Skip to content
2000
image of Revisiting the Significance of TLRs: Current Understanding and Future Scope for Therapeutic Implications

Abstract

Pattern Recognition Receptors (PRRs), particularly Toll-Like Receptors (TLRs), are pivotal in the innate immune system for recognizing Pathogen-Associated Molecular Patterns (PAMPs) and initiating inflammatory responses. TLRs, characterized by their transmembrane structure, Leucine-Rich Repeat (LRR) ectodomain, and Toll/Interleukin-1 Receptor (TIR) domains, detect a diverse range of microbial and endogenous ligands through MyD88- and TRIF-dependent pathways. This engagement activates downstream signaling cascades involving key mediators such as Nuclear Factor Kappa B (NF-κB), Mitogen-Activated Protein (MAP) kinases, and Interferon Regulatory Factors (IRFs), which orchestrate pro-inflammatory cytokine production and immune responses. TLRs are not only implicated in various pathologies like multiple sclerosis, rheumatoid arthritis, and atherosclerosis but also show potential in diagnosing and preventing infectious diseases like dengue fever and periodontal disease. Recent advancements reveal their dual role as both agonists and antagonists in enhancing vaccine responses and developing novel cancer immunotherapies. This review provides a comprehensive synthesis of recent research and patents on TLRs, emphasizing novel therapeutic strategies and targeted delivery systems for biomedical applications. The future scope of TLR research is explored, with a focus on how TLR-targeted therapies could transform the management of inflammatory and immune-mediated disorders.

Loading

Article metrics loading...

/content/journals/cst/10.2174/0115743624341069241112091959
2024-12-03
2025-01-27
Loading full text...

Full text loading...

References

  1. Lee C.C. Avalos A.M. Ploegh H.L. Accessory molecules for Toll-like receptors and their function. Nat. Rev. Immunol. 2012 12 3 168 179 10.1038/nri3151 22301850
    [Google Scholar]
  2. Ospelt C. Gay S. TLRs and chronic inflammation. Int. J. Biochem. Cell Biol. 2010 42 4 495 505 10.1016/j.biocel.2009.10.010 19840864
    [Google Scholar]
  3. Jin B. Sun T. Yu X.H. Yang Y.X. Yeo A.E.T. The effects of TLR activation on T-cell development and differentiation. Clin. Dev. Immunol. 2012 2012 1 1 32 10.1155/2012/836485 22737174
    [Google Scholar]
  4. Kaisho T. Akira S. Toll-like receptor function and signaling. J. Allergy Clin. Immunol. 2006 117 5 979 987 10.1016/j.jaci.2006.02.023 16675322
    [Google Scholar]
  5. Takeda K. Kaisho T. Akira S. Toll-Like Receptors. Annu. Rev. Immunol. 2003 21 1 335 376 10.1146/annurev.immunol.21.120601.141126 12524386
    [Google Scholar]
  6. Muzio M. Mantovani A. Toll-like receptors. Microbes Infect. 2000 2 3 251 255 10.1016/S1286‑4579(00)00303‑8 10758401
    [Google Scholar]
  7. Keogh B. Parker A.E. Toll-like receptors as targets for immune disorders. Trends Pharmacol. Sci. 2011 32 7 435 442 10.1016/j.tips.2011.03.008 21529972
    [Google Scholar]
  8. Vidya M.K. Kumar V.G. Sejian V. Bagath M. Krishnan G. Bhatta R. Toll-like receptors: Significance, ligands, signaling pathways, and functions in mammals. Int. Rev. Immunol. 2018 37 1 20 36 10.1080/08830185.2017.1380200 29028369
    [Google Scholar]
  9. Anthoney N. Foldi I. Hidalgo A. Toll and Toll-like receptor signalling in development. Development 2018 145 9 dev156018 10.1242/dev.156018 29695493
    [Google Scholar]
  10. Ashrafizadeh M. Dai J. Torabian P. Nabavi N. Aref A.R. Aljabali A.A.A. Tambuwala M. Zhu M. Circular RNAs in EMT-driven metastasis regulation: modulation of cancer cell plasticity, tumorigenesis and therapy resistance. Cell. Mol. Life Sci. 2024 81 1 214 10.1007/s00018‑024‑05236‑w 38733529
    [Google Scholar]
  11. Blasius A.L. Beutler B. Intracellular toll-like receptors. Immunity 2010 32 3 305 315 10.1016/j.immuni.2010.03.012 20346772
    [Google Scholar]
  12. Jin M.S. Lee J.O. Structures of the toll-like receptor family and its ligand complexes. Immunity 2008 29 2 182 191 10.1016/j.immuni.2008.07.007 18701082
    [Google Scholar]
  13. Uematsu S. Akira S. Toll-like receptors and Type I interferons. J. Biol. Chem. 2007 282 21 15319 15323 10.1074/jbc.R700009200 17395581
    [Google Scholar]
  14. Lacagnina M.J. Watkins L.R. Grace P.M. Toll-like receptors and their role in persistent pain. Pharmacol. Ther. 2018 184 145 158 10.1016/j.pharmthera.2017.10.006 28987324
    [Google Scholar]
  15. Duan J. Li J. Wang Y. Zhou P. Wang X. Xia N. Wang J. Li J. Wang W. Wang X. Sun J. Guo D. Zou J. Zhang X. Wang C. Therapeutic effects and mechanism of action of lavender essential oil on atopic dermatitis by modulating the STAT3/RORγt pathway. Arab. J. Chem. 2024 17 2 105525 [Internet]. 10.1016/j.arabjc.2023.105525
    [Google Scholar]
  16. Van Duin D. Shaw A.C. Toll-like receptors in older adults. J. Am. Geriatr. Soc. 2007 55 9 1438 1444 10.1111/j.1532‑5415.2007.01300.x 17767688
    [Google Scholar]
  17. Basith S. Manavalan B. Lee G. Kim S.G. Choi S. Toll-like receptor modulators: A patent review (2006 - 2010). Expert Opin Ther Pat. 2011 21 6 927 944
    [Google Scholar]
  18. Wang X. Smith C. Yin H. Targeting Toll-like receptors with small molecule agents. Chem. Soc. Rev. 2013 42 12 4859 4866 10.1039/c3cs60039d 23503527
    [Google Scholar]
  19. Arancibia S.A. Beltrán C.J. Aguirre I.M. Silva P. Peralta A.L. Malinarich F. Hermoso M.A. Toll-like receptors are key participants in innate immune responses. Biol. Res. 2007 40 2 97 112 10.4067/S0716‑97602007000200001 18064347
    [Google Scholar]
  20. Means T.K. Golenbock D.T. Fenton M.J. Structure and function of Toll-like receptor proteins. Life Sci. 2000 68 3 241 258 10.1016/S0024‑3205(00)00939‑5 11191641
    [Google Scholar]
  21. Hofmann U. Ertl G. Frantz S. Toll-like receptors as potential therapeutic targets in cardiac dysfunction. Expert Opin. Ther. Targets 2011 15 6 753 765 10.1517/14728222.2011.566560 21385118
    [Google Scholar]
  22. Andersen-Nissen E. Smith K.D. Strobe K.L. Barrett S.L.R. Cookson B.T. Logan S.M. Aderem A. Evasion of Toll-like receptor 5 by flagellated bacteria. Proc. Natl. Acad. Sci. USA 2005 102 26 9247 9252 10.1073/pnas.0502040102 15956202
    [Google Scholar]
  23. Feng S. Zhang C. Chen S. He R. Chao G. Zhang S. TLR5 Signaling in the Regulation of Intestinal Mucosal Immunity. J. Inflamm. Res. 2023 16 2491 2501 10.2147/JIR.S407521 37337514
    [Google Scholar]
  24. Takeuchi O. Akira S. Pattern recognition receptors and inflammation. Cell 2010 140 6 805 820 10.1016/j.cell.2010.01.022 20303872
    [Google Scholar]
  25. Shafeghat M. Kazemian S. Aminorroaya A. Aryan Z. Rezaei N. Toll-like receptor 7 regulates cardiovascular diseases. Int. Immunopharmacol. 2022 113 Pt A 109390 10.1016/j.intimp.2022.109390 36330918
    [Google Scholar]
  26. Aluri J. Cooper M.A. Schuettpelz L.G. Toll-like receptor signaling in the establishment and function of the immune system. Cells 2021 10 6 1374 10.3390/cells10061374 34199501
    [Google Scholar]
  27. Marsland B.J. Kopf M. Toll-like receptors: paving the path to T cell-driven autoimmunity? Curr. Opin. Immunol. 2007 19 6 611 614 10.1016/j.coi.2007.07.022 17888644
    [Google Scholar]
  28. Dai J. Liu B. Li Z. Regulatory T cells and Toll-like receptors: What is the missing link? Int. Immunopharmacol. 2009 9 5 528 533 10.1016/j.intimp.2009.01.027 19539562
    [Google Scholar]
  29. Sutmuller R.P.M. Morgan M.E. Netea M.G. Grauer O. Adema G.J. Toll-like receptors on regulatory T cells: expanding immune regulation. Trends Immunol. 2006 27 8 387 393 10.1016/j.it.2006.06.005 16814607
    [Google Scholar]
  30. Wang R.F. Peng G. Wang H.Y. Regulatory T cells and Toll-like receptors in tumor immunity. Seminars in immunology. Elsevier 2006 136 142 10.1016/j.smim.2006.01.008
    [Google Scholar]
  31. Wang H.Y. Wang R.F. Regulatory T cells and cancer. Curr. Opin. Immunol. 2007 19 2 217 223 10.1016/j.coi.2007.02.004 17306521
    [Google Scholar]
  32. Kabelitz D. Wesch D. Oberg H.H. Regulation of regulatory T cells: role of dendritic cells and toll-like receptors. Crit. Rev. Immunol. 2006 26 4 291 306 10.1615/CritRevImmunol.v26.i4.10 17073555
    [Google Scholar]
  33. Saber M.M. Monir N. Awad A.S. Elsherbiny M.E. Zaki H.F. TLR9: A friend or a foe. Life Sci. 2022 307 120874 10.1016/j.lfs.2022.120874 35963302
    [Google Scholar]
  34. Montero Vega M.T. de Andrés Martín A. The significance of toll-like receptors in human diseases. Allergol. Immunopathol. (Madr.) 2009 37 5 252 263 10.1016/j.aller.2009.04.004 19853360
    [Google Scholar]
  35. Arora S. Ahmad S. Irshad R. Goyal Y. Rafat S. Siddiqui N. Dev K. Husain M. Ali S. Mohan A. Syed M.A. TLRs in pulmonary diseases. Life Sci. 2019 233 116671 10.1016/j.lfs.2019.116671 31336122
    [Google Scholar]
  36. Singh M.V. Abboud F.M. Toll-like receptors and hypertension. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2014 307 5 R501 R504 10.1152/ajpregu.00194.2014 24920728
    [Google Scholar]
  37. Vallejo J.G. Role of Toll-like receptors in cardiovascular diseases. Clin. Sci. (Lond.) 2011 121 1 1 10 10.1042/CS20100539 21413930
    [Google Scholar]
  38. Satoh T. Akira S. Toll-like receptor signaling and its inducible proteins. Microbiol. Spectr. 2016 4 6 4.6.41 10.1128/microbiolspec.MCHD‑0040‑2016 28084212
    [Google Scholar]
  39. Fukata M. Vamadevan A.S. Abreu M.T. Toll-like receptors (TLRs) and Nod-like receptors (NLRs) in inflammatory disorders. Seminars in immunology. Elsevier 2009 242 253 10.1016/j.smim.2009.06.005
    [Google Scholar]
  40. Lim K.H. Staudt L.M. Toll-like receptor signaling. Cold Spring Harb. Perspect. Biol. 2013 5 1 a011247 10.1101/cshperspect.a011247 23284045
    [Google Scholar]
  41. Verstak B. Hertzog P. Mansell A. Toll-like receptor signalling and the clinical benefits that lie within. Inflamm. Res. 2007 56 1 1 10 10.1007/s00011‑007‑6093‑7 17334664
    [Google Scholar]
  42. Drexler S.K. Foxwell B.M. The role of Toll-like receptors in chronic inflammation. Int. J. Biochem. Cell Biol. 2010 42 4 506 518 10.1016/j.biocel.2009.10.009 19837184
    [Google Scholar]
  43. Sharma S. Garg I. Ashraf M.Z. TLR signalling and association of TLR polymorphism with cardiovascular diseases. Vascul. Pharmacol. 2016 87 30 37 10.1016/j.vph.2016.10.008 27826031
    [Google Scholar]
  44. Clark K. Protein kinase networks that limit TLR signalling. Biochem. Soc. Trans. 2014 42 1 11 24 10.1042/BST20130124 24450622
    [Google Scholar]
  45. Kawai T. Sato S. Ishii K.J. Coban C. Hemmi H. Yamamoto M. Terai K. Matsuda M. Inoue J. Uematsu S. Takeuchi O. Akira S. Interferon-α induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nat. Immunol. 2004 5 10 1061 1068 10.1038/ni1118 15361868
    [Google Scholar]
  46. Figueroa-Hall L.K. Paulus M.P. Savitz J. Toll-like receptor signaling in depression. Psychoneuroendocrinology 2020 121 104843 10.1016/j.psyneuen.2020.104843 32911436
    [Google Scholar]
  47. Tan R.S.T. Ho B. Leung B.P. Ding J.L. TLR cross-talk confers specificity to innate immunity. Int. Rev. Immunol. 2014 33 6 443 453 10.3109/08830185.2014.921164 24911430
    [Google Scholar]
  48. Vázquez-Carballo C. Guerrero-Hue M. García-Caballero C. Rayego-Mateos S. Opazo-Ríos L. Morgado-Pascual J.L. Herencia-Bellido C. Vallejo-Mudarra M. Cortegano I. Gaspar M.L. de Andrés B. Egido J. Moreno J.A. Toll-like receptors in acute kidney injury. Int. J. Mol. Sci. 2021 22 2 816 10.3390/ijms22020816 33467524
    [Google Scholar]
  49. O’Neill L.A.J. The role of MyD88-like adapters in Toll-like receptor signal transduction. Biochem. Soc. Trans. 2003 31 3 643 647 10.1042/bst0310643 12773173
    [Google Scholar]
  50. McGettrick A. O’Neill L.A.J. The expanding family of MyD88-like adaptors in Toll-like receptor signal transduction. Mol. Immunol. 2004 41 6-7 577 582 10.1016/j.molimm.2004.04.006 15219996
    [Google Scholar]
  51. Moresco E.M.Y. LaVine D. Beutler B. Toll-like receptors. Curr. Biol. 2011 21 13 R488 R493 10.1016/j.cub.2011.05.039 21741580
    [Google Scholar]
  52. Xiang W. Chao Z.Y. Feng D.Y. Role of Toll-like receptor/MYD88 signaling in neurodegenerative diseases. Rev. Neurosci. 2015 26 4 407 414 10.1515/revneuro‑2014‑0067 25870959
    [Google Scholar]
  53. Goldstein D.R. Tesar B.M. Akira S. Lakkis F.G. Critical role of the Toll-like receptor signal adaptor protein MyD88 in acute allograft rejection. J. Clin. Invest. 2003 111 10 1571 1578 10.1172/JCI200317573 12750407
    [Google Scholar]
  54. Li T.T. Ogino S. Qian Z.R. Toll-like receptor signaling in colorectal cancer: Carcinogenesis to cancer therapy. World J. Gastroenterol. 2014 20 47 17699 17708 10.3748/wjg.v20.i47.17699 25548469
    [Google Scholar]
  55. Akashi-Takamura S. Miyake K. Toll-like receptors (TLRs) and immune disorders. J. Infect. Chemother. 2006 12 5 233 240 10.1007/s10156‑006‑0477‑4 17109085
    [Google Scholar]
  56. Piras V. Selvarajoo K. Beyond MyD88 and TRIF pathways in Toll-like receptor signaling. Front. Immunol. 2014 5 FEB 70 10.3389/fimmu.2014.00070 24605113
    [Google Scholar]
  57. Yamamoto M. Sato S. Hemmi H. Hoshino K. Kaisho T. Sanjo H. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science (80-) 2003 301 5633 640 643 10.1126/science.1087262
    [Google Scholar]
  58. Yu L. Feng Z. The role of toll‐like receptor signaling in the progression of heart failure. Mediators Inflamm. 2018 2018 1 1 11 10.1155/2018/9874109 29576748
    [Google Scholar]
  59. Robinet M. Maillard S. Cron M.A. Berrih-Aknin S. Le Panse R. Review on toll-like receptor activation in myasthenia gravis: application to the development of new experimental models. Clin. Rev. Allergy Immunol. 2017 52 1 133 147 10.1007/s12016‑016‑8549‑4 27207173
    [Google Scholar]
  60. Alvarez-Carbonell D. Garcia-Mesa Y. Milne S. Das B. Dobrowolski C. Rojas R. Karn J. Toll-like receptor 3 activation selectively reverses HIV latency in microglial cells. Retrovirology 2017 14 1 9 10.1186/s12977‑017‑0335‑8 28166799
    [Google Scholar]
  61. Lin M. Tang S.C.W. Toll-like receptors: sensing and reacting to diabetic injury in the kidney. Nephrol. Dial. Transplant. 2014 29 4 746 754 10.1093/ndt/gft446 24203812
    [Google Scholar]
  62. Lukas J. Lukas C. Bartek J. More than just a focus: The chromatin response to DNA damage and its role in genome integrity maintenance. Nat. Cell Biol. 2011 13 10 1161 1169 10.1038/ncb2344 21968989
    [Google Scholar]
  63. Stranger B.E. Forrest M.S. Dunning M. Ingle C.E. Beazley C. Thorne N. Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science (80-) 2007 315 5813 848 853 10.1126/science.1136678
    [Google Scholar]
  64. Vignal A. Milan D. SanCristobal M. Eggen A. A review on SNP and other types of molecular markers and their use in animal genetics. Genet. Sel. Evol. 2002 34 3 275 305 10.1186/1297‑9686‑34‑3‑275 12081799
    [Google Scholar]
  65. Corden J. Wasylyk B. Buchwalder A. Sassone-Corsi P. Kedinger C. Chambon P. Promoter sequences of eukaryotic protein-coding genes. Science (80-) 1980 209 4463 1406 1414 10.1126/science.6251548
    [Google Scholar]
  66. Lauffenburger D.A. Horwitz A.F. Cell migration: a physically integrated molecular process. Cell 1996 84 3 359 369 10.1016/S0092‑8674(00)81280‑5 8608589
    [Google Scholar]
  67. Coussens L.M. Werb Z. Inflammation and cancer. Nature 2002 420 6917 860 867 10.1038/nature01322 12490959
    [Google Scholar]
  68. Polyak K. Weinberg R.A. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat. Rev. Cancer 2009 9 4 265 273 10.1038/nrc2620 19262571
    [Google Scholar]
  69. Brachat A. Pierrat B. Brüngger A. Heim J. Comparative microarray analysis of gene expression during apoptosis-induction by growth factor deprivation or protein kinase C inhibition. Oncogene 2000 19 44 5073 5082 10.1038/sj.onc.1203882 11042695
    [Google Scholar]
  70. Herrera R.E. Sah V.P. Williams B.O. Mäkelä T.P. Weinberg R.A. Jacks T. Altered cell cycle kinetics, gene expression, and G1 restriction point regulation in Rb-deficient fibroblasts. Mol. Cell. Biol. 1996 16 5 2402 2407 10.1128/MCB.16.5.2402 8628308
    [Google Scholar]
  71. Lobo I. Environmental influences on gene expression. New Educator 2008 1 1 39
    [Google Scholar]
  72. Basu M. Paichha M. Swain B. Lenka S.S. Singh S. Chakrabarti R. Modulation of TLR2, TLR4, TLR5, NOD1 and NOD2 receptor gene expressions and their downstream signaling molecules following thermal stress in the Indian major carp catla (Catla catla). 3 Biotech. 2015 5 1021 1030
    [Google Scholar]
  73. Sophia I. Sejian V. Bagath M. Bhatta R. Quantitative expression of hepatic toll-like receptors 1–10 mRNA in Osmanabadi goats during different climatic stresses. Small Rumin. Res. 2016 141 11 16 10.1016/j.smallrumres.2016.06.005
    [Google Scholar]
  74. Sophia I. Sejian V. Bagath M. Bhatta R. Influence of different environmental stresses on various spleen toll like receptor genes expression in Osmanabadi goats. Asian Journal of Biological Sciences 2016 10 1 9 16 10.3923/ajbs.2017.9.16
    [Google Scholar]
  75. Rehli M. Of mice and men: species variations of Toll-like receptor expression. Trends Immunol. 2002 23 8 375 378 10.1016/S1471‑4906(02)02259‑7 12133792
    [Google Scholar]
  76. Muzio M. Bosisio D. Polentarutti N. D’amico G. Stoppacciaro A. Mancinelli R. van’t Veer C. Penton-Rol G. Ruco L.P. Allavena P. Mantovani A. Differential expression and regulation of toll-like receptors (TLR) in human leukocytes: selective expression of TLR3 in dendritic cells. J. Immunol. 2000 164 11 5998 6004 10.4049/jimmunol.164.11.5998 10820283
    [Google Scholar]
  77. Matsuguchi T. Musikacharoen T. Ogawa T. Yoshikai Y. Gene expressions of Toll-like receptor 2, but not Toll-like receptor 4, is induced by LPS and inflammatory cytokines in mouse macrophages. J. Immunol. 2000 165 10 5767 5772 10.4049/jimmunol.165.10.5767 11067935
    [Google Scholar]
  78. Jann O.C. Werling D. Chang J.S. Haig D. Glass E.J. Molecular evolution of bovine Toll-like receptor 2 suggests substitutions of functional relevance. BMC Evol. Biol. 2008 8 1 288 10.1186/1471‑2148‑8‑288 18937834
    [Google Scholar]
  79. Alvarez-Rodriguez L. Lopez-Hoyos M. Garcia-Unzueta M. Amado J.A. Cacho P.M. Martinez-Taboada V.M. Age and low levels of circulating vitamin D are associated with impaired innate immune function. J. Leukoc. Biol. 2012 91 5 829 838 10.1189/jlb.1011523 22345707
    [Google Scholar]
  80. Boehmer E.D. Goral J. Faunce D.E. Kovacs E.J. Age-dependent decrease in Toll-like receptor 4-mediated proinflammatory cytokine production and mitogen-activated protein kinase expression. J. Leukoc. Biol. 2004 75 2 342 349 10.1189/jlb.0803389 14634059
    [Google Scholar]
  81. Renshaw M. Rockwell J. Engleman C. Gewirtz A. Katz J. Sambhara S. Cutting edge: impaired Toll-like receptor expression and function in aging. J. Immunol. 2002 169 9 4697 4701 10.4049/jimmunol.169.9.4697 12391175
    [Google Scholar]
  82. Stewart L.K. Flynn M.G. Campbell W.W. Craig B.A. Robinson J.P. McFarlin B.K. Timmerman K.L. Coen P.M. Felker J. Talbert E. Influence of exercise training and age on CD14+ cell-surface expression of toll-like receptor 2 and 4. Brain Behav. Immun. 2005 19 5 389 397 10.1016/j.bbi.2005.04.003 15963685
    [Google Scholar]
  83. Li M. Zhou Y. Feng G. Su S. The critical role of Toll-like receptor signaling pathways in the induction and progression of autoimmune diseases. Curr. Mol. Med. 2009 9 3 365 374 10.2174/156652409787847137 19355917
    [Google Scholar]
  84. Chen J.Q. Szodoray P. Zeher M. Toll-Like Receptor Pathways in Autoimmune Diseases. Clin. Rev. Allergy Immunol. 2016 50 1 1 17 10.1007/s12016‑015‑8473‑z 25687121
    [Google Scholar]
  85. Clanchy F.I.L. Sacre S.M. Modulation of toll-like receptor function has therapeutic potential in autoimmune disease. Expert Opin. Biol. Ther. 2010 10 12 1703 1716 10.1517/14712598.2010.534080 21039312
    [Google Scholar]
  86. Michelsen K.S. Arditi M. Toll-like receptor signaling and atherosclerosis. Curr. Opin. Hematol. 2006 13 3 163 168 10.1097/01.moh.0000219662.88409.7c 16567960
    [Google Scholar]
  87. Pasare C. Medzhitov R. Toll-like receptors: linking innate and adaptive immunity. Adv. Exp. Med. Biol. 2005 560 11 18 10.1007/0‑387‑24180‑9_2 15932016
    [Google Scholar]
  88. Ilango P. Mahalingam A. Parthasarathy H. Katamreddy V. Subbareddy V. Evaluation of TlR2 and 4 in Chronic Periodontitis. J. Clin. Diagn. Res. 2016 10 6 ZC86 ZC89 10.7860/JCDR/2016/18353.8027 27504418
    [Google Scholar]
  89. Anwar M.A. Shah M. Kim J. Choi S. Recent clinical trends in Toll‐like receptor targeting therapeutics. Med. Res. Rev. 2019 39 3 1053 1090 10.1002/med.21553 30450666
    [Google Scholar]
  90. Liu C. Han C. Liu J. The Role of Toll-Like Receptors in Oncotherapy. Oncol. Res. 2019 27 8 965 978 10.3727/096504019X15498329881440 30940297
    [Google Scholar]
  91. Aryan Z. Rezaei N. Toll-like receptors as targets for allergen immunotherapy. Curr. Opin. Allergy Clin. Immunol. 2015 15 6 568 574 10.1097/ACI.0000000000000212 26418475
    [Google Scholar]
  92. Esashi E. Ishida K. Hosozawa T. Okuyama M. Kotaki A. TLR inhibitory oligonucleotides and their use. Patent AU2016375543A1, 2020.
  93. Miyakawa T. Doi S. Tamada K. Medicine for treating cancer by administering a toll-like receptor agonist and lag-3 igg fusion protein. Google Patents 2022
    [Google Scholar]
  94. Burger-Kentischer A. Mattes A. Zatsepin M. Goldblum A. Toll-like receptor 9 antagonists. Google Patents 2021
    [Google Scholar]
  95. Talukdar A. Ganguly D. Paul B. Mukherjee A. Shounak R.O.Y. Roy S. Blocking toll-like receptor 9 signaling with small molecule antagonist. Patents US-10662177-B2, 2020.
  96. Guiducci C. Fearon K.L. Barrat F. Human toll-like receptor inhibitors and methods of use thereof. Google Patents US9868955B2, 2018.
  97. Sullenger B.A. Lee J. Inhibition of endosomal toll-like receptor activation. Google Patents 2023
    [Google Scholar]
  98. Oppenheim J.J. Yang D. Han Z. Barchi J.J. Jr Bustin M. Therapeutic antitumor combination of a TLR4 ligand with other treatments. Patents AU2017289450B2, 2022.
  99. Boyle J. Manktelow E. TLR agonist-enhanced in vitro assay of cell mediated immune responsiveness. Patents US11841367B2, 2020.
  100. Niazi K. Rabizadeh S. Golovato J. Buzko O. LeNy A.L. Soon-Shiong P. Compositions and methods of improved wound healing. Google Patents US4808570A, 2018.
  101. Baudner B. O’hagan D. Singh M. Bufali S. Adjuvanted formulations of booster vaccines. Google Patents 2018
    [Google Scholar]
/content/journals/cst/10.2174/0115743624341069241112091959
Loading
/content/journals/cst/10.2174/0115743624341069241112091959
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test