Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1574-3624
  • E-ISSN: 2212-389X

Abstract

Transcription factor PPAR-γ is predominantly found in adipose tissue, liver, and brain. PPARs form heterodimers, interact with ligands, and regulate the expression of the genes of the PPAR-γ downstream regulatory pathways. PPAR-γ is critical in regulating many physiological processes, including adipogenesis, glucose metabolism, fatty acid metabolism, energy homeostasis, and inflammation. This review is on the functions of PPAR-γ and how dysregulation of activity or expression of PPAR-γ can lead to obesity and Alzheimer's disease (AD). The PPAR- γ agonist inhibited the downregulated pathways, such as Wnt/β-Catenin and JAK-STAT pathways, both involved in activating NF-kB. PPAR-γ has a significant role in the APOE (Apolipoprotein E) gene expression, which reduces reducing obesity, inhibits amyloid aggregation, prevents hyperphosphorylation of tau, and inhibits dysregulation of autophagy. This review provides a perspective on the intricate interplay between PPAR-γ, obesity, and AD, focusing on the molecular mechanisms and potential therapeutic implications.

Loading

Article metrics loading...

/content/journals/cst/10.2174/0115743624267214241016103515
2024-10-22
2025-05-03
Loading full text...

Full text loading...

References

  1. SoodS. DeviS. SinghT.G. MittalN. Pathogenesis of obesity-associated cardiovascular diseases: Key role of biomolecules.Health Sci. Rev.2023710009810.1016/j.hsr.2023.100098
    [Google Scholar]
  2. ArcherE. LavieC.J. HillJ.O. The contributions of ‘diet’,‘genes’, and physical activity to the etiology of obesity: Contrary evidence and consilience.Prog. Cardiovasc. Dis.20186128910210.1016/j.pcad.2018.06.00229906484
    [Google Scholar]
  3. BrewerC.J. BalenA.H. Focus on obesity.Reproduction2010140334736410.1530/REP‑09‑056820395425
    [Google Scholar]
  4. MohajanD. MohajanH.K. Obesity and its related diseases: A new escalating alarming in Global Health.J. Innov. Med. Res.202323122310.56397/JIMR/2023.03.04
    [Google Scholar]
  5. MazonJ.N. de MelloA.H. FerreiraG.K. RezinG.T. The impact of obesity on neurodegenerative diseases.Life Sci.2017182222810.1016/j.lfs.2017.06.00228583368
    [Google Scholar]
  6. Popa-WagnerA. DumbravaD-A. DumitrascuD.I. CapitanescuB. PetcuE.B. SurugiuR. FangW-H. Dietary habits, lifestyle factors and neurodegenerative diseases.Neural Regen. Res.202015339440010.4103/1673‑5374.26604531571647
    [Google Scholar]
  7. SahathevanR. BrodtmannA. DonnanG.A. Dementia, stroke, and vascular risk factors; a review.Int. J. Stroke201271617310.1111/j.1747‑4949.2011.00731.x22188853
    [Google Scholar]
  8. AlkholifiF.K. DeviS. YusufogluH.S. AlamA. The cardioprotective effect of corosolic acid in the diabetic rats: A possible mechanism of the PPAR-γ Pathway.Molecules202328392910.3390/molecules2803092936770602
    [Google Scholar]
  9. ZhuangQ.S. ZhengH. GuX.D. ShenL. JiH.F. Detecting the genetic link between Alzheimer’s disease and obesity using bioinformatics analysis of GWAS data.Oncotarget2017834559155591910.18632/oncotarget.1911528915562
    [Google Scholar]
  10. AmenO.M. SarkerS.D. GhildyalR. AryaA. Endoplasmic reticulum stress activates unfolded protein response signaling and mediates inflammation, obesity, and cardiac dysfunction: Therapeutic and molecular approach.Front. Pharmacol.20191097710.3389/fphar.2019.0097731551782
    [Google Scholar]
  11. TerzoS. AmatoA. MulèF. From obesity to Alzheimer’s disease through insulin resistance.J. Diabetes Complicat.2021351110802610.1016/j.jdiacomp.2021.10802634454830
    [Google Scholar]
  12. EbrahimpourS. ZakeriM. EsmaeiliA. Crosstalk between obesity, diabetes, and Alzheimer’s disease: Introducing quercetin as an effective triple herbal medicine.Ageing Res. Rev.20206210109510.1016/j.arr.2020.10109532535272
    [Google Scholar]
  13. Forny-GermanoL. De FeliceF.G. VieiraM.N.N. The role of leptin and adiponectin in obesity-associated cognitive decline and Alzheimer’s disease.Front. Neurosci.201912102710.3389/fnins.2018.0102730692905
    [Google Scholar]
  14. ChakrabortyA. HegdeS. PraharajS.K. PrabhuK. PatoleC. ShettyA.K. MayyaS.S. AcharyaR.V. HandeH.M. PrabhuM.M. UpadhyaD. Age related prevalence of mild cognitive impairment in type 2 diabetes mellitus patients in the Indian population and association of serum lipids with cognitive dysfunction.Front. Endocrinol. (Lausanne)20211279865210.3389/fendo.2021.79865235035379
    [Google Scholar]
  15. CorralesP. Vidal-PuigA. Medina-GómezG. PPARs and metabolic disorders associated with challenged adipose tissue plasticity.Int. J. Mol. Sci.2018197212410.3390/ijms1907212430037087
    [Google Scholar]
  16. VinuesaA. PomilioC. GregosaA. BentivegnaM. PresaJ. BellottoM. SaraviaF. BeauquisJ. Inflammation and insulin resistance as risk factors and potential therapeutic targets for Alzheimer’s disease.Front. Neurosci.20211565365110.3389/fnins.2021.65365133967682
    [Google Scholar]
  17. SunC. MaoS. ChenS. ZhangW. LiuC. PPARs-orchestrated metabolic homeostasis in the adipose tissue.Int. J. Mol. Sci.20212216897410.3390/ijms2216897434445679
    [Google Scholar]
  18. ChengH.S. TanW.R. LowZ.S. MarvalimC. LeeJ.Y.H. TanN.S. Exploration and development of PPAR modulators in health and disease: an update of clinical evidence.Int. J. Mol. Sci.20192020505510.3390/ijms2020505531614690
    [Google Scholar]
  19. SanjayS. SharmaA. LeeH.J. Role of phytoconstituents as PPAR agonists: implications for neurodegenerative disorders.Biomedicines2021912191410.3390/biomedicines912191434944727
    [Google Scholar]
  20. MannanA. GargN. SinghT.G. KangH.K. Peroxisome proliferator-activated receptor-gamma (PPAR-ɣ): molecular effects and its importance as a novel therapeutic target for cerebral ischemic injury.Neurochem. Res.202146112800283110.1007/s11064‑021‑03402‑134282491
    [Google Scholar]
  21. CherryA.D. PiantadosiC.A. Regulation of mitochondrial biogenesis and its intersection with inflammatory responses.Antioxid. Redox Signal.2015221296597610.1089/ars.2014.620025556935
    [Google Scholar]
  22. LiT. QuJ. XuC. FangT. SunB. ChenL. Exploring the common gene signatures and pathogeneses of obesity with Alzheimer’s disease via transcriptome data.Front. Endocrinol. (Lausanne)202213107295510.3389/fendo.2022.107295536568118
    [Google Scholar]
  23. CoronaJ.C. DuchenM.R. PPARγ as a therapeutic target to rescue mitochondrial function in neurological disease.Free Radic. Biol. Med.201610015316310.1016/j.freeradbiomed.2016.06.02327352979
    [Google Scholar]
  24. ChungJ.H. SeoA.Y. ChungS.W. KimM.K. LeeuwenburghC. YuB.P. ChungH.Y. Molecular mechanism of PPAR in the regulation of age-related inflammation.Ageing Res. Rev.20087212613610.1016/j.arr.2008.01.00118313368
    [Google Scholar]
  25. KariharanT. NanayakkaraG. ParameshwaranK. BagasrawalaI. AhujaM. Abdel-RahmanE. AminA.T. DhanasekaranM. SuppiramaniamV. AminR.H. Central activation of PPAR-gamma ameliorates diabetes induced cognitive dysfunction and improves BDNF expression.Neurobiol. Aging20153631451146110.1016/j.neurobiolaging.2014.09.02825510319
    [Google Scholar]
  26. PawlakM. LefebvreP. StaelsB. Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease.J. Hepatol.201562372073310.1016/j.jhep.2014.10.03925450203
    [Google Scholar]
  27. ZhuoY. ZhuoJ. Tranilast treatment attenuates cerebral ischemia‐reperfusion injury in rats through the inhibition of inflammatory responses mediated by NF‐κB and PPARs.Clin. Transl. Sci.201912219620210.1111/cts.1260630548101
    [Google Scholar]
  28. CarvalhoM.V. Gonçalves-de-AlbuquerqueC.F. SilvaA.R. PPAR gamma: from definition to molecular targets and therapy of lung diseases.Int. J. Mol. Sci.202122280510.3390/ijms2202080533467433
    [Google Scholar]
  29. ChenY.C. WuJ.S. TsaiH.D. HuangC.Y. ChenJ.J. SunG.Y. LinT.N. Peroxisome proliferator-activated receptor gamma (PPAR-γ) and neurodegenerative disorders.Mol. Neurobiol.201246111412410.1007/s12035‑012‑8259‑822434581
    [Google Scholar]
  30. LandrethG. JiangQ. MandrekarS. HenekaM. PPARgamma agonists as therapeutics for the treatment of Alzheimer’s disease.Neurotherapeutics20085348148910.1016/j.nurt.2008.05.00318625459
    [Google Scholar]
  31. ZhaoX.R. GonzalesN. AronowskiJ. Pleiotropic role of PPARγ in intracerebral hemorrhage: an intricate system involving Nrf2, RXR, and NF-κB.CNS Neurosci. Ther.201521435736610.1111/cns.1235025430543
    [Google Scholar]
  32. SharmaN. PasalaM.S. PrakashA. Mitochondrial DNA: Epigenetics and environment.Environ. Mol. Mutagen.201960866868210.1002/em.2231931335990
    [Google Scholar]
  33. SekarD. JohnsonJ. BirunthaM. LakhmananG. GurunathanD. RossK. Biological and clinical relevance of microRNAs in mitochondrial diseases/dysfunctions.DNA Cell Biol.20203981379138410.1089/dna.2019.501331855060
    [Google Scholar]
  34. KummerE. BanN. Mechanisms and regulation of protein synthesis in mitochondria.Nat. Rev. Mol. Cell Biol.202122530732510.1038/s41580‑021‑00332‑233594280
    [Google Scholar]
  35. SuL.J. ZhangJ.H. GomezH. MuruganR. HongX. XuD. JiangF. PengZ.Y. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis.Oxid. Med. Cell. Longev.2019201911310.1155/2019/508084331737171
    [Google Scholar]
  36. Bondia-PonsI. RyanL. MartinezJ.A. Oxidative stress and inflammation interactions in human obesity.J. Physiol. Biochem.201268470171110.1007/s13105‑012‑0154‑222351038
    [Google Scholar]
  37. TodaN. AyajikiK. OkamuraT. Obesity-induced cerebral hypoperfusion derived from endothelial dysfunction: one of the risk factors for Alzheimer’s disease.Curr. Alzheimer Res.201411873374410.2174/15672050110814091012045625212912
    [Google Scholar]
  38. KleinR.D. BorgesV.D. RosaC.E. ColaresE.P. RobaldoR.B. MartinezP.E. BianchiniA. Effects of increasing temperature on antioxidant defense system and oxidative stress parameters in the Antarctic fish Notothenia coriiceps and Notothenia rossii.J. Therm. Biol.201768Pt A11011810.1016/j.jtherbio.2017.02.01628689712
    [Google Scholar]
  39. de la MonteS.M. TongM. WandsJ.R. The 20-year voyage aboard the journal of Alzheimer’s disease: docking at ‘Type 3 Diabetes’, environmental/exposure factors, pathogenic mechanisms, and potential treatments.J. Alzheimers Dis.20186231381139010.3233/JAD‑17082929562538
    [Google Scholar]
  40. WadaJ. NakatsukaA. Mitochondrial dynamics and mitochondrial dysfunction in diabetes.Acta Med. Okayama201670315115827339203
    [Google Scholar]
  41. MuhičM. VardjanN. ChowdhuryH.H. ZorecR. KreftM. Insulin and insulin-like growth factor 1 (IGF-1) modulate cytoplasmic glucose and glycogen levels but not glucose transport across the membrane in astrocytes.J. Biol. Chem.201529017111671117610.1074/jbc.M114.62906325792745
    [Google Scholar]
  42. ZiaA. Pourbagher-ShahriA.M. FarkhondehT. SamarghandianS. Molecular and cellular pathways contributing to brain aging.Behav. Brain Funct.2021171610.1186/s12993‑021‑00179‑934118939
    [Google Scholar]
  43. AgnihotriA. AruomaO.I. Alzheimer’s disease and Parkinson’s disease: a nutritional toxicology perspective of the impact of oxidative stress, mitochondrial dysfunction, nutrigenomics and environmental chemicals.J. Am. Coll. Nutr.2020391162710.1080/07315724.2019.168337931829802
    [Google Scholar]
  44. GolpichM. AminiE. MohamedZ. Azman AliR. Mohamed IbrahimN. AhmadianiA. Mitochondrial dysfunction and biogenesis in neurodegenerative diseases: pathogenesis and treatment.CNS Neurosci. Ther.201723152210.1111/cns.1265527873462
    [Google Scholar]
  45. LiuY.J. McIntyreR.L. JanssensG.E. HoutkooperR.H. Mitochondrial fission and fusion: A dynamic role in aging and potential target for age-related disease.Mech. Ageing Dev.202018611121210.1016/j.mad.2020.11121232017944
    [Google Scholar]
  46. NicolakakisN. AboulkassimT. OngaliB. LecruxC. FernandesP. Rosa-NetoP. TongX.K. HamelE. Complete rescue of cerebrovascular function in aged Alzheimer’s disease transgenic mice by antioxidants and pioglitazone, a peroxisome proliferator-activated receptor γ agonist.J. Neurosci.200828379287929610.1523/JNEUROSCI.3348‑08.200818784309
    [Google Scholar]
  47. HwangJ. KleinhenzD.J. RupnowH.L. CampbellA.G. ThuléP.M. SutliffR.L. HartC.M. The PPARγ ligand, rosiglitazone, reduces vascular oxidative stress and NADPH oxidase expression in diabetic mice.Vascul. Pharmacol.200746645646210.1016/j.vph.2007.01.00717337254
    [Google Scholar]
  48. RajputS.A. WangX. YanH.C. Morin hydrate: A comprehensive review on novel natural dietary bioactive compound with versatile biological and pharmacological potential.Biomed. Pharmacother.202113811151110.1016/j.biopha.2021.11151133744757
    [Google Scholar]
  49. SinghP. RaiS.N. Factors affecting obesity and its treatment.Obes. Med.20191610014010.1016/j.obmed.2019.100140
    [Google Scholar]
  50. TangQ. LuM. XuB. WangY. LuS. YuZ. JingX. YuanJ. Electroacupuncture regulates inguinal white adipose tissue browning by promoting Sirtuin-1-dependent PPAR γ deacetylation and mitochondrial biogenesis.Front. Endocrinol. (Lausanne)20211160711310.3389/fendo.2020.60711333551999
    [Google Scholar]
  51. ZhangZ. YangX. SongY.Q. TuJ. Autophagy in Alzheimer’s disease pathogenesis: Therapeutic potential and future perspectives.Ageing Res. Rev.20217210146410.1016/j.arr.2021.10146434551326
    [Google Scholar]
  52. HallingJ.F. PilegaardH. PGC-1α-mediated regulation of mitochondrial function and physiological implications.Appl. Physiol. Nutr. Metab.202045992793610.1139/apnm‑2020‑000532516539
    [Google Scholar]
  53. BheereddyP. YerraV.G. KalvalaA.K. SherkhaneB. KumarA. SIRT1 activation by polydatin alleviates oxidative damage and elevates mitochondrial biogenesis in experimental diabetic neuropathy.Cell. Mol. Neurobiol.20214171563157710.1007/s10571‑020‑00923‑132683581
    [Google Scholar]
  54. HuangL. MaY. ChenL. ChangJ. ZhongM. WangZ. SunY. ChenX. SunF. XiaoL. ChenJ. Maternal RND3/RhoE deficiency impairs placental mitochondrial function in preeclampsia by modulating PPARγ-UCP2 cascade.bioRxiv202010.1101/2020.06.22.164921
    [Google Scholar]
  55. BarnstableC.J. ZhangM. Tombran-TinkJ. Uncoupling proteins as therapeutic targets for neurodegenerative diseases.Int. J. Mol. Sci.20222310567210.3390/ijms2310567235628482
    [Google Scholar]
  56. YangB. YuQ. ChangB. GuoQ. XuS. YiX. CaoS. MOTS-c interacts synergistically with exercise intervention to regulate PGC-1α expression, attenuate insulin resistance and enhance glucose metabolism in mice via AMPK signaling pathway.Biochim. Biophys. Acta Mol. Basis Dis.20211867616612610.1016/j.bbadis.2021.16612633722744
    [Google Scholar]
  57. KobayashiM. DeguchiY. NozakiY. HigamiY. Contribution of pgc-1α to obesity-and caloric restriction-related physiological changes in white adipose tissue.Int. J. Mol. Sci.20212211602510.3390/ijms2211602534199596
    [Google Scholar]
  58. PopovL.D. Mitochondrial biogenesis: An update.J. Cell. Mol. Med.20202494892489910.1111/jcmm.1519432279443
    [Google Scholar]
  59. RusekM. PlutaR. Ułamek-KoziołM. CzuczwarS.J. Ketogenic diet in Alzheimer’s disease.Int. J. Mol. Sci.20192016389210.3390/ijms2016389231405021
    [Google Scholar]
  60. BournatJ.C. BrownC.W. Mitochondrial dysfunction in obesity.Curr. Opin. Endocrinol. Diabetes Obes.201017544645210.1097/MED.0b013e32833c302620585248
    [Google Scholar]
  61. AshleighT. SwerdlowR.H. BealM.F. The role of mitochondrial dysfunction in Alzheimer’s disease pathogenesis.Alzheimers Dement.202319133334210.1002/alz.1268335522844
    [Google Scholar]
  62. SánchezB. Muñoz-PintoM.F. CanoM. Irisin enhances longevity by boosting SIRT1, AMPK, autophagy and telomerase.Expert Rev. Mol. Med.202325e410.1017/erm.2022.4136503597
    [Google Scholar]
  63. LiX. FengY. WangX.X. TruongD. WuY.C. The critical role of SIRT1 in Parkinson’s disease: mechanism and therapeutic considerations.Aging Dis.20201161608162210.14336/AD.2020.021633269110
    [Google Scholar]
  64. CorpasR. RevillaS. UrsuletS. Castro-FreireM. KalimanP. PetegniefV. Giménez-LlortL. SarkisC. PallàsM. SanfeliuC. SIRT1 overexpression in mouse hippocampus induces cognitive enhancement through proteostatic and neurotrophic mechanisms.Mol. Neurobiol.20175475604561910.1007/s12035‑016‑0087‑927614878
    [Google Scholar]
  65. GovindarajuluM. PinkyP.D. BloemerJ. GhaneiN. SuppiramaniamV. AminR. Signaling mechanisms of selective PPARγ modulators in Alzheimer’s disease.PPAR Res.2018201812010.1155/2018/201067530420872
    [Google Scholar]
  66. PrakashA. KumarA. Role of nuclear receptor on regulation of BDNF and neuroinflammation in hippocampus of β-amyloid animal model of Alzheimer’s disease.Neurotox. Res.201425433534710.1007/s12640‑013‑9437‑924277156
    [Google Scholar]
  67. MuoioD.M. KovesT.R. Skeletal muscle adaptation to fatty acid depends on coordinated actions of the PPARs and PGC1α: implications for metabolic disease.Appl. Physiol. Nutr. Metab.200732587488310.1139/H07‑08318059612
    [Google Scholar]
  68. ChiT. WangM. WangX. YangK. XieF. LiaoZ. WeiP. PPAR-γ modulators as current and potential cancer treatments.Front. Oncol.20211173777610.3389/fonc.2021.73777634631571
    [Google Scholar]
  69. de BritoT.V. JúniorG.J.D. da Cruz JúniorJ.S. SilvaR.O. da Silva MonteiroC.E. FrancoA.X. VasconcelosD.F.P. de OliveiraJ.S. da Silva CostaD.V. CarneiroT.B. Gomes DuarteA.S. de SouzaM.H.L.P. SoaresP.M.G. BarbosaA.L.R. Gabapentin attenuates intestinal inflammation: Role of PPAR-gamma receptor.Eur. J. Pharmacol.202087317297410.1016/j.ejphar.2020.17297432027888
    [Google Scholar]
  70. MartinH. Role of PPAR-gamma in inflammation. Prospects for therapeutic intervention by food components.Mutat. Res.20096691-21710.1016/j.mrfmmm.2009.06.00919563816
    [Google Scholar]
  71. GruzdevaO. UchasovaE. DylevaY. AkbashevaO. MatveevaV. KaretnikovaV. KokovA. BarbarashO. Relationship key factor of inflammation and the development of complications in the late period of myocardial infarction in patients with visceral obesity.BMC Cardiovasc. Disord.20171713610.1186/s12872‑017‑0473‑x28103807
    [Google Scholar]
  72. KumarS. BehlT. SachdevaM. SehgalA. KumariS. KumarA. KaurG. YadavH.N. BungauS. Implicating the effect of ketogenic diet as a preventive measure to obesity and diabetes mellitus.Life Sci.202126411866110.1016/j.lfs.2020.11866133121986
    [Google Scholar]
  73. BehlT. KaurD. SehgalA. SinghS. SharmaN. ZenginG. Andronie-CioaraF.L. TomaM.M. BungauS. BumbuA.G. Role of monoamine oxidase activity in Alzheimer’s disease: an insight into the therapeutic potential of inhibitors.Molecules20212612372410.3390/molecules2612372434207264
    [Google Scholar]
  74. SunP. XuW. ZhaoX. ZhangC. LinX. GongM. FuZ. Ozone induces autophagy by activating PPARγ/mTOR in rat chondrocytes treated with IL-1β.J. Orthop. Surg. Res.202217135110.1186/s13018‑022‑03233‑y35842709
    [Google Scholar]
  75. SunS.C. Non-canonical NF-κB signaling pathway.Cell Res.2011211718510.1038/cr.2010.17721173796
    [Google Scholar]
  76. MuleroM.C. HuxfordT. GhoshG. NF-κB, IκB, and IKK: integral components of immune system signaling.Structural Immunology2019207226
    [Google Scholar]
  77. VogelC.F.A. Van WinkleL.S. EsserC. Haarmann-StemmannT. The aryl hydrocarbon receptor as a target of environmental stressors – Implications for pollution mediated stress and inflammatory responses.Redox Biol.20203410153010.1016/j.redox.2020.10153032354640
    [Google Scholar]
  78. GriffinM.J. On the immunometabolic Role of NF-κB in Adipocytes.Immunometabolism (Cobham)202241e22000310.20900/immunometab2022000335251704
    [Google Scholar]
  79. Abu-ElfotuhK. HusseinF.H. AbbasA.N. Al-RekabiM.D. BarghashS.S. ZaghloolS.S. El-EmamS.Z. Melatonin and zinc supplements with physical and mental activities subside neurodegeneration and hepatorenal injury induced by aluminum chloride in rats: Inclusion of GSK-3β-Wnt/β-catenin signaling pathway.Neurotoxicology202291698310.1016/j.neuro.2022.05.00235526705
    [Google Scholar]
  80. Casillas-EspinosaP.M. AliI. O’BrienT.J. Neurodegenerative pathways as targets for acquired epilepsy therapy development.Epilepsia Open20205213815410.1002/epi4.1238632524040
    [Google Scholar]
  81. NeiheiselA. KaurM. MaN. HavardP. ShenoyA.K. Wnt pathway modulators in cancer therapeutics: An update on completed and ongoing clinical trials.Int. J. Cancer2022150572774010.1002/ijc.3381134536299
    [Google Scholar]
  82. LiuJ. XiaoQ. XiaoJ. NiuC. LiY. ZhangX. ZhouZ. ShuG. YinG. Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities.Signal Transduct. Target. Ther.202271310.1038/s41392‑021‑00762‑634980884
    [Google Scholar]
  83. ValléeA. LecarpentierY. GuillevinR. ValléeJ.N. Effects of cannabidiol interactions with Wnt/β-catenin pathway and PPARγ on oxidative stress and neuroinflammation in Alzheimer’s disease.Acta Biochim. Biophys. Sin. (Shanghai)2017491085386610.1093/abbs/gmx07328981597
    [Google Scholar]
  84. Van SteenwinckelJ. SchangA.L. KrishnanM.L. DegosV. Delahaye-DuriezA. BokobzaC. CsabaZ. VerdonkF. MontanéA. SigautS. HennebertO. LebonS. SchwendimannL. Le CharpentierT. Hassan-AbdiR. BallG. AljabarP. SaxenaA. HollowayR.K. BirchmeierW. BaudO. RowitchD. MironV. ChretienF. LeconteC. BessonV.C. PetrettoE.G. EdwardsA.D. HagbergH. Soussi-YanicostasN. FleissB. GressensP. Decreased microglial Wnt/β-catenin signalling drives microglial pro-inflammatory activation in the developing brain.Brain2019142123806383310.1093/brain/awz31931665242
    [Google Scholar]
  85. SalemM.A. BudzyńskaB. KowalczykJ. El SayedN.S. MansourS.M. Tadalafil and bergapten mitigate streptozotocin-induced sporadic Alzheimer’s disease in mice via modulating neuroinflammation, PI3K/Akt, Wnt/β-catenin, AMPK/mTOR signaling pathways.Toxicol. Appl. Pharmacol.202142911569710.1016/j.taap.2021.11569734428446
    [Google Scholar]
  86. SabatinoL. PancioneM. VotinoC. ColangeloT. LupoA. NovellinoE. LavecchiaA. ColantuoniV. Emerging role of the β-catenin-PPARγ axis in the pathogenesis of colorectal cancer.World J. Gastroenterol.201420237137715110.3748/wjg.v20.i23.713724966585
    [Google Scholar]
  87. FarkhondehT. KhanH. AschnerM. SaminiF. Pourbagher-ShahriA.M. AramjooH. RoshanravanB. HoyteC. MehrpourO. SamarghandianS. Impact of cannabis-based medicine on Alzheimer's disease by focusing on the amyloid β-modifications: A systematic study.CNS Neurol. Disord. Drug Targ.202019533434310.2174/1871527319666200708130745
    [Google Scholar]
  88. ZhouX. TangX. LiT. LiD. GongZ. ZhangX. LiY. ZhuJ. WangY. ZhangB. Inhibition of VDAC1 rescues Aβ 1-42-induced mitochondrial dysfunction and ferroptosis via activation of AMPK and Wnt/β-catenin pathways.Mediators Inflamm.2023202311310.1155/2023/673969136816741
    [Google Scholar]
  89. HuangH. LuQ. YuanX. ZhangP. YeC. WeiM. YangC. ZhangL. HuangY. LuoX. LuoJ. Andrographolide inhibits the growth of human osteosarcoma cells by suppressing Wnt/β-catenin, PI3K/AKT and NF-κB signaling pathways.Chem. Biol. Interact.202236511006810.1016/j.cbi.2022.11006835917943
    [Google Scholar]
  90. SerafinoA. GiovanniniD. RossiS. CozzolinoM. Targeting the Wnt/β-catenin pathway in neurodegenerative diseases: recent approaches and current challenges.Expert Opin. Drug Discov.202015780382210.1080/17460441.2020.174626632281421
    [Google Scholar]
  91. ShinJ. KongC. LeeJ. ChoiB.Y. SimJ. KohC.S. ParkM. NaY.C. SuhS.W. ChangW.S. ChangJ.W. Focused ultrasound-induced blood-brain barrier opening improves adult hippocampal neurogenesis and cognitive function in a cholinergic degeneration dementia rat model.Alzheimers Res. Ther.201911111010.1186/s13195‑019‑0569‑x31881998
    [Google Scholar]
  92. IsmailN. SharmaA. SoongL. WalkerD.H. Review: Protective immunity and immunopathology of ehrlichiosis.Zoonoses20222110.15212/ZOONOSES‑2022‑0009
    [Google Scholar]
  93. ValléeA. LecarpentierY. Alzheimer disease: Crosstalk between the canonical Wnt/beta-catenin pathway and PPARs alpha and gamma.Front. Neurosci.20161045910.3389/fnins.2016.0045927807401
    [Google Scholar]
  94. DaniyalM. WangW. Natural products as modulators of signaling in inflammation.In: Inflammation and Natural ProductsAcademic press202110.1016/B978‑0‑12‑819218‑4.00005‑5
    [Google Scholar]
  95. SuT. HuangC. YangC. JiangT. SuJ. ChenM. FatimaS. GongR. HuX. BianZ. LiuZ. KwanH.Y. Apigenin inhibits STAT3/CD36 signaling axis and reduces visceral obesity.Pharmacol. Res.202015210458610.1016/j.phrs.2019.10458631877350
    [Google Scholar]
  96. PurohitM. GuptaG. AfzalO. AltamimiA.S.A. AlzareaS.I. KazmiI. AlmalkiW.H. GulatiM. KaurI.P. SinghS.K. DuaK. Janus kinase/signal transducers and activator of transcription (JAK/STAT) and its role in Lung inflammatory disease.Chem. Biol. Interact.202337111033410.1016/j.cbi.2023.11033436610610
    [Google Scholar]
  97. SkjesolA. LiebeT. IlievD.B. ThomassenE.I.S. TollersrudL.G. SobhkhezM. Lindenskov JoensenL. SecombesC.J. JørgensenJ.B. Functional conservation of suppressors of cytokine signaling proteins between teleosts and mammals: Atlantic salmon SOCS1 binds to JAK/STAT family members and suppresses type I and II IFN signaling.Dev. Comp. Immunol.201445117718910.1016/j.dci.2014.02.00924582990
    [Google Scholar]
  98. LiH.B. TongJ. ZhuS. BatistaP.J. DuffyE.E. ZhaoJ. BailisW. CaoG. KroehlingL. ChenY. WangG. BroughtonJ.P. ChenY.G. KlugerY. SimonM.D. ChangH.Y. YinZ. FlavellR.A. m6A mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways.Nature2017548766733834210.1038/nature2345028792938
    [Google Scholar]
  99. HuX. liJ. FuM. ZhaoX. WangW. The JAK/STAT signaling pathway: from bench to clinic.Signal Transduct. Target. Ther.20216140210.1038/s41392‑021‑00791‑134824210
    [Google Scholar]
  100. LiuZ. GanL. ZhouZ. JinW. SunC. SOCS3 promotes inflammation and apoptosis via inhibiting JAK2/STAT3 signaling pathway in 3T3-L1 adipocyte.Immunobiology2015220894795310.1016/j.imbio.2015.02.00425720636
    [Google Scholar]
  101. GanguliG. MukherjeeU. SonawaneA. Peroxisomes and oxidative stress: their implications in the modulation of cellular immunity during mycobacterial infection.Front. Microbiol.201910112110.3389/fmicb.2019.0112131258517
    [Google Scholar]
  102. IshtiaqS.M. RashidH. HussainZ. ArshadM.I. KhanJ.A. Adiponectin and PPAR: a setup for intricate crosstalk between obesity and non-alcoholic fatty liver disease.Rev. Endocr. Metab. Disord.201920325326110.1007/s11154‑019‑09510‑231656991
    [Google Scholar]
  103. WangT. HeC. Pro-inflammatory cytokines: The link between obesity and osteoarthritis.Cytokine Growth Factor Rev.201844385010.1016/j.cytogfr.2018.10.00230340925
    [Google Scholar]
  104. PintoA. BonucciA. MaggiE. CorsiM. BusinaroR. Anti-oxidant and anti-inflammatory activity of ketogenic diet: new perspectives for neuroprotection in Alzheimer’s disease.Antioxidants2018756310.3390/antiox705006329710809
    [Google Scholar]
  105. BatistaM.L.Jr PeresS.B. McDonaldM.E. AlcântaraP.S.M. OlivanM. OtochJ.P. FarmerS.R. SeelaenderM. Adipose tissue inflammation and cancer cachexia: Possible role of nuclear transcription factors.Cytokine201257191610.1016/j.cyto.2011.10.00822099872
    [Google Scholar]
  106. BernardoA. MinghettiL. PPAR-γ agonists as regulators of microglial activation and brain inflammation.Curr. Pharm. Des.20061219310910.2174/13816120678057457916454728
    [Google Scholar]
  107. Malchiodi-AlbediF. MatteucciA. BernardoA. MinghettiL. PPAR-gamma, microglial cells, and ocular inflammation: New venues for potential therapeutic approaches.PPAR Res.2008200829578410.1155/2008/295784
    [Google Scholar]
  108. KulkarniA.A. ThatcherT.H. OlsenK.C. MaggirwarS.B. PhippsR.P. SimeP.J. PPAR-γ ligands repress TGFβ-induced myofibroblast differentiation by targeting the PI3K/Akt pathway: implications for therapy of fibrosis.PLoS One201161e1590910.1371/journal.pone.001590921253589
    [Google Scholar]
  109. BaidyaF. BohraM. DattaA. SarmahD. ShahB. JagtapP. RautS. SarkarA. SinghU. KaliaK. BorahA. WangX. DaveK.R. YavagalD.R. BhattacharyaP. Neuroimmune crosstalk and evolving pharmacotherapies in neurodegenerative diseases.Immunology2021162216017810.1111/imm.1326432939758
    [Google Scholar]
  110. KheraR. MehanS. KumarS. SethiP. BhallaS. PrajapatiA. Role of JAK-STAT and PPAR-gamma signalling modulators in the prevention of autism and neurological dysfunctions.Mol. Neurobiol.20225963888391210.1007/s12035‑022‑02819‑135437700
    [Google Scholar]
  111. KhanF. KhanH. KhanA. YamasakiM. Moustaid-MoussaN. Al-HarrasiA. RahmanS.M. Autophagy in adipogenesis: Molecular mechanisms and regulation by bioactive compounds.Biomed. Pharmacother.202215511371510.1016/j.biopha.2022.11371536152415
    [Google Scholar]
  112. KimJ.E. ChenJ. Regulation of peroxisome proliferator-activated receptor-γ activity by mammalian target of rapamycin and amino acids in adipogenesis.Diabetes200453112748275610.2337/diabetes.53.11.274815504954
    [Google Scholar]
  113. LiuG.Y. SabatiniD.M. mTOR at the nexus of nutrition, growth, ageing and disease.Nat. Rev. Mol. Cell Biol.202021418320310.1038/s41580‑019‑0199‑y31937935
    [Google Scholar]
  114. KimS.G. LeeS. KimY. ParkJ. WooD. KimD. LiY. ShinW. KangH. YookC. LeeM. KimK. RohJ.D. RyuJ. JungH. UmS.M. YangE. KimH. HanJ. HeoW.D. KimE. Tanc2-mediated mTOR inhibition balances mTORC1/2 signaling in the developing mouse brain and human neurons.Nat. Commun.2021121269510.1038/s41467‑021‑22908‑433976205
    [Google Scholar]
  115. PerlA. mTOR activation is a biomarker and a central pathway to autoimmune disorders, cancer, obesity, and aging.Ann. N. Y. Acad. Sci.201513461334410.1111/nyas.1275625907074
    [Google Scholar]
  116. MalleyC.O. PidgeonG.P. The mTOR pathway in obesity driven gastrointestinal cancers: Potential targets and clinical trials.BBA Clin.20165294010.1016/j.bbacli.2015.11.00327051587
    [Google Scholar]
  117. CaiH. DongL.Q. LiuF. Recent advances in adipose mTOR signaling and function: therapeutic prospects.Trends Pharmacol. Sci.201637430331710.1016/j.tips.2015.11.01126700098
    [Google Scholar]
  118. LaplanteM. SabatiniD.M. An emerging role of mTOR in lipid biosynthesis.Curr. Biol.20091922R1046R105210.1016/j.cub.2009.09.05819948145
    [Google Scholar]
  119. MaoZ. ZhangW. Role of mTOR in glucose and lipid metabolism.Int. J. Mol. Sci.2018197204310.3390/ijms1907204330011848
    [Google Scholar]
  120. ShaoW. EspenshadeP.J. Expanding roles for SREBP in metabolism.Cell Metab.201216441441910.1016/j.cmet.2012.09.00223000402
    [Google Scholar]
  121. FontaineC. DuboisG. DuguayY. HelledieT. Vu-DacN. GervoisP. SoncinF. MandrupS. FruchartJ.C. Fruchart-NajibJ. StaelsB. The orphan nuclear receptor Rev-Erbalpha is a peroxisome proliferator-activated receptor (PPAR) γ target gene and promotes PPARgamma-induced adipocyte differentiation.J. Biol. Chem.200327839376723768010.1074/jbc.M30466420012821652
    [Google Scholar]
  122. KearneyA.L. NorrisD.M. GhomlaghiM. Kin Lok WongM. HumphreyS.J. CarrollL. YangG. CookeK.C. YangP. GeddesT.A. ShinS. FazakerleyD.J. NguyenL.K. JamesD.E. BurchfieldJ.G. Akt phosphorylates insulin receptor substrate to limit PI3K-mediated PIP3 synthesis.eLife202110e6694210.7554/eLife.6694234253290
    [Google Scholar]
  123. AmiraniE. HallajzadehJ. AsemiZ. MansourniaM.A. YousefiB. Effects of chitosan and oligochitosans on the phosphatidylinositol 3-kinase-AKT pathway in cancer therapy.Int. J. Biol. Macromol.202016445646710.1016/j.ijbiomac.2020.07.13732693135
    [Google Scholar]
  124. JungC.H. KimH. AhnJ. JeonT.I. LeeD.H. HaT.Y. Fisetin regulates obesity by targeting mTORC1 signaling.J. Nutr. Biochem.20132481547155410.1016/j.jnutbio.2013.01.00323517912
    [Google Scholar]
  125. SunE. MotolaniA. CamposL. LuT. The pivotal role of NF-KB in the pathogenesis and therapeutics of Alzheimer’s disease.Int. J. Mol. Sci.20222316897210.3390/ijms2316897236012242
    [Google Scholar]
  126. HoangT.H. YoonY. ParkS.A. LeeH.Y. PengC. KimJ.H. LeeG.H. ChaeH.J. IBF-R, a botanical extract of Rhus verniciflua controls obesity in which AMPK-SIRT1 axis and ROS regulatory mechanism are involved in mice.J. Funct. Foods20218710480410.1016/j.jff.2021.104804
    [Google Scholar]
  127. ZhongJ. GongW. ChenJ. QingY. WuS. LiH. HuangC. ChenY. WangY. XuZ. LiuW. LiH. LongH. Micheliolide alleviates hepatic steatosis in db/db mice by inhibiting inflammation and promoting autophagy via PPAR-γ-mediated NF-кB and AMPK/mTOR signaling.Int. Immunopharmacol.20185919720810.1016/j.intimp.2018.03.03629656210
    [Google Scholar]
  128. YanJ. NieY. CaoJ. LuoM. YanM. ChenZ. HeB. The roles and pharmacological effects of FGF21 in preventing aging-associated metabolic diseases.Front. Cardiovasc. Med.2021865557510.3389/fcvm.2021.65557533869312
    [Google Scholar]
  129. PerluigiM. Di DomenicoF. ButterfieldD.A. mTOR signaling in aging and neurodegeneration: At the crossroad between metabolism dysfunction and impairment of autophagy.Neurobiol. Dis.201584394910.1016/j.nbd.2015.03.01425796566
    [Google Scholar]
  130. PerluigiM. Di DomenicoF. BaroneE. ButterfieldD.A. mTOR in Alzheimer disease and its earlier stages: Links to oxidative damage in the progression of this dementing disorder.Free Radic. Biol. Med.202116938239610.1016/j.freeradbiomed.2021.04.02533933601
    [Google Scholar]
  131. NaginiS. SophiaJ. MishraR. Glycogen synthase kinases: Moonlighting proteins with theranostic potential in cancer.In: Seminars in cancer biologyAcademic Press2019
    [Google Scholar]
  132. DudaP. WiśniewskiJ. WójtowiczT. WójcickaO. JaśkiewiczM. Drulis-FajdaszD. RakusD. McCubreyJ.A. GizakA. Targeting GSK3 signaling as a potential therapy of neurodegenerative diseases and aging.Expert Opin. Ther. Targets2018221083384810.1080/14728222.2018.152692530244615
    [Google Scholar]
  133. Gómez-SintesR. HernándezF. LucasJ.J. AvilaJ. GSK-3 mouse models to study neuronal apoptosis and neurodegeneration.Front. Mol. Neurosci.201144510.3389/fnmol.2011.0004522110426
    [Google Scholar]
  134. Arciniegas RuizS.M. Eldar-FinkelmanH. Glycogen synthase kinase-3 inhibitors: preclinical and clinical focus on CNS-A decade onward.Front. Mol. Neurosci.20221479236410.3389/fnmol.2021.79236435126052
    [Google Scholar]
  135. SteinbergG.R. CarlingD. AMP-activated protein kinase: the current landscape for drug development.Nat. Rev. Drug Discov.201918752755110.1038/s41573‑019‑0019‑230867601
    [Google Scholar]
  136. WaniA. Al RihaniS.B. SharmaA. WeadickB. GovindarajanR. KhanS.U. SharmaP.R. DograA. NandiU. ReddyC.N. BharateS.S. SinghG. BharateS.B. VishwakarmaR.A. KaddoumiA. KumarA. Crocetin promotes clearance of amyloid-β by inducing autophagy via the STK11/LKB1-mediated AMPK pathway.Autophagy202117113813383210.1080/15548627.2021.187218733404280
    [Google Scholar]
  137. FrancoR. Martínez-PinillaE. NavarroG. ZamarbideM. Potential of GPCRs to modulate MAPK and mTOR pathways in Alzheimer’s disease.Prog. Neurobiol.2017149-150213810.1016/j.pneurobio.2017.01.00428189739
    [Google Scholar]
  138. RahmanM.A. RahmanM.R. ZamanT. UddinM.S. IslamR. Abdel-DaimM.M. RhimH. Emerging potential of naturally occurring autophagy modulators against neurodegeneration.Curr. Pharm. Des.202026777277910.2174/138161282666620010714254131914904
    [Google Scholar]
  139. CaiZ. LiuN. WangC. QinB. ZhouY. XiaoM. ChangL. YanL.J. ZhaoB. Role of RAGE in Alzheimer’s disease.Cell. Mol. Neurobiol.201636448349510.1007/s10571‑015‑0233‑326175217
    [Google Scholar]
  140. CarosiJ.M. HeinL.K. van den HurkM. AdamsR. MilkyB. SinghS. BardyC. DentonD. KumarS. SargeantT.J. Retromer regulates the lysosomal clearance of MAPT/tau.Autophagy20211792217223710.1080/15548627.2020.182154532960680
    [Google Scholar]
  141. ChangH. DiT. WangY. ZengX. LiG. WanQ. YuW. ChenL. Seipin deletion in mice enhances phosphorylation and aggregation of tau protein through reduced neuronal PPARγ and insulin resistance.Neurobiol. Dis.201912735036110.1016/j.nbd.2019.03.02330910747
    [Google Scholar]
  142. Di DomenicoF. TramutolaA. FoppoliC. HeadE. PerluigiM. ButterfieldD.A. mTOR in Down syndrome: Role in Aß and tau neuropathology and transition to Alzheimer disease-like dementia.Free Radic. Biol. Med.20181149410110.1016/j.freeradbiomed.2017.08.00928807816
    [Google Scholar]
  143. BeheraP.K. DeviS. MittalN. Therapeutic potential of gallic acid in obesity: Considerable shift!Obes. Med.2022100473
    [Google Scholar]
  144. DeviS. RangraN.K. RawatR. AlrobaianM.M. AlamA. SinghR. SinghA. Anti-atherogenic effect of Nepitrin-7-O-glucoside: A flavonoid isolated from Nepeta hindostana via acting on PPAR – α receptor.Steroids202116510877010.1016/j.steroids.2020.10877033227319
    [Google Scholar]
  145. KuangH. TanC.Y. TianH.Z. LiuL.H. YangM.W. HongF.F. YangS.L. Exploring the bi‐directional relationship between autophagy and Alzheimer’s disease.CNS Neurosci. Ther.202026215516610.1111/cns.1321631503421
    [Google Scholar]
  146. LinI.C. WuC.W. TainY.L. ChenI.C. HungC.Y. WuK.L.H. High fructose diet induces early mortality via autophagy factors accumulation in the rostral ventrolateral medulla as ameliorated by pioglitazone.J. Nutr. Biochem.201969879710.1016/j.jnutbio.2019.03.01431063919
    [Google Scholar]
  147. SalazarG. CullenA. HuangJ. ZhaoY. SerinoA. HilenskiL. PatrushevN. ForouzandehF. HwangH.S. SQSTM1/p62 and PPARGC1A/PGC-1alpha at the interface of autophagy and vascular senescence.Autophagy20201661092111010.1080/15548627.2019.165961231441382
    [Google Scholar]
  148. LiW. LiuF. LiuR. ZhouX. LiG. XiaoS. APOE E4 is associated with hyperlipidemia and obesity in elderly schizophrenic patients.Sci. Rep.20211111481810.1038/s41598‑021‑94381‑434285334
    [Google Scholar]
  149. ChenM. DaiY. LiuS. FanY. DingZ. LiD. TFEB biology and agonists at a glance.Cells202110233310.3390/cells1002033333562649
    [Google Scholar]
  150. BotteriG. SalvadóL. GumàA. Lee HamiltonD. MeakinP.J. MontagutG. AshfordM.L.J. Ceperuelo-MallafréV. Fernández-VeledoS. VendrellJ. Calderón-DominguezM. SerraD. HerreroL. PizarroJ. BarrosoE. PalomerX. Vázquez-CarreraM. The BACE1 product sAPPβ induces ER stress and inflammation and impairs insulin signaling.Metabolism201885597510.1016/j.metabol.2018.03.00529526536
    [Google Scholar]
  151. SadleirK.R. EimerW.A. KaufmanR.J. OstenP. VassarR. Genetic inhibition of phosphorylation of the translation initiation factor eIF2α does not block Aβ-dependent elevation of BACE1 and APP levels or reduce amyloid pathology in a mouse model of Alzheimer’s disease.PLoS One201497e10164310.1371/journal.pone.010164324992504
    [Google Scholar]
  152. QuanQ. QianY. LiX. LiM. Pioglitazone reduces β amyloid levels via inhibition of PPARγ phosphorylation in a neuronal model of Alzheimer’s disease.Front. Aging Neurosci.20191117810.3389/fnagi.2019.0017831379559
    [Google Scholar]
  153. InestrosaN. GodoyJ. QuintanillaR. KoenigC. BronfmanM. Peroxisome proliferator-activated receptor γ is expressed in hippocampal neurons and its activation prevents β-amyloid neurodegeneration: role of Wnt signaling.Exp. Cell Res.200530419110410.1016/j.yexcr.2004.09.03215707577
    [Google Scholar]
  154. DoJ. KimN. JeonS.H. GeeM.S. JuY.J. KimJ.H. OhM.S. LeeJ.K. Trans-cinnamaldehyde alleviates amyloid-beta pathogenesis via the SIRT1-PGC1α-PPARγ pathway in 5XFAD transgenic mice.Int. J. Mol. Sci.20202112449210.3390/ijms2112449232599846
    [Google Scholar]
  155. Mandrekar-ColucciS. KarloJ.C. LandrethG.E. Mechanisms underlying the rapid peroxisome proliferator-activated receptor-γ-mediated amyloid clearance and reversal of cognitive deficits in a murine model of Alzheimer’s disease.J. Neurosci.20123230101171012810.1523/JNEUROSCI.5268‑11.201222836247
    [Google Scholar]
  156. YinF. Lipid metabolism and Alzheimer’s disease: clinical evidence, mechanistic link and therapeutic promise.FEBS J.202329061420145310.1111/febs.1634434997690
    [Google Scholar]
  157. YamazakiY. PainterM.M. BuG. KanekiyoT. Apolipoprotein E as a therapeutic target in Alzheimer’s disease: a review of basic research and clinical evidence.CNS Drugs201630977378910.1007/s40263‑016‑0361‑427328687
    [Google Scholar]
  158. LiM. WangZ. WangP. LiH. YangL. TFEB: a emerging regulator in lipid homeostasis for atherosclerosis.Front. Physiol.20211263992010.3389/fphys.2021.63992033679452
    [Google Scholar]
  159. BrookhouserN. RamanS. FrischC. SrinivasanG. BrafmanD.A. APOE2 mitigates disease-related phenotypes in an isogenic hiPSC-based model of Alzheimer’s disease.Mol. Psychiatry202126105715573210.1038/s41380‑021‑01076‑333837271
    [Google Scholar]
  160. MuñozS.S. GarnerB. OoiL. Understanding the role of ApoE fragments in Alzheimer’s disease.Neurochem. Res.20194461297130510.1007/s11064‑018‑2629‑130225748
    [Google Scholar]
  161. LiuC.C. KanekiyoT. XuH. BuG. BuG. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy.Nat. Rev. Neurol.20139210611810.1038/nrneurol.2012.26323296339
    [Google Scholar]
  162. Bonet-CostaV. Herranz-PérezV. Blanco-GandíaM. Mas-BarguesC. InglésM. Garcia-TarragaP. Rodriguez-AriasM. MiñarroJ. BorrasC. Garcia-VerdugoJ.M. ViñaJ. Clearing amyloid-β through PPAR γ/ApoE activation by genistein is a treatment of experimental Alzheimer’s disease.J. Alzheimers Dis.201651370171110.3233/JAD‑15102026890773
    [Google Scholar]
  163. RaulinA.C. DossS.V. TrottierZ.A. IkezuT.C. BuG. LiuC.C. ApoE in Alzheimer’s disease: pathophysiology and therapeutic strategies.Mol. Neurodegener.20221717210.1186/s13024‑022‑00574‑436348357
    [Google Scholar]
  164. SkerrettR. PellegrinoM.P. CasaliB.T. TaraboantaL. LandrethG.E. Combined liver X receptor/peroxisome proliferator-activated receptor γ agonist treatment reduces amyloid β levels and improves behavior in amyloid precursor protein/presenilin 1 mice.J. Biol. Chem.201529035215912160210.1074/jbc.M115.65200826163517
    [Google Scholar]
  165. ReichD. GallucciG. TongM. de la MonteS.M. Therapeutic advantages of dual targeting of PPAR-δ and PPAR-γ in an experimental model of sporadic Alzheimer’s disease.J. Parkinsons Dis. Alzheimers Dis.20185130705969
    [Google Scholar]
  166. HamanoT. ShirafujiN. MakinoC. YenS.H. KanaanN.M. UenoA. SuzukiJ. IkawaM. MatsunagaA. YamamuraO. KuriyamaM. NakamotoY. Pioglitazone prevents tau oligomerization.Biochem. Biophys. Res. Commun.201647831035104210.1016/j.bbrc.2016.08.01627543203
    [Google Scholar]
  167. JanockoN.J. BrodersenK.A. Soto-OrtolazaA.I. RossO.A. LiesingerA.M. DuaraR. Graff-RadfordN.R. DicksonD.W. MurrayM.E. Neuropathologically defined subtypes of Alzheimer’s disease differ significantly from neurofibrillary tangle-predominant dementia.Acta Neuropathol.2012124568169210.1007/s00401‑012‑1044‑y22968369
    [Google Scholar]
  168. AlaliS. RiaziG. Ashrafi-KooshkM.R. MeknatkhahS. AhmadianS. Hooshyari ArdakaniM. HosseinkhaniB. Cannabidiol inhibits tau aggregation in vitro.Cells20211012352110.3390/cells1012352134944028
    [Google Scholar]
  169. BhatiaV. SharmaS. Role of mitochondrial dysfunction, oxidative stress and autophagy in progression of Alzheimer’s disease.J. Neurol. Sci.202142111725310.1016/j.jns.2020.11725333476985
    [Google Scholar]
  170. ManV.H. HeX. GaoJ. WangJ. Phosphorylation of Tau R2 repeat destabilizes its binding to microtubules: A molecular dynamics simulation study.ACS Chem. Neurosci.202314345846710.1021/acschemneuro.2c0061136669127
    [Google Scholar]
  171. DuraiP. BeerakaN.M. RamachandrappaH.V.P. KrishnanP. GudurP. RaghavendraN.M. RavanappaP.K.B. Advances in PPARs molecular dynamics and glitazones as a repurposing therapeutic strategy through mitochondrial redox dynamics against neurodegeneration.Curr. Neuropharmacol.202220589391510.2174/1570159X1966621110914133034751120
    [Google Scholar]
  172. YangQ. ZhouJ. Neuroinflammation in the central nervous system: Symphony of glial cells.Glia20196761017103510.1002/glia.2357130548343
    [Google Scholar]
  173. ArakiW. Aβ oligomer toxicity-reducing therapy for the prevention of Alzheimer’s disease: Importance of the Nrf2 and PPARγ Pathways.Cells20231210138610.3390/cells1210138637408220
    [Google Scholar]
  174. SatoT. HanyuH. HiraoK. KanetakaH. SakuraiH. IwamotoT. Efficacy of PPAR-γ agonist pioglitazone in mild Alzheimer disease.Neurobiol. Aging20113291626163310.1016/j.neurobiolaging.2009.10.00919923038
    [Google Scholar]
  175. GoldM. AldertonC. Zvartau-HindM. EggintonS. SaundersA.M. IrizarryM. CraftS. LandrethG. LinnamägiÜ. SawchakS. Rosiglitazone monotherapy in mild-to-moderate Alzheimer’s disease: results from a randomized, double-blind, placebo-controlled phase III study.Dement. Geriatr. Cogn. Disord.201030213114610.1159/00031884520733306
    [Google Scholar]
  176. KumeK. HanyuH. SakuraiH. TakadaY. OnumaT. IwamotoT. Effects of telmisartan on cognition and regional cerebral blood flow in hypertensive patients with Alzheimer’s disease.Geriatr. Gerontol. Int.201212220721410.1111/j.1447‑0594.2011.00746.x21929736
    [Google Scholar]
  177. D’AbramoC. RicciarelliR. PronzatoM.A. DaviesP. Troglitazone, a peroxisome proliferator‐activated receptor‐γ agonist, decreases tau phosphorylation in CHOtau4R cells.J. Neurochem.20069841068107710.1111/j.1471‑4159.2006.03931.x16787414
    [Google Scholar]
  178. BortoliniM. WrightM.B. BopstM. BalasB. Examining the safety of PPAR agonists – current trends and future prospects.Expert Opin. Drug Saf.2013121657910.1517/14740338.2013.74158523134541
    [Google Scholar]
  179. WangQ.A. ZhangF. JiangL. YeR. AnY. ShaoM. TaoC. GuptaR.K. SchererP.E. Peroxisome proliferator-activated receptor γ and its role in adipocyte homeostasis and thiazolidinedione-mediated insulin sensitization.Mol. Cell. Biol.20183810e00677-1710.1128/MCB.00677‑1729483301
    [Google Scholar]
  180. DecourtB. NoordaK. NoordaK. ShiJ. SabbaghM.N. Review of advanced drug trials focusing on the reduction of brain beta-amyloid to prevent and treat dementia.J. Exp. Pharmacol.20221433135210.2147/JEP.S26562636339394
    [Google Scholar]
/content/journals/cst/10.2174/0115743624267214241016103515
Loading
/content/journals/cst/10.2174/0115743624267214241016103515
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): adipogenesis; Alzheimer; amyloid beta; inflammation; NF-kB; obesity; PPAR-γ
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test