Skip to content
2000
Volume 20, Issue 2
  • ISSN: 1574-3624
  • E-ISSN: 2212-389X

Abstract

Pattern Recognition Receptors (PRRs), particularly Toll-like Receptors (TLRs), are pivotal in the innate immune system for recognizing Pathogen-associated Molecular Patterns (PAMPs) and initiating inflammatory responses. TLRs, characterized by their transmembrane structure, Leucine-rich Repeat (LRR) ectodomain, and Toll/Interleukin-1 Receptor (TIR) domains, detect a diverse range of microbial and endogenous ligands through MyD88- and TRIF-dependent pathways. This engagement activates downstream signaling cascades involving key mediators such as Nuclear Factor Kappa B (NF-κB), Mitogen-activated Protein (MAP) kinases, and Interferon Regulatory Factors (IRFs), which orchestrate pro-inflammatory cytokine production and immune responses. TLRs are not only implicated in various pathologies like multiple sclerosis, rheumatoid arthritis, and atherosclerosis but also show potential in diagnosing and preventing infectious diseases like dengue fever and periodontal disease. Recent advancements reveal their dual role as both agonists and antagonists in enhancing vaccine responses and developing novel cancer immunotherapies. This review provides a comprehensive synthesis of recent research and patents on TLRs, emphasizing novel therapeutic strategies and targeted delivery systems for biomedical applications. The future scope of TLR research is explored, with a focus on how TLR-targeted therapies could transform the management of inflammatory and immune-mediated disorders.

Loading

Article metrics loading...

/content/journals/cst/10.2174/0115743624341069241112091959
2025-07-01
2025-06-19
Loading full text...

Full text loading...

References

  1. LeeC.C. AvalosA.M. PloeghH.L. Accessory molecules for Toll-like receptors and their function.Nat. Rev. Immunol.201212316817910.1038/nri315122301850
    [Google Scholar]
  2. OspeltC. GayS. TLRs and chronic inflammation.Int. J. Biochem. Cell Biol.201042449550510.1016/j.biocel.2009.10.01019840864
    [Google Scholar]
  3. JinB. SunT. YuX.H. YangY.X. YeoA.E.T. The effects of TLR activation on T-cell development and differentiation.Clin. Dev. Immunol.20122012113210.1155/2012/83648522737174
    [Google Scholar]
  4. KaishoT. AkiraS. Toll-like receptor function and signaling.J. Allergy Clin. Immunol.2006117597998710.1016/j.jaci.2006.02.02316675322
    [Google Scholar]
  5. TakedaK. KaishoT. AkiraS. Toll-like receptors.Annu. Rev. Immunol.200321133537610.1146/annurev.immunol.21.120601.14112612524386
    [Google Scholar]
  6. MuzioM. MantovaniA. Toll-like receptors.Microbes Infect.20002325125510.1016/S1286‑4579(00)00303‑810758401
    [Google Scholar]
  7. KeoghB. ParkerA.E. Toll-like receptors as targets for immune disorders.Trends Pharmacol. Sci.201132743544210.1016/j.tips.2011.03.00821529972
    [Google Scholar]
  8. VidyaM.K. KumarV.G. SejianV. BagathM. KrishnanG. BhattaR. Toll-like receptors: Significance, ligands, signaling pathways, and functions in mammals.Int. Rev. Immunol.2018371203610.1080/08830185.2017.138020029028369
    [Google Scholar]
  9. AnthoneyN. FoldiI. HidalgoA. Toll and Toll-like receptor signalling in development.Development20181459dev15601810.1242/dev.15601829695493
    [Google Scholar]
  10. AshrafizadehM. DaiJ. TorabianP. NabaviN. ArefA.R. AljabaliA.A.A. TambuwalaM. ZhuM. Circular RNAs in EMT-driven metastasis regulation: Modulation of cancer cell plasticity, tumorigenesis and therapy resistance.Cell. Mol. Life Sci.202481121410.1007/s00018‑024‑05236‑w38733529
    [Google Scholar]
  11. BlasiusA.L. BeutlerB. Intracellular Toll-like receptors.Immunity201032330531510.1016/j.immuni.2010.03.01220346772
    [Google Scholar]
  12. JinM.S. LeeJ.O. Structures of the toll-like receptor family and its ligand complexes.Immunity200829218219110.1016/j.immuni.2008.07.00718701082
    [Google Scholar]
  13. UematsuS. AkiraS. Toll-like receptors and Type I interferons.J. Biol. Chem.200728221153191532310.1074/jbc.R70000920017395581
    [Google Scholar]
  14. LacagninaM.J. WatkinsL.R. GraceP.M. Toll-like receptors and their role in persistent pain.Pharmacol. Ther.201818414515810.1016/j.pharmthera.2017.10.00628987324
    [Google Scholar]
  15. DuanJ. LiJ. WangY. ZhouP. WangX. XiaN. WangJ. LiJ. WangW. WangX. SunJ. GuoD. ZouJ. ZhangX. WangC. Therapeutic effects and mechanism of action of lavender essential oil on atopic dermatitis by modulating the STAT3/RORγt pathway.Arab. J. Chem.202417210552510.1016/j.arabjc.2023.105525
    [Google Scholar]
  16. Van DuinD. ShawA.C. Toll-like receptors in older adults.J. Am. Geriatr. Soc.20075591438144410.1111/j.1532‑5415.2007.01300.x17767688
    [Google Scholar]
  17. BasithS. ManavalanB. LeeG. KimS.G. ChoiS. Toll-like receptor modulators: A patent review (2006 - 2010).Expert Opin Ther Pat.2011216927944
    [Google Scholar]
  18. WangX. SmithC. YinH. Targeting Toll-like receptors with small molecule agents.Chem. Soc. Rev.201342124859486610.1039/c3cs60039d23503527
    [Google Scholar]
  19. ArancibiaS.A. BeltránC.J. AguirreI.M. SilvaP. PeraltaA.L. MalinarichF. HermosoM.A. Toll-like receptors are key participants in innate immune responses.Biol. Res.20074029711210.4067/S0716‑9760200700020000118064347
    [Google Scholar]
  20. MeansT.K. GolenbockD.T. FentonM.J. Structure and function of Toll-like receptor proteins.Life Sci.200068324125810.1016/S0024‑3205(00)00939‑511191641
    [Google Scholar]
  21. HofmannU. ErtlG. FrantzS. Toll-like receptors as potential therapeutic targets in cardiac dysfunction.Expert Opin. Ther. Targets201115675376510.1517/14728222.2011.56656021385118
    [Google Scholar]
  22. Andersen-NissenE. SmithK.D. StrobeK.L. BarrettS.L.R. CooksonB.T. LoganS.M. AderemA. Evasion of Toll-like receptor 5 by flagellated bacteria.Proc. Natl. Acad. Sci. USA2005102269247925210.1073/pnas.050204010215956202
    [Google Scholar]
  23. FengS. ZhangC. ChenS. HeR. ChaoG. ZhangS. TLR5 signaling in the regulation of intestinal mucosal immunity.J. Inflamm. Res.2023162491250110.2147/JIR.S40752137337514
    [Google Scholar]
  24. TakeuchiO. AkiraS. Pattern recognition receptors and inflammation.Cell2010140680582010.1016/j.cell.2010.01.02220303872
    [Google Scholar]
  25. ShafeghatM. KazemianS. AminorroayaA. AryanZ. RezaeiN. Toll-like receptor 7 regulates cardiovascular diseases.Int. Immunopharmacol.2022113Pt A10939010.1016/j.intimp.2022.10939036330918
    [Google Scholar]
  26. AluriJ. CooperM.A. SchuettpelzL.G. Toll-like receptor signaling in the establishment and function of the immune system.Cells2021106137410.3390/cells1006137434199501
    [Google Scholar]
  27. MarslandB.J. KopfM. Toll-like receptors: Paving the path to T cell-driven autoimmunity?Curr. Opin. Immunol.200719661161410.1016/j.coi.2007.07.02217888644
    [Google Scholar]
  28. DaiJ. LiuB. LiZ. Regulatory T cells and Toll-like receptors: What is the missing link?Int. Immunopharmacol.20099552853310.1016/j.intimp.2009.01.02719539562
    [Google Scholar]
  29. SutmullerR.P.M. MorganM.E. NeteaM.G. GrauerO. AdemaG.J. Toll-like receptors on regulatory T cells: Expanding immune regulation.Trends Immunol.200627838739310.1016/j.it.2006.06.00516814607
    [Google Scholar]
  30. WangR.F. PengG. WangH.Y. Regulatory T cells and Toll-like receptors in tumor immunity.In: Seminars in immunology.Elsevier200613614210.1016/j.smim.2006.01.008
    [Google Scholar]
  31. WangH.Y. WangR.F. Regulatory T cells and cancer.Curr. Opin. Immunol.200719221722310.1016/j.coi.2007.02.00417306521
    [Google Scholar]
  32. KabelitzD. WeschD. ObergH.H. Regulation of regulatory T cells: Role of dendritic cells and toll-like receptors.Crit. Rev. Immunol.200626429130610.1615/CritRevImmunol.v26.i4.1017073555
    [Google Scholar]
  33. SaberM.M. MonirN. AwadA.S. ElsherbinyM.E. ZakiH.F. TLR9: A friend or a foe.Life Sci.202230712087410.1016/j.lfs.2022.12087435963302
    [Google Scholar]
  34. Montero VegaM.T. de Andrés MartínA. The significance of toll-like receptors in human diseases.Allergol. Immunopathol. (Madr.)200937525226310.1016/j.aller.2009.04.00419853360
    [Google Scholar]
  35. AroraS. AhmadS. IrshadR. GoyalY. RafatS. SiddiquiN. DevK. HusainM. AliS. MohanA. SyedM.A. TLRs in pulmonary diseases.Life Sci.201923311667110.1016/j.lfs.2019.11667131336122
    [Google Scholar]
  36. SinghM.V. AbboudF.M. Toll-like receptors and hypertension.Am. J. Physiol. Regul. Integr. Comp. Physiol.20143075R501R50410.1152/ajpregu.00194.201424920728
    [Google Scholar]
  37. VallejoJ.G. Role of Toll-like receptors in cardiovascular diseases.Clin. Sci. (Lond.)2011121111010.1042/CS2010053921413930
    [Google Scholar]
  38. SatohT. AkiraS. Toll-like receptor signaling and its inducible proteins.Microbiol. Spectr.2016464.6.4110.1128/microbiolspec.MCHD‑0040‑201628084212
    [Google Scholar]
  39. FukataM. VamadevanA.S. AbreuM.T. Toll-like receptors (TLRs) and Nod-like receptors (NLRs) in inflammatory disorders.In: Seminars in immunology.Elsevier200924225310.1016/j.smim.2009.06.005
    [Google Scholar]
  40. LimK.H. StaudtL.M. Toll-like receptor signaling.Cold Spring Harb. Perspect. Biol.201351a01124710.1101/cshperspect.a01124723284045
    [Google Scholar]
  41. VerstakB. HertzogP. MansellA. Toll-like receptor signalling and the clinical benefits that lie within.Inflamm. Res.200756111010.1007/s00011‑007‑6093‑717334664
    [Google Scholar]
  42. DrexlerS.K. FoxwellB.M. The role of Toll-like receptors in chronic inflammation.Int. J. Biochem. Cell Biol.201042450651810.1016/j.biocel.2009.10.00919837184
    [Google Scholar]
  43. SharmaS. GargI. AshrafM.Z. TLR signalling and association of TLR polymorphism with cardiovascular diseases.Vascul. Pharmacol.201687303710.1016/j.vph.2016.10.00827826031
    [Google Scholar]
  44. ClarkK. Protein kinase networks that limit TLR signalling.Biochem. Soc. Trans.2014421112410.1042/BST2013012424450622
    [Google Scholar]
  45. KawaiT. SatoS. IshiiK.J. CobanC. HemmiH. YamamotoM. TeraiK. MatsudaM. InoueJ. UematsuS. TakeuchiO. AkiraS. Interferon-α induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6.Nat. Immunol.20045101061106810.1038/ni111815361868
    [Google Scholar]
  46. Figueroa-HallL.K. PaulusM.P. SavitzJ. Toll-like receptor signaling in depression.Psychoneuroendocrinology202012110484310.1016/j.psyneuen.2020.10484332911436
    [Google Scholar]
  47. TanR.S.T. HoB. LeungB.P. DingJ.L. TLR cross-talk confers specificity to innate immunity.Int. Rev. Immunol.201433644345310.3109/08830185.2014.92116424911430
    [Google Scholar]
  48. Vázquez-CarballoC. Guerrero-HueM. García-CaballeroC. Rayego-MateosS. Opazo-RíosL. Morgado-PascualJ.L. Herencia-BellidoC. Vallejo-MudarraM. CorteganoI. GasparM.L. de AndrésB. EgidoJ. MorenoJ.A. Toll-like receptors in acute kidney injury.Int. J. Mol. Sci.202122281610.3390/ijms2202081633467524
    [Google Scholar]
  49. O’NeillL.A.J. The role of MyD88-like adapters in Toll-like receptor signal transduction.Biochem. Soc. Trans.200331364364710.1042/bst031064312773173
    [Google Scholar]
  50. McGettrickA. O’NeillL.A.J. The expanding family of MyD88-like adaptors in Toll-like receptor signal transduction.Mol. Immunol.2004416-757758210.1016/j.molimm.2004.04.00615219996
    [Google Scholar]
  51. MorescoE.M.Y. LaVineD. BeutlerB. Toll-like receptors.Curr. Biol.20112113R488R49310.1016/j.cub.2011.05.03921741580
    [Google Scholar]
  52. XiangW. ChaoZ.Y. FengD.Y. Role of Toll-like receptor/MYD88 signaling in neurodegenerative diseases.Rev. Neurosci.201526440741410.1515/revneuro‑2014‑006725870959
    [Google Scholar]
  53. GoldsteinD.R. TesarB.M. AkiraS. LakkisF.G. Critical role of the Toll-like receptor signal adaptor protein MyD88 in acute allograft rejection.J. Clin. Invest.2003111101571157810.1172/JCI20031757312750407
    [Google Scholar]
  54. LiT.T. OginoS. QianZ.R. Toll-like receptor signaling in colorectal cancer: Carcinogenesis to cancer therapy.World J. Gastroenterol.20142047176991770810.3748/wjg.v20.i47.1769925548469
    [Google Scholar]
  55. Akashi-TakamuraS. MiyakeK. Toll-like receptors (TLRs) and immune disorders.J. Infect. Chemother.200612523324010.1007/s10156‑006‑0477‑417109085
    [Google Scholar]
  56. PirasV. SelvarajooK. Beyond MyD88 and TRIF pathways in Toll-like receptor signaling.Front. Immunol.20145FEB7010.3389/fimmu.2014.0007024605113
    [Google Scholar]
  57. YamamotoM. SatoS. HemmiH. HoshinoK. KaishoT. SanjoH. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway.Science (80-)2003301563364064310.1126/science.1087262
    [Google Scholar]
  58. YuL. FengZ. The role of Toll‐like receptor signaling in the progression of heart failure.Mediators Inflamm.20182018111110.1155/2018/987410929576748
    [Google Scholar]
  59. RobinetM. MaillardS. CronM.A. Berrih-AkninS. Le PanseR. Review on toll-like receptor activation in myasthenia gravis: Application to the development of new experimental models.Clin. Rev. Allergy Immunol.201752113314710.1007/s12016‑016‑8549‑427207173
    [Google Scholar]
  60. Alvarez-CarbonellD. Garcia-MesaY. MilneS. DasB. DobrowolskiC. RojasR. KarnJ. Toll-like receptor 3 activation selectively reverses HIV latency in microglial cells.Retrovirology2017141910.1186/s12977‑017‑0335‑828166799
    [Google Scholar]
  61. LinM. TangS.C.W. Toll-like receptors: Sensing and reacting to diabetic injury in the kidney.Nephrol. Dial. Transplant.201429474675410.1093/ndt/gft44624203812
    [Google Scholar]
  62. LukasJ. LukasC. BartekJ. More than just a focus: The chromatin response to DNA damage and its role in genome integrity maintenance.Nat. Cell Biol.201113101161116910.1038/ncb234421968989
    [Google Scholar]
  63. StrangerB.E. ForrestM.S. DunningM. IngleC.E. BeazleyC. ThorneN. Relative impact of nucleotide and copy number variation on gene expression phenotypes.Science (80-)2007315581384885310.1126/science.1136678
    [Google Scholar]
  64. VignalA. MilanD. SanCristobalM. EggenA. A review on SNP and other types of molecular markers and their use in animal genetics.Genet. Sel. Evol.200234327530510.1186/1297‑9686‑34‑3‑27512081799
    [Google Scholar]
  65. CordenJ. WasylykB. BuchwalderA. Sassone-CorsiP. KedingerC. ChambonP. Promoter sequences of eukaryotic protein-coding genes.Science (80-)198020944631406141410.1126/science.6251548
    [Google Scholar]
  66. LauffenburgerD.A. HorwitzA.F. Cell migration: A physically integrated molecular process.Cell199684335936910.1016/S0092‑8674(00)81280‑58608589
    [Google Scholar]
  67. CoussensL.M. WerbZ. Inflammation and cancer.Nature2002420691786086710.1038/nature0132212490959
    [Google Scholar]
  68. PolyakK. WeinbergR.A. Transitions between epithelial and mesenchymal states: Acquisition of malignant and stem cell traits.Nat. Rev. Cancer20099426527310.1038/nrc262019262571
    [Google Scholar]
  69. BrachatA. PierratB. BrünggerA. HeimJ. Comparative microarray analysis of gene expression during apoptosis-induction by growth factor deprivation or protein kinase C inhibition.Oncogene200019445073508210.1038/sj.onc.120388211042695
    [Google Scholar]
  70. HerreraR.E. SahV.P. WilliamsB.O. MäkeläT.P. WeinbergR.A. JacksT. Altered cell cycle kinetics, gene expression, and G1 restriction point regulation in Rb-deficient fibroblasts.Mol. Cell. Biol.19961652402240710.1128/MCB.16.5.24028628308
    [Google Scholar]
  71. LoboI. Environmental influences on gene expression.New Educator20081139
    [Google Scholar]
  72. BasuM. PaichhaM. SwainB. LenkaS.S. SinghS. ChakrabartiR. Modulation of TLR2, TLR4, TLR5, NOD1 and NOD2 receptor gene expressions and their downstream signaling molecules following thermal stress in the Indian major carp catla (Catla catla).3 Biotech.2015510211030
    [Google Scholar]
  73. SophiaI. SejianV. BagathM. BhattaR. Quantitative expression of hepatic Toll-like receptors 1–10 mRNA in Osmanabadi goats during different climatic stresses.Small Rumin. Res.2016141111610.1016/j.smallrumres.2016.06.005
    [Google Scholar]
  74. SophiaI. SejianV. BagathM. BhattaR. Influence of different environmental stresses on various spleen toll like receptor genes expression in Osmanabadi goats.Asian J Biol Sci201610191610.3923/ajbs.2017.9.16
    [Google Scholar]
  75. RehliM. Of mice and men: species variations of Toll-like receptor expression.Trends Immunol.200223837537810.1016/S1471‑4906(02)02259‑712133792
    [Google Scholar]
  76. MuzioM. BosisioD. PolentaruttiN. D’amicoG. StoppacciaroA. MancinelliR. van’t VeerC. Penton-RolG. RucoL.P. AllavenaP. MantovaniA. Differential expression and regulation of Toll-like receptors (TLR) in human leukocytes: selective expression of TLR3 in dendritic cells.J. Immunol.2000164115998600410.4049/jimmunol.164.11.599810820283
    [Google Scholar]
  77. MatsuguchiT. MusikacharoenT. OgawaT. YoshikaiY. Gene expressions of Toll-like receptor 2, but not Toll-like receptor 4, is induced by LPS and inflammatory cytokines in mouse macrophages.J. Immunol.2000165105767577210.4049/jimmunol.165.10.576711067935
    [Google Scholar]
  78. JannO.C. WerlingD. ChangJ.S. HaigD. GlassE.J. Molecular evolution of bovine Toll-like receptor 2 suggests substitutions of functional relevance.BMC Evol. Biol.20088128810.1186/1471‑2148‑8‑28818937834
    [Google Scholar]
  79. Alvarez-RodriguezL. Lopez-HoyosM. Garcia-UnzuetaM. AmadoJ.A. CachoP.M. Martinez-TaboadaV.M. Age and low levels of circulating vitamin D are associated with impaired innate immune function.J. Leukoc. Biol.201291582983810.1189/jlb.101152322345707
    [Google Scholar]
  80. BoehmerE.D. GoralJ. FaunceD.E. KovacsE.J. Age-dependent decrease in Toll-like receptor 4-mediated proinflammatory cytokine production and mitogen-activated protein kinase expression.J. Leukoc. Biol.200475234234910.1189/jlb.080338914634059
    [Google Scholar]
  81. RenshawM. RockwellJ. EnglemanC. GewirtzA. KatzJ. SambharaS. Cutting edge: Impaired Toll-like receptor expression and function in aging.J. Immunol.200216994697470110.4049/jimmunol.169.9.469712391175
    [Google Scholar]
  82. StewartL.K. FlynnM.G. CampbellW.W. CraigB.A. RobinsonJ.P. McFarlinB.K. TimmermanK.L. CoenP.M. FelkerJ. TalbertE. Influence of exercise training and age on CD14+ cell-surface expression of Toll-like receptor 2 and 4.Brain Behav. Immun.200519538939710.1016/j.bbi.2005.04.00315963685
    [Google Scholar]
  83. LiM. ZhouY. FengG. SuS. The critical role of Toll-like receptor signaling pathways in the induction and progression of autoimmune diseases.Curr. Mol. Med.20099336537410.2174/15665240978784713719355917
    [Google Scholar]
  84. ChenJ.Q. SzodorayP. ZeherM. Toll-like receptor pathways in autoimmune diseases.Clin. Rev. Allergy Immunol.201650111710.1007/s12016‑015‑8473‑z25687121
    [Google Scholar]
  85. ClanchyF.I.L. SacreS.M. Modulation of Toll-like receptor function has therapeutic potential in autoimmune disease.Expert Opin. Biol. Ther.201010121703171610.1517/14712598.2010.53408021039312
    [Google Scholar]
  86. MichelsenK.S. ArditiM. Toll-like receptor signaling and atherosclerosis.Curr. Opin. Hematol.200613316316810.1097/01.moh.0000219662.88409.7c16567960
    [Google Scholar]
  87. PasareC. MedzhitovR. Toll-like receptors: Linking innate and adaptive immunity.Adv. Exp. Med. Biol.2005560111810.1007/0‑387‑24180‑9_215932016
    [Google Scholar]
  88. IlangoP. MahalingamA. ParthasarathyH. KatamreddyV. SubbareddyV. Evaluation of TlR2 and 4 in chronic periodontitis.J. Clin. Diagn. Res.2016106ZC86ZC8910.7860/JCDR/2016/18353.802727504418
    [Google Scholar]
  89. AnwarM.A. ShahM. KimJ. ChoiS. Recent clinical trends in Toll‐like receptor targeting therapeutics.Med. Res. Rev.20193931053109010.1002/med.2155330450666
    [Google Scholar]
  90. LiuC. HanC. LiuJ. The role of Toll-like receptors in oncotherapy.Oncol. Res.201927896597810.3727/096504019X1549832988144030940297
    [Google Scholar]
  91. AryanZ. RezaeiN. Toll-like receptors as targets for allergen immunotherapy.Curr. Opin. Allergy Clin. Immunol.201515656857410.1097/ACI.000000000000021226418475
    [Google Scholar]
  92. EsashiE. IshidaK. HosozawaT. OkuyamaM. KotakiA. TLR inhibitory oligonucleotides and their use.U.S. Patent 2022/0175915, 2020.
  93. MiyakawaT. DoiS. TamadaK. Medicine for treating cancer by administering a Toll-like receptor agonist and lag-3 igg fusion protein.U.S. Patent 20190106418, 2022.
  94. Burger-KentischerA. MattesA. ZatsepinM. GoldblumA. Toll-like receptor 9 antagonists.U.S. Patent 10662177 B2, 2021.
  95. TalukdarA. GangulyD. PaulB. MukherjeeA. ShounakR.O.Y. RoyS. Blocking toll-like receptor 9 signaling with small molecule antagonist.U.S. Patent 9,868,955 B2, 2020.
  96. GuiducciC. FearonK.L. BarratF. Human toll-like receptor inhibitors and methods of use thereof.U.S. Patent 11617779B2, 2018.
  97. SullengerB.A. LeeJ. Inhibition of endosomal Toll-like receptor activation.U.S. Patent 11,617,779 B2, 2023.
  98. OppenheimJ.J. YangD. HanZ. BarchiJ.J.Jr BustinM. Therapeutic antitumor combination of a TLR4 ligand with other treatments.U.S. Patent 10,551,380 B2, 2022.
  99. BoyleJ. ManktelowE. TLR agonist-enhanced in vitro assay of cell mediated immune responsiveness.U.S. Patent 9,884,087 B1, 2020.
  100. NiaziK. RabizadehS. GolovatoJ. BuzkoO. LeNyA.L. Soon-ShiongP. Compositions and methods of improved wound healing.U.S. Patent 9,931,399 B2, 2018.
  101. BaudnerB. O’haganD. SinghM. BufaliS. Adjuvanted formulations of booster vaccines.U.S. Patent 2006/0292566 A1, 2018.
/content/journals/cst/10.2174/0115743624341069241112091959
Loading
/content/journals/cst/10.2174/0115743624341069241112091959
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test