Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1574-3624
  • E-ISSN: 2212-389X

Abstract

Introduction

Peroxisome Proliferator-Activated Receptors (PPARs) are nuclear receptors involved in the regulation of glucose and lipid metabolism, making them potential targets for treating type 2 diabetes mellitus. 5-Benzylthiazolidine-2, 4-dione derivatives, organic compounds with a thiazolidine-2, 4-dione core and a benzyl moiety at the 5-position, have garnered attention for their diverse pharmacological activities, including anti-inflammatory, anti-cancer, anti-diabetic, anti-tubercular, and anti-viral properties.

Methods

This research aimed to identify 5-benzylthiazolidine-2,4-dione derivatives as synthetic PPAR-gamma agonists using computational methods, such as molecular docking and ADMET analysis. Virtual screening generated potential molecules, and molecular docking studies using AutoDock Vina 1.5.6 were performed at the active site of the PPAR-gamma receptor (PDBID: 4PRG).

Results

Nine hits were identified based on their binding affinities and were further evaluated using SwissADME for their ADME properties. These nine compounds demonstrated superior ADME profiles and bioavailability compared to the standard drug Rosiglitazone.

Conclusion

This study provides a comprehensive computational approach for discovering novel PPAR-gamma receptor agonists, potentially advancing experimental diabetes research.

Loading

Article metrics loading...

/content/journals/cst/10.2174/0115743624309015240827103538
2024-09-05
2025-05-09
Loading full text...

Full text loading...

References

  1. ChandrasekaranP. WeiskirchenR. Cellular and molecular mechanisms of insulin resistance.Curr Tissue Microenvironment Rep2024112
    [Google Scholar]
  2. LenzenS. The pancreatic beta cell: An intricate relation between anatomical structure, the signalling mechanism of glucose-induced insulin secretion, the low antioxidative defence, the high vulnerability and sensitivity to diabetic stress.ChemTexts.2021721310.1007/s40828‑021‑00140‑3
    [Google Scholar]
  3. ElSayedN.A. AleppoG. BannuruR.R. BruemmerD. CollinsB.S. EkhlaspourL. GagliaJ.L. HilliardM.E. JohnsonE.L. KhuntiK. LingvayI. MatfinG. McCoyR.G. PerryM.L. PillaS.J. PolskyS. PrahaladP. PratleyR.E. SegalA.R. SeleyJ.J. SelvinE. StantonR.C. GabbayR.A. American Diabetes Association Professional Practice Committee 2. Diagnosis and classification of diabetes: standards of care in diabetes—2024.Diabetes Care202447Suppl. 1S20S4210.2337/dc24‑S00238078589
    [Google Scholar]
  4. UmpierrezG.E. DavisG.M. ElSayedN.A. FadiniG.P. GalindoR.J. HirschI.B. KlonoffD.C. McCoyR.G. MisraS. GabbayR.A. BannuruR.R. DhatariyaK.K. Hyperglycemic crises in adults with diabetes: A consensus report.Diabetes Care20244781257127510.2337/dci24‑003239052901
    [Google Scholar]
  5. OlimjonovnaK.O. Exploring alternative therapies for managing diabetes symptoms.World Sci202475100106
    [Google Scholar]
  6. MansourA. MousaM. AbdelmannanD. TayG. HassounA. AlsafarH. Microvascular and macrovascular complications of type 2 diabetes mellitus: Exome wide association analyses.Front. Endocrinol.202314114306710.3389/fendo.2023.114306737033211
    [Google Scholar]
  7. AikaeliF. Prevalence of microvascular and macrovascular complications of diabetes in newly diagnosed type 2 diabetes in low-and-middle-income countries: A systematic review and meta-analysis.PLOS global public health202226e000059910.1371/journal.pgph.0000599
    [Google Scholar]
  8. MingroneG. PanunziS. De GaetanoA. AhlinS. SpuntarelliV. Bondia-PonsI. BarbieriC. CapristoE. GastaldelliA. NolanJ.J. Insulin sensitivity depends on the route of glucose administration.Diabetologia20206371382139510.1007/s00125‑020‑05157‑w32385603
    [Google Scholar]
  9. WeirT.L. MajumderM. GlastrasS.J. A systematic review of the effects of maternal obesity on neonatal outcomes in women with gestational diabetes.Obes. Rev.2024257e1374710.1111/obr.1374738679418
    [Google Scholar]
  10. TurunenR. PulakkaA. MetsäläJ. VahlbergT. OjalaT. GisslerM. KajantieE. HelleE. Maternal diabetes and overweight and congenital heart defects in offspring.JAMA Netw. Open202471e2350579e235057910.1001/jamanetworkopen.2023.5057938180757
    [Google Scholar]
  11. AaronF. Prevalence of diabetic foot ulcer admission; A retrospective study at the Rivers State University Teaching Hospital, Port Harcourt.SAS J Med20226400402
    [Google Scholar]
  12. FarooqM.D. TakF.A. AraF. RashidS. MirI.A. Vitamin B12 deficiency and clinical neuropathy with metformin use in type 2 diabetes.J. Xenobiot.202212212213010.3390/jox1202001135736024
    [Google Scholar]
  13. SharmaS.K. NambiarD. JosephJ. Hidden educational inequalities in high blood pressure and high blood glucose levels in Kerala: Evidence from the National Family Health Survey (2019–2021).BMJ Open2023134e06855310.1136/bmjopen‑2022‑06855337015784
    [Google Scholar]
  14. GaoZ. HuangM. WangJ. JiaH. LvP. ZengJ. TiG. Efficacy and safety of orlistat in controlling the progression of prediabetes to diabetes: A meta-analysis and systematic review.Medicine202410321e3835410.1097/MD.000000000003835438787971
    [Google Scholar]
  15. AdilY. IsmailK.H. The effect of lifestyle intervention on glycemic control in type 2 diabetic patients.Bahrain Med. Bull.2024461
    [Google Scholar]
  16. HarrisE. Lifestyle changes lowered blood glucose in people with prediabetes.JAMA202333023224110.1001/jama.2023.2350638019497
    [Google Scholar]
  17. AlzawahrehS. OzturkC. Improving self-efficacy, quality of life and glycemic control in adolescents with type 1 diabetes: An experimental evaluation of the family centered empowerment model.JMIR Formative Res202481e6446310.2196/preprints.64463
    [Google Scholar]
  18. TokhirovnaE.G. The role of metformin (GLIFORMIN) in the treatment of patients with type 2 diabetes mellitus.EJMMP202444171177
    [Google Scholar]
  19. BaileyC.J. Metformin: Therapeutic profile in the treatment of type 2 diabetes.Diabetes Obes. Metab.202426S3)(Suppl. 331910.1111/dom.1566338784991
    [Google Scholar]
  20. BasakS. Azolidinedione an auspicious scaffold as PPAR-γ Agonist: Its possible mechanism to manoeuvre against insulin resistant diabetes mellitus.Europ. J. Med. Chem. Rep.2024100160
    [Google Scholar]
  21. RekhaS. Thiazolidinediones-PPAR-γ agonists; For the treatment of type II diabetes mellitus.J. Adv. Zool.2024451
    [Google Scholar]
  22. Al NeyadiS.S. AdemA. AmirN. GhattasM.A. AbdouI.M. SalemA.A. Novel thiazolidinedione and rhodanine derivatives regulate glucose metabolism, improve insulin sensitivity, and activate the peroxisome proliferator-activated γ receptor.ACS Omega2024955463548410.1021/acsomega.3c0714938343951
    [Google Scholar]
  23. LiY. LouN. LiuX. ZhuangX. ChenS. Exploring new mechanisms of Imeglimin in diabetes treatment: Amelioration of mitochondrial dysfunction.Biomed. Pharmacother.202417511675510.1016/j.biopha.2024.11675538772155
    [Google Scholar]
  24. Çöllüoğluİ.T. ÇelikA. AtaN. UralD. ŞahinA. UlguM.M. KanıkE.A. BirinciŞ. YılmazM.B. Deciphering mortality risk of diabetes medications in heart failure patients with diabetes mellitus under triple guideline-directed medical therapy.Int. J. Cardiol.202440713210910.1016/j.ijcard.2024.13210938703896
    [Google Scholar]
  25. SinghG. KumarR. DSD. ChaudharyM. KaurC. KhurranaN. Thiazolidinedione as a promising medicinal scaffold for the treatment of type 2 diabetes.Curr. Diabetes Rev.2024206e20102322241110.2174/011573399825479823100509562737867272
    [Google Scholar]
  26. BaumH.B.A. Approach to the patient with type 2 diabetes requiring add-on medication.J. Clin. Endocrinol. Metab.20241097e1506e151210.1210/clinem/dgae05638373247
    [Google Scholar]
  27. OyamaT. KamataS. IshiiI. MiyachiH. Crystal structures of the human peroxisome proliferator-activated receptor (PPAR)α ligand-binding domain in complexes with a series of phenylpropanoic acid derivatives generated by a ligand-exchange soaking method.Biol. Pharm. Bull.20214491202120910.1248/bpb.b21‑0022034471048
    [Google Scholar]
  28. StrosznajderA.K. WójtowiczS. JeżynaM.J. SunG.Y. StrosznajderJ.B. Recent insights on the role of PPAR-β/δ in neuroinflammation and neurodegeneration, and its potential target for therapy.Neuromolecular Med.2021231869810.1007/s12017‑020‑08629‑933210212
    [Google Scholar]
  29. MandalS.K. Targeting lipid-sensing nuclear receptors PPAR (α, γ, β/δ): HTVS and molecular docking/dynamics analysis of pharmacological ligands as potential pan-PPAR agonists.Mol. Divers.20242831423143837280404
    [Google Scholar]
  30. MaityT.K. PaulA. MajiA. SarkarA. SahaS. JanahP. Recent approaches in the synthesis of 5-arylidene-2, 4-thiazolidinedione derivatives using Knoevenagel condensation.Mini Rev. Org. Chem.202320153410.2174/1570193X19666220331155705
    [Google Scholar]
  31. HerzigS. LiL. Jiménez-SánchezC. MartinouJ.C. MaechlerP. Screening for new inhibitors of the human mitochondrial pyruvate carrier and their effects on hepatic glucose production and diabetes.Biochim. Biophys. Acta, Gen. Subj.202318671213049210.1016/j.bbagen.2023.13049237871770
    [Google Scholar]
  32. MuhammedM.T. Aki-YalcinE. Molecular docking: Principles, advances, and its applications in drug discovery.Lett. Drug Des. Discov.202421348049510.2174/1570180819666220922103109
    [Google Scholar]
  33. AguiarC. CampsI. Molecular Docking in Drug Discovery: Techniques.Applications, and Advancements2024
    [Google Scholar]
  34. NiB. WangH. KhalafH.K.S. BlayV. HoustonD.R. AutoDock-SS: AutoDock for multiconformational ligand-based virtual screening.J. Chem. Inf. Model.20246493779378910.1021/acs.jcim.4c0013638624083
    [Google Scholar]
  35. RadhiK.S. Identification of phytochemical through virtual screening for α-amylase inhibition: A promising approach for diabetes management.Adv. Life Sci.2024111220225
    [Google Scholar]
  36. SharmaS. Molecular docking study for binding affinity of Indole derivatives against solution structure of the antimicrobial peptide Btd-2.J Mol Chem202441686686
    [Google Scholar]
  37. YuliantiniA. Virtual screening using a ligand-based pharmacophore model from ashitaba (Angelica keiskei K.) isolates and molecular docking to obtain new candidates as α-glucosidase inhibitors.Trop. J. Nat. Prod. Res.202481
    [Google Scholar]
  38. KumarS. AroraP. WadhwaP. KaurP. A rationalized approach to design and discover novel non-steroidal derivatives through computational aid for the treatment of prostate cancer.Curr. Computeraided Drug Des.202420557558910.2174/157340991966623062611334637365786
    [Google Scholar]
  39. LiY. KsN. ByranG. KrishnamurthyP.T. Identification of selective PPAR-γ modulators by combining pharmacophore modeling, molecular docking, and adipogenesis assay.Appl. Biochem. Biotechnol.202319521014104110.1007/s12010‑022‑04190‑236264481
    [Google Scholar]
  40. TingleB.I. TangK.G. CastanonM. GutierrezJ.J. KhurelbaatarM. DandarchuluunC. MorozY.S. IrwinJ.J. ZINC-22— A free multi-billion-scale database of tangible compounds for ligand discovery.J. Chem. Inf. Model.20236341166117610.1021/acs.jcim.2c0125336790087
    [Google Scholar]
  41. AwanZ.A. KhanH.A. JamalA. ShamsS. ZhengG. WadoodA. ShahabM. KhanM.I. KalantanA.A. In silico exploration of the potential inhibitory activities of in-house and ZINC database lead compounds against alpha-glucosidase using structure-based virtual screening and molecular dynamics simulation approach.J. Biomol. Struct. Dyn.202411110.1080/07391102.2023.229839138294714
    [Google Scholar]
  42. ZareF. AtaollahiE. MardanehP. SakhtemanA. KeshavarzV. SolhjooA. EmamiL. A combination of virtual screening, molecular dynamics simulation, MM/PBSA, ADMET, and DFT calculations to identify a potential DPP4 inhibitor.Sci. Rep.2024141774910.1038/s41598‑024‑58485‑x38565703
    [Google Scholar]
  43. DerkiN.E.H. KerassaA. BelaidiS. DerkiM. YamariI. SamadiA. ChtitaS. Computer-aided strategy on 5-(Substituted benzylidene) Thiazolidine-2,4-Diones to develop new and potent PTP1B inhibitors: QSAR modeling, molecular docking, molecular dynamics, PASS predictions, and DFT investigations.Molecules202429482210.3390/molecules2904082238398573
    [Google Scholar]
  44. CarpenterK.A. AltmanR.B. Databases of ligand-binding pockets and protein-ligand interactions.Comput. Struct. Biotechnol. J.2024231320133810.1016/j.csbj.2024.03.01538585646
    [Google Scholar]
  45. EberhardtJ. Santos-MartinsD. TillackA.F. ForliS. AutoDock Vina 1.2. 0: New docking methods, expanded force field, and python bindings.J. Chem. Inf. Model.20216183891389810.1021/acs.jcim.1c0020334278794
    [Google Scholar]
  46. ChojnackiM. Review of docking software.Available from: https://www.mimuw.edu.pl/~lukaskoz/teaching/adp/essays/ADP24_essey_Chojnacki_Mateusz_docking.pdf
  47. OmoboyowaD.A. SinghG. FatokiJ.O. OyeneyinO.E. Computational investigation of phytochemicals from Abrus precatorius seeds as modulators of peroxisome proliferator-activated receptor gamma (PPARγ).J. Biomol. Struct. Dyn.202341125568558210.1080/07391102.2022.209165735773777
    [Google Scholar]
  48. SharmaA. KumarN. GulatiH.K. RanaR. Jyoti KhannaA. Muskan SinghJ.V. BediP.M.S. Antidiabetic potential of thiazolidinedione derivatives with efficient design, molecular docking, structural activity relationship, and biological activity: An update review (2021–2023).Mol. Divers.202412510.1007/s11030‑023‑10793‑638253844
    [Google Scholar]
  49. DeryushevaE.I. ShevelyovaM.P. RastryginaV.A. NemashkalovaE.L. VologzhannikovaA.A. MachulinA.V. NazipovaA.A. PermyakovaM.E. PermyakovS.E. LitusE.A. In search for low-molecular-weight ligands of human serum albumin that affect its affinity for monomeric amyloid β peptide.Int. J. Mol. Sci.2024259497510.3390/ijms2509497538732194
    [Google Scholar]
  50. BabuS. NagarajanS.K. SathishS. NegiV.S. SohnH. MadhavanT. Identification of potent and selective JAK1 lead compounds through ligand-based drug design approaches.Front. Pharmacol.20221383736910.3389/fphar.2022.83736935529449
    [Google Scholar]
  51. ZhangX. ShenC. ZhangH. KangY. HsiehC.Y. HouT. Advancing ligand docking through deep learning: Challenges and prospects in virtual screening.Acc. Chem. Res.202457101500150910.1021/acs.accounts.4c0009338577892
    [Google Scholar]
  52. BayrakdarA. DFT, molecular docking, molecular dynamics studies of (E,E)-3-Methyl2,5-bis(4-methylbenzylidene)cyclopentano.AS-Proceedings202317758764
    [Google Scholar]
  53. Bitencourt-FerreiraG. VillarrealM.A. QuirogaR. BiziukovaN. PoroikovV. TarasovaO. de Azevedo JuniorW.F. Exploring scoring function space: Developing computational models for drug discovery.Curr. Med. Chem.202431172361237710.2174/092986733066623032110373136944627
    [Google Scholar]
  54. HussainR. IqbalS. ShahM. RehmanW. KhanS. RasheedL. RahimF. DeraA.A. KehiliS. ElkaeedE.B. AwwadN.S. BajaberM.A. AlahmdiM.I. AlrbyawiH. AlsaabH.O. Synthesis of novel benzimidazole-based thiazole derivatives as multipotent inhibitors of α-amylase and α-glucosidase: In vitro evaluation along with molecular docking study.Molecules20222719645710.3390/molecules2719645736234994
    [Google Scholar]
  55. VuT.Y. Estimation of the binding affinities of glycogen phosphorylase inhibitors by molecular docking to support the treatment of type 2 diabetes.Phys Chem Res2024123821835
    [Google Scholar]
  56. FuL. ShiS. YiJ. WangN. HeY. WuZ. PengJ. DengY. WangW. WuC. LyuA. ZengX. ZhaoW. HouT. CaoD. ADMETlab 3.0: An updated comprehensive online ADMET prediction platform enhanced with broader coverage, improved performance, API functionality and decision support.Nucleic Acids Res.202452W1W422W43110.1093/nar/gkae23638572755
    [Google Scholar]
  57. LiZ. WanH. ShiY. OuyangP. Personal experience with four kinds of chemical structure drawing software: Review on ChemDraw, ChemWindow, ISIS/Draw, and ChemSketch.J. Chem. Inf. Comput. Sci.20044451886189010.1021/ci049794h15446849
    [Google Scholar]
  58. YangW. GadgilP. KrishnamurthyV.R. LandisM. MallickP. PatelD. PatelP.J. ReidD.L. Sanchez-FelixM. The evolving druggability and developability space: Chemically modified new modalities and emerging small molecules.AAPS J.20202222110.1208/s12248‑019‑0402‑231900602
    [Google Scholar]
  59. CzopekA. Reversed-phase thin-layer chromatography and ultra-performance liquid chromatography/mass spectrometry to estimate the drug likeness of phosphodiesterase 10A inhibitors with phthalimide core.JPC–J. Planar Chromatogr.–Mod. TLC2024110
    [Google Scholar]
  60. Valdés-TresancoM.S. Valdés-TresancoM.E. ValienteP.A. MorenoE. AMDock: A versatile graphical tool for assisting molecular docking with AutoDock Vina and Autodock4.Biol. Direct20201511210.1186/s13062‑020‑00267‑232938494
    [Google Scholar]
  61. PadhyI. BanerjeeB. AcharyP.G.R. GuptaP.P. SharmaT. Design, synthesis, 2D-QSAR, molecular dynamic simulation, and biological evaluation of topiramate–phenolic acid conjugates as PPARγ inhibitors.Futur. J. Pharm. Sci.20241014410.1186/s43094‑024‑00617‑1
    [Google Scholar]
  62. KayaS. Tatar-YılmazG. AktarB.S.K. EmreE.E.O. Discovery of new dual-target agents against ppar-γ and α-glucosidase enzymes with molecular modeling methods: Molecular docking, molecular dynamic simulations, and MM/PBSA analysis.Protein J.202443357759110.1007/s10930‑024‑10196‑y38642318
    [Google Scholar]
  63. MannanA. GargN. SinghT.G. KangH.K. Peroxisome proliferator-activated receptor-gamma (PPAR-ɣ): Molecular effects and its importance as a novel therapeutic target for cerebral ischemic injury.Neurochem. Res.202146112800283110.1007/s11064‑021‑03402‑134282491
    [Google Scholar]
  64. LuanJ. JiX. LiuL. PPARγ in atherosclerotic endothelial dysfunction: Regulatory compounds and PTMs.Int. J. Mol. Sci.202324191449410.3390/ijms24191449437833942
    [Google Scholar]
  65. KarunarathnaI. JayawardanaA. BandaraS. Efficacy and safety of pioglitazone monotherapy in type 2 diabetes mellitus: A systematic review and meta-analysis of randomised controlled trials.Sci. Rep.201995389
    [Google Scholar]
  66. GaudN. GogolaD. Kowal-ChwastA. Gabor-WorwaE. LittlewoodP. BrzózkaK. KusK. WalczakM. Physiologically based pharmacokinetic modeling of CYP2C8 substrate rosiglitazone and its metabolite to predict metabolic drug-drug interaction.Drug Metab. Pharmacokinet.20245710102310.1016/j.dmpk.2024.10102339088906
    [Google Scholar]
  67. PaliwalA. JainS. KumarS. WalP. KhandaiM. KhandigeP.S. SadanandaV. AnwerM.K. GulatiM. BehlT. SrivastavaS. Predictive modelling in pharmacokinetics: From in-silico simulations to personalized medicine.Expert Opin. Drug Metab. Toxicol.202420418119510.1080/17425255.2024.233066638480460
    [Google Scholar]
  68. AlamS. VermaS. FatimaK. LuqmanS. SrivastavaS.K. KhanF. Pharmacophore & QSAR guided design, synthesis, pharmacokinetics and in vitro evaluation of curcumin analogs for anticancer activity.Curr. Med. Chem.202431562063910.2174/092986733066623042816272037132141
    [Google Scholar]
  69. ShiX.X. WangZ-Z. WangY-L. WangF. YangG-F. AquaticTox: A web-based tool for aquatic toxicity evaluation based on ensemble learning to facilitate the screening of green chemicals.Environ. Health20242420221110.1021/envhealth.4c00014
    [Google Scholar]
  70. TomaC. CappelliC.I. ManganaroA. LombardoA. ArningJ. BenfenatiE. New models to predict the acute and chronic toxicities of representative species of the main trophic levels of aquatic environments.Molecules20212622698310.3390/molecules2622698334834075
    [Google Scholar]
/content/journals/cst/10.2174/0115743624309015240827103538
Loading
/content/journals/cst/10.2174/0115743624309015240827103538
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test