Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1574-3624
  • E-ISSN: 2212-389X

Abstract

Background

HIV/AIDS remains a global health challenge, demanding innovative antiretroviral strategies. HIV integrase inhibition, a promising therapeutic target, warrants exploration. This study investigates the potential of Cryptolepine and analogues as integrase inhibitors through docking and ADMET profiles. Docking simulations reveal binding affinities, guiding rational drug design. ADMET predictions assess the pharmacokinetics, ensuring clinical viability. Cryptolepine and analogues show promise, offering a pathway for therapeutic development against HIV/AIDS. Further, insights contribute to ongoing efforts in combating the pandemic with effective antiretroviral strategies.

Methods

Molecular docking investigations utilized Molegro Virtual Docker (MVD) 6.0, with the target protein [PDB ID: 1QS4] obtained from the Protein Data Bank. Ligands, particularly Cryptolepine-based, were selected from PubChem with adherence to Lipinski's Rule of Five for drug-like properties. Computational tools, including pkCSM, aided ADMET profiling. This study, conducted on an AMD Ryzen 3 3200U computer with Windows 10 home, enhances understanding and potential therapeutic strategies against HIV/AIDS.

Results

From a virtual screening of the PubChem database, the top ten candidates were selected based on their MolDock scores against the target 1QS4. All compounds had MolDock scores greater than -70.00 kcal, with [01] RPA 1 exhibiting the highest MolDock Score (-83.85 kcal) and Rerank Score (-39.59 kcal). These compounds possessed the essential pharmacophore for HIV integrase inhibition against 1QS4. However, three compounds, including [01] RPA 1, [00] RPA 1_6, and [04] RPA 1_1, showed no hydrogen bonding interactions with Val 79 and Val 150 amino acid residues. This highlights the importance of structural analysis in understanding ligand-receptor interactions for rational drug design against HIV integrase.

Conclusion

This study investigates how Cryptolepine analogues inhibit HIV integrase docking and ADMET analysis. All analogues exhibit strong binding, especially those within the 400-500 Da range. Specific amino acids and hydrogen bonds influence interactions. Compound [01] RPA 1_3 shows high intestinal absorption and promising properties, making it a potential HIV integrase inhibitor. The study highlights the importance of a comprehensive ADMET profile in drug development and suggests further exploration of [01] RPA 1_3 for HIV/AIDS therapy.

Loading

Article metrics loading...

/content/journals/cst/10.2174/0115743624305290240829035242
2024-09-05
2025-05-04
Loading full text...

Full text loading...

References

  1. GayleH.D. HillG.L. Global impact of human immunodeficiency virus and AIDS.Clin. Microbiol. Rev.200114232733510.1128/CMR.14.2.327‑335.200111292641
    [Google Scholar]
  2. WadhwaP. JainP. RudrawarS. JadhavH.R.A. Quinoline, coumarin and other heterocyclic analogs based HIV-1 integrase inhibitors.Curr. Drug Discov. Technol.201815121910.2174/157016381466617053111545228558629
    [Google Scholar]
  3. HooperE. HamiltonW.D. 1959 Manchester case of syndrome resembling AIDS.Lancet199634890381363136510.1016/S0140‑6736(96)07063‑88918282
    [Google Scholar]
  4. MarxJ.L. New disease baffles medical community.Science1982217456061862110.1126/science.70895847089584
    [Google Scholar]
  5. PopovicM. SarngadharanM. ReadE. GalloR.C. Detection, Isolation, and continuous production of cytopathic retroviruses (HTLV-III) from patients with AIDS and Pre-AIDS. Commemorating a quarter century of HIV.AIDS Res.200920094
    [Google Scholar]
  6. YousafM.Z. ZiaS. BabarM.E. AshfaqU.A. The epidemic of HIV/AIDS in developing countries; the current scenario in Pakistan.Virol. J.20118140110.1186/1743‑422X‑8‑40121838892
    [Google Scholar]
  7. SantoroMM PernoCF HIV-1 genetic variability and clinical implications. ISRN Microbiol.20132013481314
    [Google Scholar]
  8. NyamweyaS. HegedusA. JayeA. Rowland-JonesS. FlanaganK.L. MacallanD.C. Comparing HIV‐1 and HIV‐2 infection: Lessons for viral immunopathogenesis.Rev. Med. Virol.201323422124010.1002/rmv.173923444290
    [Google Scholar]
  9. SharpP.M. HahnB.H. Origins of HIV and the AIDS pandemic.Cold Spring Harb. Perspect. Med.201111a00684110.1101/cshperspect.a00684122229120
    [Google Scholar]
  10. GomezC. HopeT.J. The ins and outs of HIV replication.Cell. Microbiol.20057562162610.1111/j.1462‑5822.2005.00516.x15839891
    [Google Scholar]
  11. AlroyI. TuviaS. GreenerT. GordonD. BarrH.M. TaglichtD. Mandil-LevinR. Ben-AvrahamD. KonfortyD. NirA. LeviusO. BicoviskiV. DoriM. CohenS. YaarL. ErezO. Propheta-MeiranO. KoskasM. Caspi-BacharE. AlchanatiI. Sela-BrownA. MoskowitzH. TessmerU. SchubertU. ReissY. The trans-Golgi network-associated human ubiquitin-protein ligase POSH is essential for HIV type 1 production.Proc. Natl. Acad. Sci. USA200510251478148310.1073/pnas.040871710215659549
    [Google Scholar]
  12. BabaM. NishimuraO. KanzakiN. OkamotoM. SawadaH. IizawaY. ShiraishiM. AramakiY. OkonogiK. OgawaY. MeguroK. FujinoM. A small-molecule, nonpeptide CCR5 antagonist with highly potent and selective anti-HIV-1 activity.Proc. Natl. Acad. Sci. USA199996105698570310.1073/pnas.96.10.569810318947
    [Google Scholar]
  13. BieniaszP.D. Intrinsic immunity: A front-line defense against viral attack.Nat. Immunol.20045111109111510.1038/ni112515496950
    [Google Scholar]
  14. ConnorR.I. SheridanK.E. CeradiniD. ChoeS. LandauN.R. Change in coreceptor use correlates with disease progression in HIV-1--infected individuals.J. Exp. Med.1997185462162810.1084/jem.185.4.6219034141
    [Google Scholar]
  15. DerdowskiA. DingL. SpearmanP. A novel fluorescence resonance energy transfer assay demonstrates that the human immunodeficiency virus type 1 Pr55Gag I domain mediates Gag-Gag interactions.J. Virol.20047831230124210.1128/JVI.78.3.1230‑1242.200414722278
    [Google Scholar]
  16. DomsR.W. Beyond receptor expression: The influence of receptor conformation, density, and affinity in HIV-1 infection.Virology2000276222923710.1006/viro.2000.061211040114
    [Google Scholar]
  17. DonzellaG.A. ScholsD. LinS.W. EstéJ.A. NagashimaK.A. MaddonP.J. AllawayG.P. SakmarT.P. HensonG. DeClercqE. MooreJ.P. AMD3100, a small molecule inhibitor of HIV-1 entry via the CXCR4 co-receptor.Nat. Med.199841727710.1038/nm0198‑0729427609
    [Google Scholar]
  18. FergusonM.R. RojoD.R. von LindernJ.J. O’BrienW.A. HIV-1 replication cycle.Clin. Lab. Med.200222361163510.1016/S0272‑2712(02)00015‑X12244589
    [Google Scholar]
  19. KirchhoffF. HIV life cycle: Overview.2013Available From: https://hivinfo.nih.gov/understanding-hiv/fact-sheets/hiv-life-cycle
  20. ArhelN. Revisiting HIV-1 uncoating.Retrovirology2010719610.1186/1742‑4690‑7‑9621083892
    [Google Scholar]
  21. BriggsJ.A.G. KräusslichH.G. The molecular architecture of HIV.J. Mol. Biol.2011410449150010.1016/j.jmb.2011.04.02121762795
    [Google Scholar]
  22. BushmanF.D. MalaniN. FernandesJ. D’OrsoI. CagneyG. DiamondT.L. ZhouH. HazudaD.J. EspesethA.S. KönigR. BandyopadhyayS. IdekerT. GoffS.P. KroganN.J. FrankelA.D. YoungJ.A.T. ChandaS.K. Host cell factors in HIV replication: Meta-analysis of genome-wide studies.PLoS Pathog.200955e100043710.1371/journal.ppat.100043719478882
    [Google Scholar]
  23. ColinL. Van LintC. Molecular control of HIV-1 postintegration latency: Implications for the development of new therapeutic strategies.Retrovirology20096111110.1186/1742‑4690‑6‑11119961595
    [Google Scholar]
  24. DidiguC.A. DomsR.W. Novel approaches to inhibit HIV entry.Viruses20124230932410.3390/v402030922470838
    [Google Scholar]
  25. Ganser-PornillosB.K. YeagerM. SundquistW.I. The structural biology of HIV assembly.Curr. Opin. Struct. Biol.200818220321710.1016/j.sbi.2008.02.00118406133
    [Google Scholar]
  26. JägerS. CimermancicP. GulbahceN. JohnsonJ.R. McGovernK.E. ClarkeS.C. ShalesM. MercenneG. PacheL. LiK. HernandezH. JangG.M. RothS.L. AkivaE. MarlettJ. StephensM. D’OrsoI. FernandesJ. FaheyM. MahonC. O’DonoghueA.J. TodorovicA. MorrisJ.H. MaltbyD.A. AlberT. CagneyG. BushmanF.D. YoungJ.A. ChandaS.K. SundquistW.I. KortemmeT. HernandezR.D. CraikC.S. BurlingameA. SaliA. FrankelA.D. KroganN.J. Global landscape of HIV–human protein complexes.Nature2012481738136537010.1038/nature1071922190034
    [Google Scholar]
  27. KirchhoffF. Immune evasion and counteraction of restriction factors by HIV-1 and other primate lentiviruses.Cell Host Microbe201081556710.1016/j.chom.2010.06.00420638642
    [Google Scholar]
  28. Martin-SerranoJ. NeilS.J.D. Host factors involved in retroviral budding and release.Nat. Rev. Microbiol.20119751953110.1038/nrmicro259621677686
    [Google Scholar]
  29. QuashieP.K. SloanR.D. WainbergM.A. Novel therapeutic strategies targeting HIV integrase.BMC Med.20121013410.1186/1741‑7015‑10‑3422498430
    [Google Scholar]
  30. SwansonCM MalimMH SnapShot: HIV-1 proteins.Cell20081334742.e1
    [Google Scholar]
  31. van KooykY. GeijtenbeekT.B.H. DC-SIGN: Escape mechanism for pathogens.Nat. Rev. Immunol.20033969770910.1038/nri118212949494
    [Google Scholar]
  32. NdabaHG Microwave as an energy source in the synthesis of 2-aryl-4-quinolone alkaloids and naphthyridines.(Doctoral dissertation)2011
    [Google Scholar]
  33. Barazorda-CcahuanaH.L. Goyzueta-MamaniL.D. Candia PumaM.A. Simões de FreitasC. de Sousa Vieria TavaresG. Pagliara LageD. Ferraz CoelhoE.A. Chávez-FumagalliM.A. Computer-aided drug design approaches applied to screen natural product’s structural analogs targeting arginase in Leishmania spp.F1000 Res.2023129310.12688/f1000research.129943.237424744
    [Google Scholar]
  34. KirbyG.C. PaineA. WarhurstD.C. NoameseB.K. PhillipsonJ.D. In vitro and in vivo antimalarial activity of cryptolepine, a plant‐derived indoloquinoline.Phytother. Res.19959535936310.1002/ptr.2650090510
    [Google Scholar]
  35. Boakye-YiadomK. Antimicrobial properties of some west african medicinal plants II. Antimicrobial activity of aqueous extracts of Cryptolepis sanguinolenta (lindl.) schlechter.Q. J. Crude Drug Res.1979172788010.3109/13880207909067453
    [Google Scholar]
  36. Boakye-YiadomK. Heman-AckahS.M. Cryptolepine hydrochloride effect on Staphylococcus aureus.J. Pharm. Sci.197968121510151410.1002/jps.260068121243386
    [Google Scholar]
  37. ParvatkarP Isolation, biological activities and synthesis of indoloquinoline alkaloids: Cryptolepine, isocryptolepine and neocryptolepine.Curr. Org. Chem.20111571036105710.2174/138527211794785118
    [Google Scholar]
  38. RenziG. CartaF. SupuranC.T. The integrase: An overview of a key player enzyme in the antiviral scenario.Int. J. Mol. Sci.202324151218710.3390/ijms24151218737569561
    [Google Scholar]
  39. MaggioloF. RizzardiniG. MolinaJ.M. PulidoF. De WitS. VandekerckhoveL. BerenguerJ. D’AntoniM.L. BlairC. ChuckS.K. PiontkowskyD. MartinH. HaubrichR. McNichollI.R. GallantJ. Bictegravir/emtricitabine/tenofovir alafenamide in virologically suppressed people with HIV aged≥ 65 years: Week 48 results of a phase 3b, open-label trial.Infect. Dis. Ther.202110277578810.1007/s40121‑021‑00419‑533686573
    [Google Scholar]
  40. MillsA.M. BrunetL. FuscoJ.S. WohlfeilerM.B. GarrisC.P. OglesbyA.K. MrusJ.M. LackeyP.C. FuscoG.P. Virologic outcomes among ART-naïve individuals initiating dolutegravir, elvitegravir, raltegravir or darunavir: An observational study.Infect. Dis. Ther.202091415210.1007/s40121‑019‑00274‑531701370
    [Google Scholar]
  41. PatelR. EvittL. MariolisI. Di GiambenedettoS. d’Arminio MonforteA. CasadoJ. Cabello ÚbedaA. HocquelouxL. AllavenaC. BarberT. JhaD. KumarR. KamathR.D. VincentT. van WykJ. KoteffJ. HIV treatment with the two-drug regimen dolutegravir plus lamivudine in real-world clinical practice: A systematic literature review.Infect. Dis. Ther.20211042051207010.1007/s40121‑021‑00522‑734426899
    [Google Scholar]
  42. Pichardo-RodriguezR. Saavedra-VelascoM. Mendo-UrbinaF. Muñoz-MedinaC. del Rosario-AlvaradoS.C.Z. Grandez-UrbinaJ.A. Efficacy and safety in real clinical conditions of Raltegravir in a reference hospital of peruvian social security.Enfermería Global.2021201224233
    [Google Scholar]
  43. LaffleurF. KeckeisV. Advances in drug delivery systems: Work in progress still needed?Int. J. Pharm.202059011991210.1016/j.ijpharm.2020.11991232971178
    [Google Scholar]
  44. CooperT.J. WoodwardB.L. AlomS. HarkyA. Coronavirus disease 2019 (COVID‐19) outcomes in HIV/AIDS patients: A systematic review.HIV Med.202021956757710.1111/hiv.1291132671970
    [Google Scholar]
  45. LalthanpuiiP.B. LalrinmawiaC. LalruatfelaB. RamlianaL. LalchhandamaK. Molecular modeling of lupeol for antiviral activity and cellular effects.J. Appl. Pharm. Sci.2023131113114310.7324/JAPS.2023.145048
    [Google Scholar]
  46. KhanS. BuğdayN. YaşarŞ. RehmanA. HaqI.U. YaşarS. Synthesis, biological evaluation and molecular docking studies of 8-(hetero)aryl caffeine derivatives.J. Organomet. Chem.202399712279410.1016/j.jorganchem.2023.122794
    [Google Scholar]
  47. AbdullahiS.H. UzairuA. ShallangwaG.A. UbaS. UmarA.B. Molecular docking, ADMET and pharmacokinetic properties predictions of some di-aryl pyridinamine derivatives as estrogen receptor (Er+) kinase inhibitors.Egyptian J. Basic Appl. Sc.20229118020410.1080/2314808X.2022.2050115
    [Google Scholar]
  48. FerreiraR.S. GlauciusO. AndricopuloA.D. Integração das técnicas de triagem virtual e triagem biológica automatizada em alta escala: Oportunidades e desafios em P&D de fármacos.Quim. Nova201134101770177810.1590/S0100‑40422011001000010
    [Google Scholar]
  49. YangY. QinJ. LiuH. YaoX. Molecular dynamics simulation, free energy calculation and structure-based 3D-QSAR studies of B-RAF kinase inhibitors.J. Chem. Inf. Model.201151368069210.1021/ci100427j21338122
    [Google Scholar]
/content/journals/cst/10.2174/0115743624305290240829035242
Loading
/content/journals/cst/10.2174/0115743624305290240829035242
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): antiretroviral; binding affinity; CD4 receptor; Cryptolepine; integrase; rationale
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test