Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1574-3624
  • E-ISSN: 2212-389X

Abstract

Current investigations have proposed that focusing on malignancy cell metabolism is an elective restorative methodology in cancer treatment. AMPK is the significant energy sensor regulating ordinary as well as malignancy cell metabolism. Drugs as AMPK activators can quell malignancy cell development through the various signalling cascade. AMPK enactment in light of natural AMPK activators, for example, BME, ICT, Thymoquinone, has been displayed to constrict mTOR, approving that BME can restrain cell development in ovarian malignant growth cells utilizing suppressing mTOR-mediated protein translation process. Nutraceuticals as well as traditional medicines operate as natural AMPK activators that regulate AMPK movement through a mechanism that is independent of AMP. These naturally occuring AMPK activators might straightforwardly actuate AMPK through single or more than one mechanism in AMPK initiation. Exploring the synergistic effects of compounds with existing cancer treatments could open new avenues for combinatorial therapy, potentially enhancing efficacy and reducing side effects. Moreover, understanding the precise molecular pathways through which these natural AMPK activators exert their effects will be crucial in designing targeted therapies that maximize their therapeutic potential. The integration of these nutraceuticals into standard cancer treatment protocols requires rigorous clinical trials to establish their safety, optimal dosing, and long-term benefits in cancer patients. With further investigation, the possibility of using natural AMPK activators in addition to traditional medicines could transform cancer treatment by providing more patient-friendly and comprehensive options.

Loading

Article metrics loading...

/content/journals/cst/10.2174/0115743624331249241025024548
2024-11-01
2025-04-19
Loading full text...

Full text loading...

References

  1. OngC.P. LeeW.L. TangY.Q. YapW.H. Honokiol: A review of its anticancer potential and mechanisms.Cancers (Basel)20191214810.3390/cancers1201004831877856
    [Google Scholar]
  2. FosterI. Cancer: A cell cycle defect.Radiography200814214414910.1016/j.radi.2006.12.001
    [Google Scholar]
  3. CabralC. EfferthT. PiresI.M. SeverinoP. LemosM.F.L. Natural products as a source for new leads in cancer research and treatment.Evid. Based Complement. Alternat. Med.201820181824368010.1155/2018/824368030105070
    [Google Scholar]
  4. WuS. ZhuW. ThompsonP. HannunY.A. Evaluating intrinsic and non-intrinsic cancer risk factors.Nat. Commun.201891349010.1038/s41467‑018‑05467‑z30154431
    [Google Scholar]
  5. SiegelR.L. MillerK.D. JemalA. Cancer statistics, 2019.CA Cancer J. Clin.201969173410.3322/caac.2155130620402
    [Google Scholar]
  6. RahimS. SadiqA. JavedA. KubickiM. KariukiB. AssadM. MuhammadN. FatimaN. KhanM. AlAsmariA.F. AlasmariF. In vitro anticancer, antioxidant, antimicrobial, antileishmanial, enzymes inhibition and in vivo anti-inflammatory activities of organotin(IV) derivatives of 4-bromophenoxyacetic acid.J. Mol. Struct.2024131313870310.1016/j.molstruc.2024.138703
    [Google Scholar]
  7. AL-IshaqR.K. OveryA.J. BüsselbergD. Phytochemicals and gastrointestinal cancer: Cellular mechanisms and effects to change cancer progression.Biomolecules202010110510.3390/biom1001010531936288
    [Google Scholar]
  8. JemalA. BrayF. CenterM.M. FerlayJ. WardE. FormanD. Global cancer statistics.CA Cancer J. Clin.2011612699010.3322/caac.2010721296855
    [Google Scholar]
  9. DeVitaV.T. CanellosG.P. New therapies and standard of care in oncology.Nat. Rev. Clin. Oncol.201182676810.1038/nrclinonc.2010.22121278770
    [Google Scholar]
  10. MarqusS. PirogovaE. PivaT.J. Evaluation of the use of therapeutic peptides for cancer treatment.J. Biomed. Sci.20172412110.1186/s12929‑017‑0328‑x28320393
    [Google Scholar]
  11. MitraS. DashR. Natural products for the management and prevention of breast cancer.Evid. Based Complement. Alternat. Med.201820181832469610.1155/2018/832469629681985
    [Google Scholar]
  12. RobinsonM.M.Z. ZhangX. The world medicines situation 2011 traditional medicines: Global situation, issues and challengesGeneva, SwitzerlandWorld Health Organization3rd ed2011
    [Google Scholar]
  13. SeelingerM. PopescuR. GiessriglB. JarukamjornK. UngerC. WallnöferB. Fritzer-SzekeresM. SzekeresT. DiazR. JägerW. FrischR. KoppB. KrupitzaG. Methanol extract of the ethnopharmaceutical remedy Smilax spinosa exhibits anti-neoplastic activity.Int. J. Oncol.20124131164117210.3892/ijo.2012.153822752086
    [Google Scholar]
  14. AmaralR.G. dos SantosS.A. AndradeL.N. SeverinoP. CarvalhoA.A. 2019Natural products as treatment against cancer: A historical and current vision.Clin. Oncol.201941562
    [Google Scholar]
  15. BiesalskiH.K. DragstedL.O. ElmadfaI. GrossklausR. MüllerM. SchrenkD. WalterP. WeberP. Bioactive compounds: Definition and assessment of activity.Nutrition20092511-121202120510.1016/j.nut.2009.04.02319695833
    [Google Scholar]
  16. KorkinaL. KostyukV. Biotechnologically produced secondary plant metabolites for cancer treatment and prevention.Curr. Pharm. Biotechnol.201213126527510.2174/13892011279886869221466424
    [Google Scholar]
  17. NewmanD.J. CraggG.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010.J. Nat. Prod.201275331133510.1021/np200906s22316239
    [Google Scholar]
  18. WangH. Oo KhorT. ShuL. SuZ.Y. FuentesF. LeeJ.H. Tony KongA-N. Plants vs. cancer: A review on natural phytochemicals in preventing and treating cancers and their druggability.Anticancer. Agents Med. Chem.201212101281130510.2174/18715201280383302622583408
    [Google Scholar]
  19. TeitenM.H. GaaschtF. DicatoM. DiederichM. Anticancer bioactivity of compounds from medicinal plants used in European medieval traditions.Biochem. Pharmacol.20138691239124710.1016/j.bcp.2013.08.00723973807
    [Google Scholar]
  20. FridlenderM. KapulnikY. KoltaiH. Plant derived substances with anti-cancer activity: From folklore to practice.Front. Plant Sci.2015679910.3389/fpls.2015.0079926483815
    [Google Scholar]
  21. Gali-MuhtasibH. HmadiR. KarehM. TohmeR. DarwicheN. Cell death mechanisms of plant-derived anticancer drugs: Beyond apoptosis.Apoptosis201520121531156210.1007/s10495‑015‑1169‑226362468
    [Google Scholar]
  22. CianciosiD. Varela-LopezA. Forbes-HernandezT.Y. GasparriniM. AfrinS. Reboredo-RodriguezP. ZhangJ. QuilesJ.L. NabaviS.F. BattinoM. GiampieriF. Targeting molecular pathways in cancer stem cells by natural bioactive compounds.Pharmacol. Res.201813515016510.1016/j.phrs.2018.08.00630103002
    [Google Scholar]
  23. ShinS.A. MoonS.Y. KimW.Y. PaekS.M. ParkH.H. LeeC.S. Structure-based classification and anti-cancer effects of plant metabolites.Int. J. Mol. Sci.2018199265110.3390/ijms1909265130200668
    [Google Scholar]
  24. AndradeS. RamalhoM.J. LoureiroJ.A. PereiraM.C. Natural compounds for Alzheimer’s disease therapy: A systematic review of preclinical and clinical studies.Int. J. Mol. Sci.2019209231310.3390/ijms2009231331083327
    [Google Scholar]
  25. GeorgeB.P. AbrahamseH. Increased oxidative stress induced by Rubus bioactive compounds induce apoptotic cell death in human breast cancer cells.Oxid. Med. Cell. Longev.2019201911810.1155/2019/679792131281587
    [Google Scholar]
  26. MunirajN. SiddharthS. SharmaD. Bioactive compounds: Multi-targeting silver bullets for preventing and treating breast cancer.Cancers (Basel)20191110156310.3390/cancers1110156331618928
    [Google Scholar]
  27. CarlingD. AMPK signalling in health and disease.Curr. Opin. Cell Biol.201745313710.1016/j.ceb.2017.01.00528232179
    [Google Scholar]
  28. BoyerP.D. ChanceB. ErnsterL. MitchellP. RackerE. SlaterE.C. Oxidative phosphorylation and photophosphorylation.Annu. Rev. Biochem.197746195596610.1146/annurev.bi.46.070177.00451518361775
    [Google Scholar]
  29. CarlingD. ThorntonC. WoodsA. SandersM.J. AMP-activated protein kinase: New regulation, new roles?Biochem. J.20124451112710.1042/BJ2012054622702974
    [Google Scholar]
  30. Tavakoli-RouzbehaniO.M. MalekiV. ShadnoushM. TaheriE. AlizadehM. A comprehensive insight into potential roles of Nigella sativa on diseases by targeting AMP-activated protein kinase: A review.Daru202028277978710.1007/s40199‑020‑00376‑333140312
    [Google Scholar]
  31. SoltaniA. SalmaninejadA. Jalili-NikM. SoleimaniA. JavidH. HashemyS.I. SahebkarA. 5′‐Adenosine monophosphate‐activated protein kinase: A potential target for disease prevention by curcumin.J. Cell. Physiol.201923432241225110.1002/jcp.2719230146757
    [Google Scholar]
  32. XiaoB. SandersM.J. UnderwoodE. HeathR. MayerF.V. CarmenaD. JingC. WalkerP.A. EcclestonJ.F. HaireL.F. SaiuP. HowellS.A. AaslandR. MartinS.R. CarlingD. GamblinS.J. Structure of mammalian AMPK and its regulation by ADP.Nature2011472734223023310.1038/nature0993221399626
    [Google Scholar]
  33. YungM.M.H. NganH.Y.S. ChanD.W. Targeting AMPK signaling in combating ovarian cancers: opportunities and challenges.Acta Biochim. Biophys. Sin. (Shanghai)201648430131710.1093/abbs/gmv12826764240
    [Google Scholar]
  34. WitczakC.A. SharoffC.G. GoodyearL.J. AMP-activated protein kinase in skeletal muscle: From structure and localization to its role as a master regulator of cellular metabolism.Cell. Mol. Life Sci.200865233737375510.1007/s00018‑008‑8244‑618810325
    [Google Scholar]
  35. CarlingD. AMP-activated protein kinase: Balancing the scales.Biochimie2005871879110.1016/j.biochi.2004.10.01715733742
    [Google Scholar]
  36. HardieD.G. AMPK: A key regulator of energy balance in the single cell and the whole organism.Int. J. Obes.200832S4S7S1210.1038/ijo.2008.11618719601
    [Google Scholar]
  37. ShackelfordD.B. ShawR.J. The LKB1–AMPK pathway: Metabolism and growth control in tumour suppression.Nat. Rev. Cancer20099856357510.1038/nrc267619629071
    [Google Scholar]
  38. ArkwrightR. DeshmukhR. AdapaN. StevensR. ZonderE. ZhangZ. FarshiP. AhmedR. El-BannaH. ChanT.H. DouQ. Lessons from nature: Sources and strategies for developing AMPK activators for cancer chemotherapeutics.Anticancer. Agents Med. Chem.201515565767110.2174/187152061566614121614541725511514
    [Google Scholar]
  39. HardieD.G. HawleyS.A. AMP‐activated protein kinase: The energy charge hypothesis revisited.BioEssays200123121112111910.1002/bies.1000911746230
    [Google Scholar]
  40. CarlingD. ZammitV.A. HardieD.G. A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis.FEBS Lett.1987223221722210.1016/0014‑5793(87)80292‑22889619
    [Google Scholar]
  41. HardieD.G. RossF.A. HawleyS.A. AMP-activated protein kinase: A target for drugs both ancient and modern.Chem. Biol.201219101222123610.1016/j.chembiol.2012.08.01923102217
    [Google Scholar]
  42. HardieD.G. RossF.A. HawleyS.A. AMPK: A nutrient and energy sensor that maintains energy homeostasis.Nat. Rev. Mol. Cell Biol.201213425126210.1038/nrm331122436748
    [Google Scholar]
  43. HardieD.G. Minireview: The AMP-activated protein kinase cascade: The key sensor of cellular energy status.Endocrinology2003144125179518310.1210/en.2003‑098212960015
    [Google Scholar]
  44. FoxM.M. PhoenixK.N. KopsiaftisS.G. ClaffeyK.P. AMP-Activated protein kinase 2 isoform suppression in primary breast cancer alters AMPK growth control and apoptotic signaling.Genes Cancer201341-231410.1177/194760191348634623946867
    [Google Scholar]
  45. SanzP. AMP-activated protein kinase: Structure and regulation.Curr. Protein Pept. Sci.20089547849210.2174/13892030878591525418855699
    [Google Scholar]
  46. ThorntonC. SnowdenM.A. CarlingD. Identification of a novel AMP-activated protein kinase β subunit isoform that is highly expressed in skeletal muscle.J. Biol. Chem.199827320124431245010.1074/jbc.273.20.124439575201
    [Google Scholar]
  47. Gimeno-AlcañizJ.V. SanzP. Glucose and type 2A protein phosphatase regulate the interaction between catalytic and regulatory subunits of AMP-activated protein kinase.J. Mol. Biol.2003333120120910.1016/j.jmb.2003.08.02214516753
    [Google Scholar]
  48. BatemanA. The structure of a domain common to archaebacteria and the homocystinuria disease protein.Trends Biochem. Sci.1997221121310.1016/S0968‑0004(96)30046‑79020585
    [Google Scholar]
  49. ScottJ.W. HawleyS.A. GreenK.A. AnisM. StewartG. ScullionG.A. NormanD.G. HardieD.G. CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations.J. Clin. Invest.2004113227428410.1172/JCI1987414722619
    [Google Scholar]
  50. GowansG.J. HardieD.G. AMPK: A cellular energy sensor primarily regulated by AMP.Biochem. Soc. Trans.2014421717510.1042/BST2013024424450630
    [Google Scholar]
  51. SteinbergG.R. CarlingD. AMP-activated protein kinase: The current landscape for drug development.Nat. Rev. Drug Discov.201918752755110.1038/s41573‑019‑0019‑230867601
    [Google Scholar]
  52. HabtemariamS. Recent advances in berberine inspired anticancer approaches: From drug combination to novel formulation technology and derivatization.Molecules2020256142610.3390/molecules2506142632245062
    [Google Scholar]
  53. KimI. HeY.Y. Targeting the AMP-activated protein kinase for cancer prevention and therapy.Front. Oncol.2013317510.3389/fonc.2013.0017523875169
    [Google Scholar]
  54. LiR. SongX. GuoY. SongP. DuanD. ChenZ.S. Natural products: A promising therapeutics for targeting tumor angiogenesis.Front. Oncol.20211177291510.3389/fonc.2021.77291534746014
    [Google Scholar]
  55. TaoT. HeC. DengJ. HuangY. SuQ. PengM. YiM. DarkoK.O. ZouH. YangX. A novel synthetic derivative of quercetin, 8-trifluoromethyl-3,5,7,3′,4′-O-pentamethyl-quercetin, inhibits bladder cancer growth by targeting the AMPK/mTOR signaling pathway.Oncotarget2017842716577167110.18632/oncotarget.1779929069736
    [Google Scholar]
  56. BaigM.A. GawaliV.B. PatilR.R. NaikS.R. Protective effect of herbomineral formulation (Dolabi) on early diabetic nephropathy in streptozotocin-induced diabetic rats.J. Nat. Med.201266350050910.1007/s11418‑011‑0614‑y22116744
    [Google Scholar]
  57. Cialdella-KamL. NiemanD.C. ShaW. MeaneyM.P. KnabA.M. ShanelyR.A. Dose–response to 3 months of quercetin-containing supplements on metabolite and quercetin conjugate profile in adults.Br. J. Nutr.2013109111923193310.1017/S000711451200397223151341
    [Google Scholar]
  58. BechtolR. Pinto ParthaG. KumarJ. Improving the economic and humanistic outcomes for diabetic patients: Making a case for employer-sponsored medication therapy management.Clinicoecon. Outcomes Res.2013Apr15310.2147/CEOR.S40735
    [Google Scholar]
  59. MoonJ.H. EoS.K. LeeJ.H. ParkS.Y. Quercetin-induced autophagy flux enhances TRAIL-mediated tumor cell death.Oncol. Rep.201534137538110.3892/or.2015.399125997470
    [Google Scholar]
  60. LvL. LiuC. ChenC. YuX. ChenG. ShiY. QinF. OuJ. QiuK. LiG. Quercetin and doxorubicin co-encapsulated biotin receptor-targeting nanoparticles for minimizing drug resistance in breast cancer.Oncotarget2016722321843219910.18632/oncotarget.860727058756
    [Google Scholar]
  61. NwaeburuC.C. BauerN. ZhaoZ. AbukiwanA. GladkichJ. BennerA. HerrI. Up-regulation of microRNA let-7c by quercetin inhibits pancreatic cancer progression by activation of Numbl.Oncotarget2016736583675838010.18632/oncotarget.1112227521217
    [Google Scholar]
  62. LagerweijT. HiddinghL. BiesmansD. CrommentuijnM.H.W. CloosJ. LiX.N. KogisoM. TannousB.A. VandertopW.P. NoskeD.P. KaspersG.J.L. WürdingerT. HullemanE. A chemical screen for medulloblastoma identifies quercetin as a putative radiosensitizer.Oncotarget2016724357763578810.18632/oncotarget.798026967057
    [Google Scholar]
  63. HeD. GuoX. ZhangE. ZiF. ChenJ. ChenQ. LinX. YangL. LiY. WuW. YangY. HeJ. CaiZ. Quercetin induces cell apoptosis of myeloma and displays a synergistic effect with dexamethasone in vitro and in vivo xenograft models.Oncotarget2016729454894549910.18632/oncotarget.999327329589
    [Google Scholar]
  64. BraganholE. ZaminL.L. Delgado CanedoA. HornF. TamajusukuA.S.K. WinkM.R. SalbegoC. BattastiniA.M.O. Antiproliferative effect of quercetin in the human U138MG glioma cell line.Anticancer Drugs200617666367110.1097/01.cad.0000215063.23932.0216917212
    [Google Scholar]
  65. MaL. FeugangJ.M. KonarskiP. WangJ. LuJ. FuS. MaB. TianB. ZouC. WangZ. Growth inhibitory effects of quercetin on bladder cancer cell.Front. Biosci.20061112275228510.2741/197016720314
    [Google Scholar]
  66. RockenbachL. BavarescoL. Fernandes FariasP. CappellariA.R. BarriosC.H. Bueno MorroneF. Oliveira BattastiniA.M. Alterations in the extracellular catabolism of nucleotides are involved in the antiproliferative effect of quercetin in human bladder cancer T24 cells.Urol. Oncol.20133171204121110.1016/j.urolonc.2011.10.00922137869
    [Google Scholar]
  67. SuQ. PengM. ZhangY. XuW. DarkoK.O. TaoT. HuangY. TaoX. YangX. Quercetin induces bladder cancer cells apoptosis by activation of AMPK signaling pathway.Am. J. Cancer Res.20166249850827186419
    [Google Scholar]
  68. HwangJ.T. KwonD.Y. YoonS.H. AMP-activated protein kinase: A potential target for the diseases prevention by natural occurring polyphenols.N. Biotechnol.2009261-2172210.1016/j.nbt.2009.03.00519818314
    [Google Scholar]
  69. RattanR. GiriS. SinghA.K. SinghI. 5-Aminoimidazole-4-carboxamide-1-β-D-ribofuranoside inhibits cancer cell proliferation in vitro and in vivo via AMP-activated protein kinase.J. Biol. Chem.200528047395823959310.1074/jbc.M50744320016176927
    [Google Scholar]
  70. GwinnD.M. ShackelfordD.B. EganD.F. MihaylovaM.M. MeryA. VasquezD.S. TurkB.E. ShawR.J. AMPK phosphorylation of raptor mediates a metabolic checkpoint.Mol. Cell200830221422610.1016/j.molcel.2008.03.00318439900
    [Google Scholar]
  71. GholamnezhadZ. HavakhahS. BoskabadyM.H. Preclinical and clinical effects of Nigella sativa and its constituent, thymoquinone: A review.J. Ethnopharmacol.201619037238610.1016/j.jep.2016.06.06127364039
    [Google Scholar]
  72. MajdalawiehA.F. FayyadM.W. Immunomodulatory and anti-inflammatory action of Nigella sativa and thymoquinone: A comprehensive review.Int. Immunopharmacol.201528129530410.1016/j.intimp.2015.06.02326117430
    [Google Scholar]
  73. JeonS.M. Regulation and function of AMPK in physiology and diseases.Exp. Mol. Med.2016487e245e24510.1038/emm.2016.8127416781
    [Google Scholar]
  74. FogartyS. HardieD.G. Development of protein kinase activators: AMPK as a target in metabolic disorders and cancer.Biochim. Biophys. Acta. Proteins Proteomics20101804358159110.1016/j.bbapap.2009.09.01219778642
    [Google Scholar]
  75. ChehlN. ChipitsynaG. GongQ. YeoC.J. ArafatH.A. Anti-inflammatory effects of the Nigella sativa seed extract, thymoquinone, in pancreatic cancer cells.HPB (Oxford)200911537338110.1111/j.1477‑2574.2009.00059.x19768141
    [Google Scholar]
  76. PeriasamyV.S. AthinarayananJ. AlshatwiA.A. Anticancer activity of an ultrasonic nanoemulsion formulation of Nigella sativa L. essential oil on human breast cancer cells.Ultrason. Sonochem.20163144945510.1016/j.ultsonch.2016.01.03526964971
    [Google Scholar]
  77. FaubertB. VincentE.E. PoffenbergerM.C. JonesR.G. The AMP-activated protein kinase (AMPK) and cancer: Many faces of a metabolic regulator.Cancer Lett.2015356216517010.1016/j.canlet.2014.01.01824486219
    [Google Scholar]
  78. ZadraG. BatistaJ.L. LodaM. Dissecting the dual role of AMPK in cancer: From experimental to human studies.Mol. Cancer Res.20151371059107210.1158/1541‑7786.MCR‑15‑006825956158
    [Google Scholar]
  79. MajdalawiehA.F. FayyadM.W. NasrallahG.K. Anti-cancer properties and mechanisms of action of thymoquinone, the major active ingredient of Nigella sativa.Crit. Rev. Food Sci. Nutr.201757183911392810.1080/10408398.2016.127797128140613
    [Google Scholar]
  80. ThirupathiA. ChangY.Z. Role of AMPK and its molecular intermediates in subjugating cancer survival mechanism.Life Sci.2019227303810.1016/j.lfs.2019.04.03931002918
    [Google Scholar]
  81. ZhangY. FanY. HuangS. WangG. HanR. LeiF. LuoA. JingX. ZhaoL. GuS. ZhaoX. Thymoquinone inhibits the metastasis of renal cell cancer cells by inducing autophagy via AMPK/mTOR signaling pathway.Cancer Sci.2018109123865387310.1111/cas.1380830259603
    [Google Scholar]
  82. CorderoM.D. ViolletB. AMP-activated Protein Kinase.ChamSpringer International Publishing201610.1007/978‑3‑319‑43589‑3
    [Google Scholar]
  83. ZhaoX. LinY. JiangB. YinJ. LuC. WangJ. ZengJ. Icaritin inhibits lung cancer-induced osteoclastogenesis by suppressing the expression of IL-6 and TNF-a and through AMPK/mTOR signaling pathway.Anticancer Drugs202031101004101110.1097/CAD.000000000000097632701561
    [Google Scholar]
  84. MaH. HeX. YangY. LiM. HaoD. JiaZ. The genus Epimedium: An ethnopharmacological and phytochemical review.J. Ethnopharmacol.2011134351954110.1016/j.jep.2011.01.00121215308
    [Google Scholar]
  85. WuJ. XuH. WongP.F. XiaS. XuJ. DongJ. Icaritin attenuates cigarette smoke-mediated oxidative stress in human lung epithelial cells via activation of PI3K-AKT and Nrf2 signaling.Food Chem. Toxicol.20146430731310.1016/j.fct.2013.12.00624333105
    [Google Scholar]
  86. ShahM. KolaB. BataveljicA. ArnettT.R. ViolletB. SaxonL. KorbonitsM. ChenuC. AMP-activated protein kinase (AMPK) activation regulates in vitro bone formation and bone mass.Bone201047230931910.1016/j.bone.2010.04.59620399918
    [Google Scholar]
  87. KangJ.I. HongJ.Y. LeeH.J. BaeS.Y. JungC. ParkH.J. LeeS.K. Anti-tumor activity of yuanhuacine by regulating AMPK/mTOR signaling pathway and actin cytoskeleton organization in non-small cell lung cancer cells.PLoS One20151012e014436810.1371/journal.pone.014436826656173
    [Google Scholar]
  88. YooH.S. KimJ.M. JoE. ChoC.K. LeeS.Y. KangH.S. LeeM.G. YangP.Y. JangI.S. Modified Panax ginseng extract regulates autophagy by AMPK signaling in A549 human lung cancer cells.Oncol. Rep.20173763287329610.3892/or.2017.559028440448
    [Google Scholar]
  89. GlantschnigH. FisherJ.E. WesolowskiG. RodanG.A. ReszkaA.A. M-CSF, TNFα and RANK ligand promote osteoclast survival by signaling through mTOR/S6 kinase.Cell Death Differ.200310101165117710.1038/sj.cdd.440128514502240
    [Google Scholar]
  90. XueZ. ZhangF. XuS. ChenM. WangM. WangM. KeF. ChenZ. ZhangM. Investigating the effect of Icaritin on hepatocellular carcinoma based on network pharmacology.Front. Pharmacol.202314120849510.3389/fphar.2023.120849537324495
    [Google Scholar]
  91. YungM.M.H. RossF.A. HardieD.G. LeungT.H.Y. ZhanJ. NganH.Y.S. ChanD.W. Bitter melon (Momordica charantia) extract inhibits tumorigenicity and overcomes cisplatin-resistance in ovarian cancer cells through targeting AMPK signaling cascade.Integr. Cancer Ther.201615337638910.1177/153473541561174726487740
    [Google Scholar]
  92. MelchiorW.R. JaberL.A. Metformin: An antihyperglycemic agent for treatment of type II diabetes.Ann. Pharmacother.199630215816410.1177/1060028096030002108835050
    [Google Scholar]
  93. IseliT.J. TurnerN. ZengX.Y. CooneyG.J. KraegenE.W. YaoS. YeY. JamesD.E. YeJ.M. Activation of AMPK by bitter melon triterpenoids involves CaMKKβ.PLoS One201384e6230910.1371/journal.pone.006230923638033
    [Google Scholar]
  94. YuY. ZhangX.H. EbersoleB. RibnickyD. WangZ.Q. Bitter melon extract attenuating hepatic steatosis may be mediated by FGF21 and AMPK/Sirt1 signaling in mice.Sci. Rep.201331314210.1038/srep0314224189525
    [Google Scholar]
  95. GargS. KaulS. WadhwaR. Cucurbitacin B and cancer intervention: Chemistry, biology and mechanisms (Review).Int. J. Oncol.201710.3892/ijo.2017.420329138804
    [Google Scholar]
  96. PitchakarnP. OhnumaS. PinthaK. PompimonW. AmbudkarS.V. LimtrakulP. Kuguacin J isolated from Momordica charantia leaves inhibits P-glycoprotein (ABCB1)-mediated multidrug resistance.J. Nutr. Biochem.2012231768410.1016/j.jnutbio.2010.11.00521414769
    [Google Scholar]
  97. AhnJ. KimH. YangK.M. ω-hydroxyundec-9-enoic acid induction of breast cancer cells apoptosis through generation of mitochondrial ROS and phosphorylation of AMPK.Arch. Pharm. Res.202043773574310.1007/s12272‑020‑01254‑x32720162
    [Google Scholar]
  98. KeJ.Y. BanhT. HsiaoY.H. ColeR.M. StrakaS.R. YeeL.D. BeluryM.A. Citrus flavonoid naringenin reduces mammary tumor cell viability, adipose mass, and adipose inflammation in obese ovariectomized mice.Mol. Nutr. Food Res.2017619160093410.1002/mnfr.20160093428370954
    [Google Scholar]
  99. AryalP. KimK. ParkP.H. HamS. ChoJ. SongK. Baicalein induces autophagic cell death through AMPK/ULK1 activation and downregulation of m TORC 1 complex components in human cancer cells.FEBS J.2014281204644465810.1111/febs.1296925132405
    [Google Scholar]
  100. RossiM. MeyerR. ConstantinouP. CarusoF. CastelbuonoD. O’BrienM. NarasimhanV. Molecular structure and activity toward DNA of baicalein, a flavone constituent of the Asian herbal medicine “Sho-saiko-to”.J. Nat. Prod.2001641263110.1021/np000068s11170661
    [Google Scholar]
  101. ZhouD. ZhaoX. YuM. XuY. FuC. ZhengK. XiaC. HuangB. MaS. Anti-migration and anti-invasion effects of 2-hydroxy-6-tridecylbenzoic acid is associated with the enhancement of CYP1B1 expression through activating the AMPK signaling pathway in triple-negative breast cancer cells.Nat. Prod. Res.202135245924592810.1080/14786419.2020.180331032779484
    [Google Scholar]
  102. PengB ZhangSY ChanKI ZhongZF WangYT. Novel anticancer products targeting AMPK: Natural herbal medicine against breast cancer.Molecules.2023 Jan 11282740
    [Google Scholar]
  103. NagalingamA. ArbiserJ.L. BonnerM.Y. SaxenaN.K. SharmaD. Honokiol activates AMP-activated protein kinase in breast cancer cells via an LKB1-dependent pathway and inhibits breast carcinogenesis.Breast Cancer Res.2012141R3510.1186/bcr312822353783
    [Google Scholar]
  104. LiX. YuanZ. WangY. WangW. ShiJ. Recent advances of honokiol: Pharmacological activities, manmade derivatives and structure-activity relationship.Eur. J. Med. Chem.202427211647110.1016/j.ejmech.2024.11647138704945
    [Google Scholar]
  105. LiJ. FanY. ZhangY. LiuY. YuY. MaM. Resveratrol induces autophagy and apoptosis in non-small-cell lung cancer cells by activating the NGFR-AMPK-mTOR pathway.Nutrients20221412241310.3390/nu1412241335745143
    [Google Scholar]
  106. GambiniJ. InglésM. OlasoG. Lopez-GruesoR. Bonet-CostaV. Gimeno-MallenchL. Mas-BarguesC. AbdelazizK.M. Gomez-CabreraM.C. VinaJ. BorrasC. Properties of resveratrol: In vitro and in vivo studies about metabolism, bioavailability, and biological effects in animal models and humans.Oxid. Med. Cell. Longev.2015201511310.1155/2015/83704226221416
    [Google Scholar]
  107. OliveiraM.C.L. PauloA.J. LimaC.A. de Lima FilhoJ.L. Souza-MottaC.M. VidalE.E. NascimentoT.P. MarquesD.A.V. PortoA.L.F. Lovastatin producing by wild strain of Aspergillus terreus isolated from Brazil.Prep. Biochem. Biotechnol.202151216417210.1080/10826068.2020.180562432795118
    [Google Scholar]
  108. XueL. WuM. LiY. ChenS. WuM. ZhuJ. DingS. ZhangQ. ZhengC. HeG. FuS. LiG. DengX. Hexokinase 2 is a pivot for lovastatin-induced glycolysis-to-autophagy reprogramming in triple-negative breast cancer cells.J. Cancer202213123368337710.7150/jca.7159236186902
    [Google Scholar]
  109. XieL. ZhuG. ShangJ. ChenX. ZhangC. JiX. ZhangQ. WeiY. An overview on the biological activity and anti-cancer mechanism of lovastatin.Cell. Signal.20218711012210.1016/j.cellsig.2021.11012234438015
    [Google Scholar]
  110. TillhonM. Guamán OrtizL.M. LombardiP. ScovassiA.I. Berberine: New perspectives for old remedies.Biochem. Pharmacol.201284101260126710.1016/j.bcp.2012.07.01822842630
    [Google Scholar]
  111. PanY. ZhangF. ZhaoY. ShaoD. ZhengX. ChenY. HeK. LiJ. ChenL. Berberine enhances chemosensitivity and induces apoptosis through dose-orchestrated AMPK signaling in breast cancer.J. Cancer2017891679168910.7150/jca.1910628775788
    [Google Scholar]
  112. PanY. ShaoD. ZhaoY. ZhangF. ZhengX. TanY. HeK. LiJ. ChenL. Berberine reverses hypoxia-induced chemoresistance in breast cancer through the inhibition of AMPK- HIF-1α.Int. J. Biol. Sci.201713679480310.7150/ijbs.1896928656004
    [Google Scholar]
  113. CazzanigaM. ZonziniG.B. Di PierroF. MoricoliS. BertuccioliA. Gut microbiota, metabolic disorders and breast cancer: Could berberine turn out to be a transversal nutraceutical tool? A narrative analysis.Int. J. Mol. Sci.202223201253810.3390/ijms23201253836293390
    [Google Scholar]
  114. ZhuX. BianH. WangL. SunX. XuX. YanH. XiaM. ChangX. LuY. LiY. XiaP. LiX. GaoX. Berberine attenuates nonalcoholic hepatic steatosis through the AMPK-SREBP-1c-SCD1 pathway.Free Radic. Biol. Med.201914119220410.1016/j.freeradbiomed.2019.06.01931226399
    [Google Scholar]
  115. PatilJ.B. KimJ. JayaprakashaG.K. Berberine induces apoptosis in breast cancer cells (MCF-7) through mitochondrial-dependent pathway.Eur. J. Pharmacol.20106451-3707810.1016/j.ejphar.2010.07.03720691179
    [Google Scholar]
  116. LiuS. ChenW. ZhaoY. ZongY. LiJ. HeZ. Research progress on effects of ginsenoside Rg2 and Rh1 on nervous system and related mechanisms.Molecules20232823793510.3390/molecules2823793538067664
    [Google Scholar]
  117. ZouY. LiuP. 2016Ginsenoside-Rg5 inhibits proliferation of the breast carcinoma cells through promotion of the proteins involved in AMP kinase pathway.Int. J. Clin. Exp. Med.991766417669
    [Google Scholar]
  118. JeonH. HuynhD.T.N. BaekN. NguyenT.L.L. HeoK.S. Ginsenoside-Rg2 affects cell growth via regulating ROS-mediated AMPK activation and cell cycle in MCF-7 cells.Phytomedicine20218515354910.1016/j.phymed.2021.15354933819767
    [Google Scholar]
  119. HanJ.S. SungJ.H. LeeS.K. Inhibition of cholesterol synthesis in HepG2 cells by GINST—decreasing HMG‐CoA reductase expression via AMP‐activated protein kinase.J. Food Sci.201782112700270510.1111/1750‑3841.1382829065216
    [Google Scholar]
  120. KimD.Y. YuanH.D. ChungI.K. ChungS.H. CompoundK. Compound K, intestinal metabolite of ginsenoside, attenuates hepatic lipid accumulation via AMPK activation in human hepatoma cells.J. Agric. Food Chem.20095741532153710.1021/jf802867b19182950
    [Google Scholar]
  121. YuanH.-D. QuanH.-Y. ZhangY. KimS.H. ChungS.-H. 20(S)-Ginsenoside Rg3-induced apoptosis in HT-29 colon cancer cells is associated with AMPK signaling pathway.Mol. Med. Rep.20103510.3892/mmr.2010.32821472321
    [Google Scholar]
  122. StaufferS. ZengY. SantosM. ZhouJ. ChenY. DongJ. Cyclin-dependent kinase 1-mediated AMPK phosphorylation regulates chromosome alignment and mitotic progression.J. Cell Sci.201913220jcs23600010.1242/jcs.23600031519809
    [Google Scholar]
  123. RochaG.Z. DiasM.M. RopelleE.R. Osório-CostaF. RossatoF.A. VercesiA.E. SaadM.J.A. CarvalheiraJ.B.C. Metformin amplifies chemotherapy-induced AMPK activation and antitumoral growth.Clin. Cancer Res.201117123993400510.1158/1078‑0432.CCR‑10‑224321543517
    [Google Scholar]
  124. LiL.Y. ChenX.S. WangK.S. GuanY.D. RenX.C. CaoD.S. SunX.Y. LiA.X. TaoY.G. ZhangY. YinM.Z. WangX.L. WuM.H. YangJ.M. ChengY. RSK2 protects human breast cancer cells under endoplasmic reticulum stress through activating AMPKα2-mediated autophagy.Oncogene202039436704671810.1038/s41388‑020‑01447‑032958832
    [Google Scholar]
  125. SatiP. SharmaE. DhyaniP. AttriD.C. RanaR. KiyekbayevaL. BüsselbergD. SamuelS.M. Sharifi-RadJ. Paclitaxel and its semi-synthetic derivatives: Comprehensive insights into chemical structure, mechanisms of action, and anticancer properties.Eur. J. Med. Res.20242919010.1186/s40001‑024‑01657‑238291541
    [Google Scholar]
  126. ShrihastiniV. MuthuramalingamP. AdarshanS. SujithaM. ChenJ.T. ShinH. RameshM. Plant derived bioactive compounds, their anti-cancer effects and in silico approaches as an alternative target treatment strategy for breast cancer: An updated overview.Cancers (Basel)20211324622210.3390/cancers1324622234944840
    [Google Scholar]
/content/journals/cst/10.2174/0115743624331249241025024548
Loading
/content/journals/cst/10.2174/0115743624331249241025024548
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): AMPK; bioactive compound; cancer; icartin; naringenin; quercetin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test