran S.K. Heerding D.A. Kumar R. Discovery of novel AKT inhibitors with enhanced anti-tumor effects in combination with the MEK inhibitor. PLoS One 2014 9 6 e100880 10.1371/journal.pone.0100880 24978597
    [Google Scholar]
  16. Coleman N. Moyers J.T. Harbery A. Vivanco I. Yap T.A. Clinical development of AKT inhibitors and associated predictive biomarkers to guide patient treatment in cancer medicine. Pharm. Genomics Pers. Med. 2021 14 1517 1535 10.2147/PGPM.S305068 34858045
    [Google Scholar]
  17. Kostaras E. Kaserer T. Lazaro G. Heuss S.F. Hussain A. Casado P. Hayes A. Yandim C. Palaskas N. Yu Y. Schwartz B. Raynaud F. Chung Y.L. Cutillas P.R. Vivanco I. A systematic molecular and pharmacologic evaluation of AKT inhibitors reveals new insight into their biological activity. Br. J. Cancer 2020 123 4 542 555 10.1038/s41416‑020‑0889‑4 32439931
    [Google Scholar]
  18. Chaachouay N. Zidane L. Plant-derived natural products: A source for drug discovery and development. Drugs and Drug Candidates 2024 3 1 184 207 10.3390/ddc3010011
    [Google Scholar]
  19. Zughaibi T.A. Suhail M. Tarique M. Tabrez S. Targeting PI3K/Akt/mTOR pathway by different flavonoids: A cancer chemopreventive approach. Int. J. Mol. Sci. 2021 22 22 12455 10.3390/ijms222212455 34830339
    [Google Scholar]
  20. Yan X. Qi M. Li P. Zhan Y. Shao H. Apigenin in cancer therapy: Anti-cancer effects and mechanisms of action. Cell Biosci. 2017 7 1 50 10.1186/s13578‑017‑0179‑x 29034071
    [Google Scholar]
  21. Naponelli V. Rocchetti M.T. Mangieri D. Apigenin: Molecular Mechanisms and Therapeutic Potential against Cancer Spreading. Int. J. Mol. Sci. 2024 25 10 5569 10.3390/ijms25105569 38791608
    [Google Scholar]
  22. Liu Y. Lin F. Chen Y. Wang R. Liu J. Jin Y. An R. Cryptotanshinone inhibites bladder cancer cell proliferation and promotes apoptosis via the PTEN/PI3K/AKT pathway. J. Cancer 2020 11 2 488 499 10.7150/jca.31422 31897244
    [Google Scholar]
  23. Mansouri K. Rasoulpoor S. Daneshkhah A. Abolfathi S. Salari N. Mohammadi M. Rasoulpoor S. Shabani S. Clinical effects of curcumin in enhancing cancer therapy: A systematic review. BMC Cancer 2020 20 1 791 10.1186/s12885‑020‑07256‑8 32838749
    [Google Scholar]
  24. Hong J. Fu Z. Hu J. Zhou S. Yu G. Ma Z. Dietary curcumin supplementation enhanced ammonia nitrogen stress tolerance in greater amberjack (Seriola dumerili): growth, serum biochemistry and expression of stress-related genes. J. Mar. Sci. Eng. 2022 10 11 1796 10.3390/jmse10111796
    [Google Scholar]
  25. Xu J. Dong X. Huang D.C.S. Xu P. Zhao Q. Chen B. Current advances and future strategies for BCL-2 inhibitors: potent weapons against cancers. Cancers 2023 15 20 4957 10.3390/cancers15204957 37894324
    [Google Scholar]
  26. Yu S. Shen G. Khor T.O. Kim J.H. Kong A.N.T. Curcumin inhibits Akt/mammalian target of rapamycin signaling through protein phosphatase-dependent mechanism. Mol. Cancer Ther. 2008 7 9 2609 2620 10.1158/1535‑7163.MCT‑07‑2400 18790744
    [Google Scholar]
  27. Youns M. Abdel Halim Hegazy W. The natural flavonoid fisetin inhibits cellular proliferation of hepatic, colorectal, and pancreatic cancer cells through modulation of multiple signaling pathways. PLoS One 2017 12 1 e0169335 10.1371/journal.pone.0169335 28052097
    [Google Scholar]
  28. Akter R. Afrose A. Rahman M.R. Chowdhury R. Nirzhor S.S.R. Khan R.I. Kabir M.T. A comprehensive analysis into the therapeutic application of natural products as SIRT6 modulators in Alzheimer’s disease, aging, cancer, inflammation, and diabetes. Int. J. Mol. Sci. 2021 22 8 4180 10.3390/ijms22084180 33920726
    [Google Scholar]
  29. Kumar S. Future Journal of Pharmaceutical Sciences 2020 6 1 19 10.1186/s43094‑019‑0015‑8
    [Google Scholar]
  30. Hassan S.M. Farid A. Panda S.S. Bekheit M.S. Dinkins H. Fayad W. Girgis A.S. Indole compounds in oncology: Therapeutic potential and mechanistic insights. Pharmaceuticals 2024 17 7 922 10.3390/ph17070922 39065774
    [Google Scholar]
/content/journals/cst/10.2174/0115743624324677241104075338
Loading
/content/journals/cst/10.2174/0115743624324677241104075338
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: ADMET ; docking study ; AKT inhibitors ; natural product
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test