Skip to content
2000
image of Bioactive Compounds Aimed at the AMPK Pathway: A Window into their Therapeutic Potential

Abstract

Current investigations have proposed that focusing on malignancy cell metabolism is an elective restorative methodology in cancer treatment. AMPK is the significant energy sensor regulating ordinary as well as malignancy cell metabolism. Drugs as AMPK activators can quell malignancy cell development through the various signalling cascade. AMPK enactment in light of natural AMPK activators, for example, BME, ICT, Thymoquinone, has been displayed to constrict mTOR, approving that BME can restrain cell development in ovarian malignant growth cells utilizing suppressing mTOR-mediated protein translation process. Nutraceuticals as well as traditional medicines operate as natural AMPK activators that regulate AMPK movement through a mechanism that is independent of AMP. These naturally occuring AMPK activators might straightforwardly actuate AMPK through single or more than one mechanism in AMPK initiation. Exploring the synergistic effects of compounds with existing cancer treatments could open new avenues for combinatorial therapy, potentially enhancing efficacy and reducing side effects. Moreover, understanding the precise molecular pathways through which these natural AMPK activators exert their effects will be crucial in designing targeted therapies that maximize their therapeutic potential. The integration of these nutraceuticals into standard cancer treatment protocols requires rigorous clinical trials to establish their safety, optimal dosing, and long-term benefits in cancer patients. With further investigation, the possibility of using natural AMPK activators in addition to traditional medicines could transform cancer treatment by providing more patient-friendly and comprehensive options.

Loading

Article metrics loading...

/content/journals/cst/10.2174/0115743624331249241025024548
2024-11-01
2024-11-26
Loading full text...

Full text loading...

References

  1. Ong C.P. Lee W.L. Tang Y.Q. Yap W.H. Honokiol: A review of its anticancer potential and mechanisms. Cancers (Basel) 2019 12 1 48 10.3390/cancers12010048 31877856
    [Google Scholar]
  2. Foster I. Cancer: A cell cycle defect. Radiography 2008 14 2 144 149 10.1016/j.radi.2006.12.001
    [Google Scholar]
  3. Cabral C. Efferth T. Pires I.M. Severino P. Lemos M.F.L. Natural products as a source for new leads in cancer research and treatment. Evid. Based Complement. Alternat. Med. 2018 2018 1 8243680 10.1155/2018/8243680 30105070
    [Google Scholar]
  4. Wu S. Zhu W. Thompson P. Hannun Y.A. Evaluating intrinsic and non-intrinsic cancer risk factors. Nat. Commun. 2018 9 1 3490 10.1038/s41467‑018‑05467‑z 30154431
    [Google Scholar]
  5. Siegel R.L. Miller K.D. Jemal A. Cancer statistics, 2019. CA Cancer J. Clin. 2019 69 1 7 34 10.3322/caac.21551 30620402
    [Google Scholar]
  6. Rahim S. Sadiq A. Javed A. Kubicki M. Kariuki B. Assad M. Muhammad N. Fatima N. Khan M. AlAsmari A.F. Alasmari F. In vitro anticancer, antioxidant, antimicrobial, antileishmanial, enzymes inhibition and in vivo anti-inflammatory activities of organotin(IV) derivatives of 4-bromophenoxyacetic acid. J. Mol. Struct. 2024 1313 138703 10.1016/j.molstruc.2024.138703
    [Google Scholar]
  7. AL-Ishaq R.K. Overy A.J. Büsselberg D. Phytochemicals and gastrointestinal cancer: Cellular mechanisms and effects to change cancer progression. Biomolecules 2020 10 1 105 10.3390/biom10010105 31936288
    [Google Scholar]
  8. Jemal A. Bray F. Center M.M. Ferlay J. Ward E. Forman D. Global cancer statistics. CA Cancer J. Clin. 2011 61 2 69 90 10.3322/caac.20107 21296855
    [Google Scholar]
  9. DeVita V.T. Canellos G.P. New therapies and standard of care in oncology. Nat. Rev. Clin. Oncol. 2011 8 2 67 68 10.1038/nrclinonc.2010.221 21278770
    [Google Scholar]
  10. Marqus S. Pirogova E. Piva T.J. Evaluation of the use of therapeutic peptides for cancer treatment. J. Biomed. Sci. 2017 24 1 21 10.1186/s12929‑017‑0328‑x 28320393
    [Google Scholar]
  11. Mitra S. Dash R. Natural products for the management and prevention of breast cancer. Evid. Based Complement. Alternat. Med. 2018 2018 1 8324696 10.1155/2018/8324696 29681985
    [Google Scholar]
  12. Robinson M.M.Z. Zhang X. The World Medicines Situation 2011 Traditional Medicines: Global Situation, Issues And Challenges Geneva, Switzerland World Health Organization 3rd ed 2011
    [Google Scholar]
  13. Seelinger M. Popescu R. Giessrigl B. Jarukamjorn K. Unger C. Wallnöfer B. Fritzer-Szekeres M. Szekeres T. Diaz R. Jäger W. Frisch R. Kopp B. Krupitza G. Methanol extract of the ethnopharmaceutical remedy Smilax spinosa exhibits anti-neoplastic activity. Int. J. Oncol. 2012 41 3 1164 1172 10.3892/ijo.2012.1538 22752086
    [Google Scholar]
  14. Amaral R.G. dos Santos S.A. Andrade L.N. Severino P. Carvalho A.A. 2019 Natural products as treatment against cancer: A historical and current vision. Clin. Oncol. 2019 4 1562
    [Google Scholar]
  15. Biesalski H.K. Dragsted L.O. Elmadfa I. Grossklaus R. Müller M. Schrenk D. Walter P. Weber P. Bioactive compounds: Definition and assessment of activity. Nutrition 2009 25 11-12 1202 1205 10.1016/j.nut.2009.04.023 19695833
    [Google Scholar]
  16. Korkina L. Kostyuk V. Biotechnologically produced secondary plant metabolites for cancer treatment and prevention. Curr. Pharm. Biotechnol. 2012 13 1 265 275 10.2174/138920112798868692 21466424
    [Google Scholar]
  17. Newman D.J. Cragg G.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod. 2012 75 3 311 335 10.1021/np200906s 22316239
    [Google Scholar]
  18. Wang H. Oo Khor T. Shu L. Su Z.Y. Fuentes F. Lee J.H. Tony Kong A-N. Plants vs. cancer: A review on natural phytochemicals in preventing and treating cancers and their druggability. Anticancer. Agents Med. Chem. 2012 12 10 1281 1305 10.2174/187152012803833026 22583408
    [Google Scholar]
  19. Teiten M.H. Gaascht F. Dicato M. Diederich M. Anticancer bioactivity of compounds from medicinal plants used in European medieval traditions. Biochem. Pharmacol. 2013 86 9 1239 1247 10.1016/j.bcp.2013.08.007 23973807
    [Google Scholar]
  20. Fridlender M. Kapulnik Y. Koltai H. Plant derived substances with anti-cancer activity: From folklore to practice. Front. Plant Sci. 2015 6 799 10.3389/fpls.2015.00799 26483815
    [Google Scholar]
  21. Gali-Muhtasib H. Hmadi R. Kareh M. Tohme R. Darwiche N. Cell death mechanisms of plant-derived anticancer drugs: Beyond apoptosis. Apoptosis 2015 20 12 1531 1562 10.1007/s10495‑015‑1169‑2 26362468
    [Google Scholar]
  22. Cianciosi D. Varela-Lopez A. Forbes-Hernandez T.Y. Gasparrini M. Afrin S. Reboredo-Rodriguez P. Zhang J. Quiles J.L. Nabavi S.F. Battino M. Giampieri F. Targeting molecular pathways in cancer stem cells by natural bioactive compounds. Pharmacol. Res. 2018 135 150 165 10.1016/j.phrs.2018.08.006 30103002
    [Google Scholar]
  23. Shin S.A. Moon S.Y. Kim W.Y. Paek S.M. Park H.H. Lee C.S. Structure-based classification and anti-cancer effects of plant metabolites. Int. J. Mol. Sci. 2018 19 9 2651 10.3390/ijms19092651 30200668
    [Google Scholar]
  24. Andrade S. Ramalho M.J. Loureiro J.A. Pereira M.C. Natural compounds for Alzheimer’s disease therapy: A systematic review of preclinical and clinical studies. Int. J. Mol. Sci. 2019 20 9 2313 10.3390/ijms20092313 31083327
    [Google Scholar]
  25. George B.P. Abrahamse H. Increased oxidative stress induced by Rubus bioactive compounds induce apoptotic cell death in human breast cancer cells. Oxid. Med. Cell. Longev. 2019 2019 1 18 10.1155/2019/6797921 31281587
    [Google Scholar]
  26. Muniraj N. Siddharth S. Sharma D. Bioactive compounds: Multi-targeting silver bullets for preventing and treating breast cancer. Cancers (Basel) 2019 11 10 1563 10.3390/cancers11101563 31618928
    [Google Scholar]
  27. Carling D. AMPK signalling in health and disease. Curr. Opin. Cell Biol. 2017 45 31 37 10.1016/j.ceb.2017.01.005 28232179
    [Google Scholar]
  28. Boyer P.D. Chance B. Ernster L. Mitchell P. Racker E. Slater E.C. Oxidative phosphorylation and photophosphorylation. Annu. Rev. Biochem. 1977 46 1 955 966 10.1146/annurev.bi.46.070177.004515 18361775
    [Google Scholar]
  29. Carling D. Thornton C. Woods A. Sanders M.J. AMP-activated protein kinase: New regulation, new roles? Biochem. J. 2012 445 1 11 27 10.1042/BJ20120546 22702974
    [Google Scholar]
  30. Tavakoli-Rouzbehani O.M. Maleki V. Shadnoush M. Taheri E. Alizadeh M. A comprehensive insight into potential roles of Nigella sativa on diseases by targeting AMP-activated protein kinase: A review. Daru 2020 28 2 779 787 10.1007/s40199‑020‑00376‑3 33140312
    [Google Scholar]
  31. Soltani A. Salmaninejad A. Jalili-Nik M. Soleimani A. Javid H. Hashemy S.I. Sahebkar A. 5′‐Adenosine monophosphate‐activated protein kinase: A potential target for disease prevention by curcumin. J. Cell. Physiol. 2019 234 3 2241 2251 10.1002/jcp.27192 30146757
    [Google Scholar]
  32. Xiao B. Sanders M.J. Underwood E. Heath R. Mayer F.V. Carmena D. Jing C. Walker P.A. Eccleston J.F. Haire L.F. Saiu P. Howell S.A. Aasland R. Martin S.R. Carling D. Gamblin S.J. Structure of mammalian AMPK and its regulation by ADP. Nature 2011 472 7342 230 233 10.1038/nature09932 21399626
    [Google Scholar]
  33. Yung M.M.H. Ngan H.Y.S. Chan D.W. Targeting AMPK signaling in combating ovarian cancers: opportunities and challenges. Acta Biochim. Biophys. Sin. (Shanghai) 2016 48 4 301 317 10.1093/abbs/gmv128 26764240
    [Google Scholar]
  34. Witczak C.A. Sharoff C.G. Goodyear L.J. AMP-activated protein kinase in skeletal muscle: From structure and localization to its role as a master regulator of cellular metabolism. Cell. Mol. Life Sci. 2008 65 23 3737 3755 10.1007/s00018‑008‑8244‑6 18810325
    [Google Scholar]
  35. Carling D. AMP-activated protein kinase: Balancing the scales. Biochimie 2005 87 1 87 91 10.1016/j.biochi.2004.10.017 15733742
    [Google Scholar]
  36. Hardie D.G. AMPK: A key regulator of energy balance in the single cell and the whole organism. Int. J. Obes. 2008 32 S4 S7 S12 10.1038/ijo.2008.116 18719601
    [Google Scholar]
  37. Shackelford D.B. Shaw R.J. The LKB1–AMPK pathway: Metabolism and growth control in tumour suppression. Nat. Rev. Cancer 2009 9 8 563 575 10.1038/nrc2676 19629071
    [Google Scholar]
  38. Arkwright R. Deshmukh R. Adapa N. Stevens R. Zonder E. Zhang Z. Farshi P. Ahmed R. El-Banna H. Chan T.H. Dou Q. Lessons from nature: Sources and strategies for developing AMPK activators for cancer chemotherapeutics. Anticancer. Agents Med. Chem. 2015 15 5 657 671 10.2174/1871520615666141216145417 25511514
    [Google Scholar]
  39. Hardie D.G. Hawley S.A. AMP‐activated protein kinase: The energy charge hypothesis revisited. BioEssays 2001 23 12 1112 1119 10.1002/bies.10009 11746230
    [Google Scholar]
  40. Carling D. Zammit V.A. Hardie D.G. A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis. FEBS Lett. 1987 223 2 217 222 10.1016/0014‑5793(87)80292‑2 2889619
    [Google Scholar]
  41. Hardie D.G. Ross F.A. Hawley S.A. AMP-activated protein kinase: A target for drugs both ancient and modern. Chem. Biol. 2012 19 10 1222 1236 10.1016/j.chembiol.2012.08.019 23102217
    [Google Scholar]
  42. Hardie D.G. Ross F.A. Hawley S.A. AMPK: A nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol. 2012 13 4 251 262 10.1038/nrm3311 22436748
    [Google Scholar]
  43. Hardie D.G. Minireview: The AMP-activated protein kinase cascade: The key sensor of cellular energy status. Endocrinology 2003 144 12 5179 5183 10.1210/en.2003‑0982 12960015
    [Google Scholar]
  44. Fox M.M. Phoenix K.N. Kopsiaftis S.G. Claffey K.P. AMP-Activated protein kinase 2 isoform suppression in primary breast cancer alters AMPK growth control and apoptotic signaling. Genes Cancer 2013 4 1-2 3 14 10.1177/1947601913486346 23946867
    [Google Scholar]
  45. Sanz P. AMP-activated protein kinase: Structure and regulation. Curr. Protein Pept. Sci. 2008 9 5 478 492 10.2174/138920308785915254 18855699
    [Google Scholar]
  46. Thornton C. Snowden M.A. Carling D. Identification of a novel AMP-activated protein kinase β subunit isoform that is highly expressed in skeletal muscle. J. Biol. Chem. 1998 273 20 12443 12450 10.1074/jbc.273.20.12443 9575201
    [Google Scholar]
  47. Gimeno-Alcañiz J.V. Sanz P. Glucose and type 2A protein phosphatase regulate the interaction between catalytic and regulatory subunits of AMP-activated protein kinase. J. Mol. Biol. 2003 333 1 201 209 10.1016/j.jmb.2003.08.022 14516753
    [Google Scholar]
  48. Bateman A. The structure of a domain common to archaebacteria and the homocystinuria disease protein. Trends Biochem. Sci. 1997 22 1 12 13 10.1016/S0968‑0004(96)30046‑7 9020585
    [Google Scholar]
  49. Scott J.W. Hawley S.A. Green K.A. Anis M. Stewart G. Scullion G.A. Norman D.G. Hardie D.G. CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations. J. Clin. Invest. 2004 113 2 274 284 10.1172/JCI19874 14722619
    [Google Scholar]
  50. Gowans G.J. Hardie D.G. AMPK: A cellular energy sensor primarily regulated by AMP. Biochem. Soc. Trans. 2014 42 1 71 75 10.1042/BST20130244 24450630
    [Google Scholar]
  51. Steinberg G.R. Carling D. AMP-activated protein kinase: The current landscape for drug development. Nat. Rev. Drug Discov. 2019 18 7 527 551 10.1038/s41573‑019‑0019‑2 30867601
    [Google Scholar]
  52. Habtemariam S. Recent advances in berberine inspired anticancer approaches: From drug combination to novel formulation technology and derivatization. Molecules 2020 25 6 1426 10.3390/molecules25061426 32245062
    [Google Scholar]
  53. Kim I. He Y.Y. Targeting the AMP-activated protein kinase for cancer prevention and therapy. Front. Oncol. 2013 3 175 10.3389/fonc.2013.00175 23875169
    [Google Scholar]
  54. Li R. Song X. Guo Y. Song P. Duan D. Chen Z.S. Natural products: A promising therapeutics for targeting tumor angiogenesis. Front. Oncol. 2021 11 772915 10.3389/fonc.2021.772915 34746014
    [Google Scholar]
  55. Tao T. He C. Deng J. Huang Y. Su Q. Peng M. Yi M. Darko K.O. Zou H. Yang X. A novel synthetic derivative of quercetin, 8-trifluoromethyl-3,5,7,3′,4′- O -pentamethyl-quercetin, inhibits bladder cancer growth by targeting the AMPK/mTOR signaling pathway. Oncotarget 2017 8 42 71657 71671 10.18632/oncotarget.17799 29069736
    [Google Scholar]
  56. Baig M.A. Gawali V.B. Patil R.R. Naik S.R. Protective effect of herbomineral formulation (Dolabi) on early diabetic nephropathy in streptozotocin-induced diabetic rats. J. Nat. Med. 2012 66 3 500 509 10.1007/s11418‑011‑0614‑y 22116744
    [Google Scholar]
  57. Cialdella-Kam L. Nieman D.C. Sha W. Meaney M.P. Knab A.M. Shanely R.A. Dose–response to 3 months of quercetin-containing supplements on metabolite and quercetin conjugate profile in adults. Br. J. Nutr. 2013 109 11 1923 1933 10.1017/S0007114512003972 23151341
    [Google Scholar]
  58. Bechtol R. Pinto Partha G. Kumar J. Improving the economic and humanistic outcomes for diabetic patients: Making a case for employer-sponsored medication therapy management. Clinicoecon. Outcomes Res. 2013 Apr 153 10.2147/CEOR.S40735
    [Google Scholar]
  59. Moon J.H. Eo S.K. Lee J.H. Park S.Y. Quercetin-induced autophagy flux enhances TRAIL-mediated tumor cell death. Oncol. Rep. 2015 34 1 375 381 10.3892/or.2015.3991 25997470
    [Google Scholar]
  60. Lv L. Liu C. Chen C. Yu X. Chen G. Shi Y. Qin F. Ou J. Qiu K. Li G. Quercetin and doxorubicin co-encapsulated biotin receptor-targeting nanoparticles for minimizing drug resistance in breast cancer. Oncotarget 2016 7 22 32184 32199 10.18632/oncotarget.8607 27058756
    [Google Scholar]
  61. Nwaeburu C.C. Bauer N. Zhao Z. Abukiwan A. Gladkich J. Benner A. Herr I. Up-regulation of microRNA let-7c by quercetin inhibits pancreatic cancer progression by activation of Numbl. Oncotarget 2016 7 36 58367 58380 10.18632/oncotarget.11122 27521217
    [Google Scholar]
  62. Lagerweij T. Hiddingh L. Biesmans D. Crommentuijn M.H.W. Cloos J. Li X.N. Kogiso M. Tannous B.A. Vandertop W.P. Noske D.P. Kaspers G.J.L. Würdinger T. Hulleman E. A chemical screen for medulloblastoma identifies quercetin as a putative radiosensitizer. Oncotarget 2016 7 24 35776 35788 10.18632/oncotarget.7980 26967057
    [Google Scholar]
  63. He D. Guo X. Zhang E. Zi F. Chen J. Chen Q. Lin X. Yang L. Li Y. Wu W. Yang Y. He J. Cai Z. Quercetin induces cell apoptosis of myeloma and displays a synergistic effect with dexamethasone in vitro and in vivo xenograft models. Oncotarget 2016 7 29 45489 45499 10.18632/oncotarget.9993 27329589
    [Google Scholar]
  64. Braganhol E. Zamin L.L. Delgado Canedo A. Horn F. Tamajusuku A.S.K. Wink M.R. Salbego C. Battastini A.M.O. Antiproliferative effect of quercetin in the human U138MG glioma cell line. Anticancer Drugs 2006 17 6 663 671 10.1097/01.cad.0000215063.23932.02 16917212
    [Google Scholar]
  65. Ma L. Feugang J.M. Konarski P. Wang J. Lu J. Fu S. Ma B. Tian B. Zou C. Wang Z. Growth inhibitory effects of quercetin on bladder cancer cell. Front. Biosci. 2006 11 1 2275 2285 10.2741/1970 16720314
    [Google Scholar]
  66. Rockenbach L. Bavaresco L. Fernandes Farias P. Cappellari A.R. Barrios C.H. Bueno Morrone F. Oliveira Battastini A.M. Alterations in the extracellular catabolism of nucleotides are involved in the antiproliferative effect of quercetin in human bladder cancer T24 cells. Urol. Oncol. 2013 31 7 1204 1211 10.1016/j.urolonc.2011.10.009 22137869
    [Google Scholar]
  67. Su Q. Peng M. Zhang Y. Xu W. Darko K.O. Tao T. Huang Y. Tao X. Yang X. Quercetin induces bladder cancer cells apoptosis by activation of AMPK signaling pathway. Am. J. Cancer Res. 2016 6 2 498 508 27186419
    [Google Scholar]
  68. Hwang J.T. Kwon D.Y. Yoon S.H. AMP-activated protein kinase: A potential target for the diseases prevention by natural occurring polyphenols. N. Biotechnol. 2009 26 1-2 17 22 10.1016/j.nbt.2009.03.005 19818314
    [Google Scholar]
  69. Rattan R. Giri S. Singh A.K. Singh I. 5-Aminoimidazole-4-carboxamide-1-β-D-ribofuranoside inhibits cancer cell proliferation in vitro and in vivo via AMP-activated protein kinase. J. Biol. Chem. 2005 280 47 39582 39593 10.1074/jbc.M507443200 16176927
    [Google Scholar]
  70. Gwinn D.M. Shackelford D.B. Egan D.F. Mihaylova M.M. Mery A. Vasquez D.S. Turk B.E. Shaw R.J. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 2008 30 2 214 226 10.1016/j.molcel.2008.03.003 18439900
    [Google Scholar]
  71. Gholamnezhad Z. Havakhah S. Boskabady M.H. Preclinical and clinical effects of Nigella sativa and its constituent, thymoquinone: A review. J. Ethnopharmacol. 2016 190 372 386 10.1016/j.jep.2016.06.061 27364039
    [Google Scholar]
  72. Majdalawieh A.F. Fayyad M.W. Immunomodulatory and anti-inflammatory action of Nigella sativa and thymoquinone: A comprehensive review. Int. Immunopharmacol. 2015 28 1 295 304 10.1016/j.intimp.2015.06.023 26117430
    [Google Scholar]
  73. Jeon S.M. Regulation and function of AMPK in physiology and diseases. Exp. Mol. Med. 2016 48 7 e245 e245 10.1038/emm.2016.81 27416781
    [Google Scholar]
  74. Fogarty S. Hardie D.G. Development of protein kinase activators: AMPK as a target in metabolic disorders and cancer. Biochim. Biophys. Acta. Proteins Proteomics 2010 1804 3 581 591 10.1016/j.bbapap.2009.09.012 19778642
    [Google Scholar]
  75. Chehl N. Chipitsyna G. Gong Q. Yeo C.J. Arafat H.A. Anti-inflammatory effects of the Nigella sativa seed extract, thymoquinone, in pancreatic cancer cells. HPB (Oxford) 2009 11 5 373 381 10.1111/j.1477‑2574.2009.00059.x 19768141
    [Google Scholar]
  76. Periasamy V.S. Athinarayanan J. Alshatwi A.A. Anticancer activity of an ultrasonic nanoemulsion formulation of Nigella sativa L. essential oil on human breast cancer cells. Ultrason. Sonochem. 2016 31 449 455 10.1016/j.ultsonch.2016.01.035 26964971
    [Google Scholar]
  77. Faubert B. Vincent E.E. Poffenberger M.C. Jones R.G. The AMP-activated protein kinase (AMPK) and cancer: Many faces of a metabolic regulator. Cancer Lett. 2015 356 2 165 170 10.1016/j.canlet.2014.01.018 24486219
    [Google Scholar]
  78. Zadra G. Batista J.L. Loda M. Dissecting the dual role of AMPK in cancer: From experimental to human studies. Mol. Cancer Res. 2015 13 7 1059 1072 10.1158/1541‑7786.MCR‑15‑0068 25956158
    [Google Scholar]
  79. Majdalawieh A.F. Fayyad M.W. Nasrallah G.K. Anti-cancer properties and mechanisms of action of thymoquinone, the major active ingredient of Nigella sativa. Crit. Rev. Food Sci. Nutr. 2017 57 18 3911 3928 10.1080/10408398.2016.1277971 28140613
    [Google Scholar]
  80. Thirupathi A. Chang Y.Z. Role of AMPK and its molecular intermediates in subjugating cancer survival mechanism. Life Sci. 2019 227 30 38 10.1016/j.lfs.2019.04.039 31002918
    [Google Scholar]
  81. Zhang Y. Fan Y. Huang S. Wang G. Han R. Lei F. Luo A. Jing X. Zhao L. Gu S. Zhao X. Thymoquinone inhibits the metastasis of renal cell cancer cells by inducing autophagy via AMPK/mTOR signaling pathway. Cancer Sci. 2018 109 12 3865 3873 10.1111/cas.13808 30259603
    [Google Scholar]
  82. Cordero M.D. Viollet B. AMP-activated Protein Kinase. Cham Springer International Publishing 2016 10.1007/978‑3‑319‑43589‑3
    [Google Scholar]
  83. Zhao X. Lin Y. Jiang B. Yin J. Lu C. Wang J. Zeng J. Icaritin inhibits lung cancer-induced osteoclastogenesis by suppressing the expression of IL-6 and TNF-a and through AMPK/mTOR signaling pathway. Anticancer Drugs 2020 31 10 1004 1011 10.1097/CAD.0000000000000976 32701561
    [Google Scholar]
  84. Ma H. He X. Yang Y. Li M. Hao D. Jia Z. The genus Epimedium: An ethnopharmacological and phytochemical review. J. Ethnopharmacol. 2011 134 3 519 541 10.1016/j.jep.2011.01.001 21215308
    [Google Scholar]
  85. Wu J. Xu H. Wong P.F. Xia S. Xu J. Dong J. Icaritin attenuates cigarette smoke-mediated oxidative stress in human lung epithelial cells via activation of PI3K-AKT and Nrf2 signaling. Food Chem. Toxicol. 2014 64 307 313 10.1016/j.fct.2013.12.006 24333105
    [Google Scholar]
  86. Shah M. Kola B. Bataveljic A. Arnett T.R. Viollet B. Saxon L. Korbonits M. Chenu C. AMP-activated protein kinase (AMPK) activation regulates in vitro bone formation and bone mass. Bone 2010 47 2 309 319 10.1016/j.bone.2010.04.596 20399918
    [Google Scholar]
  87. Kang J.I. Hong J.Y. Lee H.J. Bae S.Y. Jung C. Park H.J. Lee S.K. Anti-tumor activity of yuanhuacine by regulating AMPK/mTOR signaling pathway and actin cytoskeleton organization in non-small cell lung cancer cells. PLoS One 2015 10 12 e0144368 10.1371/journal.pone.0144368 26656173
    [Google Scholar]
  88. Yoo H.S. Kim J.M. Jo E. Cho C.K. Lee S.Y. Kang H.S. Lee M.G. Yang P.Y. Jang I.S. Modified Panax ginseng extract regulates autophagy by AMPK signaling in A549 human lung cancer cells. Oncol. Rep. 2017 37 6 3287 3296 10.3892/or.2017.5590 28440448
    [Google Scholar]
  89. Glantschnig H. Fisher J.E. Wesolowski G. Rodan G.A. Reszka A.A. M-CSF, TNFα and RANK ligand promote osteoclast survival by signaling through mTOR/S6 kinase. Cell Death Differ. 2003 10 10 1165 1177 10.1038/sj.cdd.4401285 14502240
    [Google Scholar]
  90. Xue Z. Zhang F. Xu S. Chen M. Wang M. Wang M. Ke F. Chen Z. Zhang M. Investigating the effect of Icaritin on hepatocellular carcinoma based on network pharmacology. Front. Pharmacol. 2023 14 1208495 10.3389/fphar.2023.1208495 37324495
    [Google Scholar]
  91. Yung M.M.H. Ross F.A. Hardie D.G. Leung T.H.Y. Zhan J. Ngan H.Y.S. Chan D.W. Bitter melon (Momordica charantia) extract inhibits tumorigenicity and overcomes cisplatin-resistance in ovarian cancer cells through targeting AMPK signaling cascade. Integr. Cancer Ther. 2016 15 3 376 389 10.1177/1534735415611747 26487740
    [Google Scholar]
  92. Melchior W.R. Jaber L.A. Metformin: An antihyperglycemic agent for treatment of type II diabetes. Ann. Pharmacother. 1996 30 2 158 164 10.1177/106002809603000210 8835050
    [Google Scholar]
  93. Iseli T.J. Turner N. Zeng X.Y. Cooney G.J. Kraegen E.W. Yao S. Ye Y. James D.E. Ye J.M. Activation of AMPK by bitter melon triterpenoids involves CaMKKβ. PLoS One 2013 8 4 e62309 10.1371/journal.pone.0062309 23638033
    [Google Scholar]
  94. Yu Y. Zhang X.H. Ebersole B. Ribnicky D. Wang Z.Q. Bitter melon extract attenuating hepatic steatosis may be mediated by FGF21 and AMPK/Sirt1 signaling in mice. Sci. Rep. 2013 3 1 3142 10.1038/srep03142 24189525
    [Google Scholar]
  95. Garg S. Kaul S. Wadhwa R. Cucurbitacin B and cancer intervention: Chemistry, biology and mechanisms (Review). Int. J. Oncol. 2017 10.3892/ijo.2017.4203 29138804
    [Google Scholar]
  96. Pitchakarn P. Ohnuma S. Pintha K. Pompimon W. Ambudkar S.V. Limtrakul P. Kuguacin J isolated from Momordica charantia leaves inhibits P-glycoprotein (ABCB1)-mediated multidrug resistance. J. Nutr. Biochem. 2012 23 1 76 84 10.1016/j.jnutbio.2010.11.005 21414769
    [Google Scholar]
  97. Ahn J. Kim H. Yang K.M. ω-hydroxyundec-9-enoic acid induction of breast cancer cells apoptosis through generation of mitochondrial ROS and phosphorylation of AMPK. Arch. Pharm. Res. 2020 43 7 735 743 10.1007/s12272‑020‑01254‑x 32720162
    [Google Scholar]
  98. Ke J.Y. Banh T. Hsiao Y.H. Cole R.M. Straka S.R. Yee L.D. Belury M.A. Citrus flavonoid naringenin reduces mammary tumor cell viability, adipose mass, and adipose inflammation in obese ovariectomized mice. Mol. Nutr. Food Res. 2017 61 9 1600934 10.1002/mnfr.201600934 28370954
    [Google Scholar]
  99. Aryal P. Kim K. Park P.H. Ham S. Cho J. Song K. Baicalein induces autophagic cell death through AMPK/ULK1 activation and downregulation of m TORC 1 complex components in human cancer cells. FEBS J. 2014 281 20 4644 4658 10.1111/febs.12969 25132405
    [Google Scholar]
  100. Rossi M. Meyer R. Constantinou P. Caruso F. Castelbuono D. O’Brien M. Narasimhan V. Molecular structure and activity toward DNA of baicalein, a flavone constituent of the Asian herbal medicine “Sho-saiko-to”. J. Nat. Prod. 2001 64 1 26 31 10.1021/np000068s 11170661
    [Google Scholar]
  101. Zhou D. Zhao X. Yu M. Xu Y. Fu C. Zheng K. Xia C. Huang B. Ma S. Anti-migration and anti-invasion effects of 2-hydroxy-6-tridecylbenzoic acid is associated with the enhancement of CYP1B1 expression through activating the AMPK signaling pathway in triple-negative breast cancer cells. Nat. Prod. Res. 2021 35 24 5924 5928 10.1080/14786419.2020.1803310 32779484
    [Google Scholar]
  102. Nagalingam A. Arbiser J.L. Bonner M.Y. Saxena N.K. Sharma D. Honokiol activates AMP-activated protein kinase in breast cancer cells via an LKB1-dependent pathway and inhibits breast carcinogenesis. Breast Cancer Res. 2012 14 1 R35 10.1186/bcr3128 22353783
    [Google Scholar]
  103. Li X. Yuan Z. Wang Y. Wang W. Shi J. Recent advances of honokiol: Pharmacological activities, manmade derivatives and structure-activity relationship. Eur. J. Med. Chem. 2024 272 116471 10.1016/j.ejmech.2024.116471 38704945
    [Google Scholar]
  104. Li J. Fan Y. Zhang Y. Liu Y. Yu Y. Ma M. Resveratrol induces autophagy and apoptosis in non-small-cell lung cancer cells by activating the NGFR-AMPK-mTOR pathway. Nutrients 2022 14 12 2413 10.3390/nu14122413 35745143
    [Google Scholar]
  105. Gambini J. Inglés M. Olaso G. Lopez-Grueso R. Bonet-Costa V. Gimeno-Mallench L. Mas-Bargues C. Abdelaziz K.M. Gomez-Cabrera M.C. Vina J. Borras C. Properties of resveratrol: In vitro and in vivo studies about metabolism, bioavailability, and biological effects in animal models and humans. Oxid. Med. Cell. Longev. 2015 2015 1 13 10.1155/2015/837042 26221416
    [Google Scholar]
  106. Oliveira M.C.L. Paulo A.J. Lima C.A. de Lima Filho J.L. Souza-Motta C.M. Vidal E.E. Nascimento T.P. Marques D.A.V. Porto A.L.F. Lovastatin producing by wild strain of Aspergillus terreus isolated from Brazil. Prep. Biochem. Biotechnol. 2021 51 2 164 172 10.1080/10826068.2020.1805624 32795118
    [Google Scholar]
  107. Xue L. Wu M. Li Y. Chen S. Wu M. Zhu J. Ding S. Zhang Q. Zheng C. He G. Fu S. Li G. Deng X. Hexokinase 2 is a pivot for lovastatin-induced glycolysis-to-autophagy reprogramming in triple-negative breast cancer cells. J. Cancer 2022 13 12 3368 3377 10.7150/jca.71592 36186902
    [Google Scholar]
  108. Xie L. Zhu G. Shang J. Chen X. Zhang C. Ji X. Zhang Q. Wei Y. An overview on the biological activity and anti-cancer mechanism of lovastatin. Cell. Signal. 2021 87 110122 10.1016/j.cellsig.2021.110122 34438015
    [Google Scholar]
  109. Tillhon M. Guamán Ortiz L.M. Lombardi P. Scovassi A.I. Berberine: New perspectives for old remedies. Biochem. Pharmacol. 2012 84 10 1260 1267 10.1016/j.bcp.2012.07.018 22842630
    [Google Scholar]
  110. Pan Y. Zhang F. Zhao Y. Shao D. Zheng X. Chen Y. He K. Li J. Chen L. Berberine enhances chemosensitivity and induces apoptosis through dose-orchestrated AMPK signaling in breast cancer. J. Cancer 2017 8 9 1679 1689 10.7150/jca.19106 28775788
    [Google Scholar]
  111. Pan Y. Shao D. Zhao Y. Zhang F. Zheng X. Tan Y. He K. Li J. Chen L. Berberine reverses hypoxia-induced chemoresistance in breast cancer through the inhibition of AMPK- HIF-1α. Int. J. Biol. Sci. 2017 13 6 794 803 10.7150/ijbs.18969 28656004
    [Google Scholar]
  112. Cazzaniga M. Zonzini G.B. Di Pierro F. Moricoli S. Bertuccioli A. Gut microbiota, metabolic disorders and breast cancer: Could berberine turn out to be a transversal nutraceutical tool? A narrative analysis. Int. J. Mol. Sci. 2022 23 20 12538 10.3390/ijms232012538 36293390
    [Google Scholar]
  113. Zhu X. Bian H. Wang L. Sun X. Xu X. Yan H. Xia M. Chang X. Lu Y. Li Y. Xia P. Li X. Gao X. Berberine attenuates nonalcoholic hepatic steatosis through the AMPK-SREBP-1c-SCD1 pathway. Free Radic. Biol. Med. 2019 141 192 204 10.1016/j.freeradbiomed.2019.06.019 31226399
    [Google Scholar]
  114. Patil J.B. Kim J. Jayaprakasha G.K. Berberine induces apoptosis in breast cancer cells (MCF-7) through mitochondrial-dependent pathway. Eur. J. Pharmacol. 2010 645 1-3 70 78 10.1016/j.ejphar.2010.07.037 20691179
    [Google Scholar]
  115. Liu S. Chen W. Zhao Y. Zong Y. Li J. He Z. Research progress on effects of ginsenoside Rg2 and Rh1 on nervous system and related mechanisms. Molecules 2023 28 23 7935 10.3390/molecules28237935 38067664
    [Google Scholar]
  116. Zou Y. Liu P. 2016 Ginsenoside-Rg5 inhibits proliferation of the breast carcinoma cells through promotion of the proteins involved in AMP kinase pathway. Int. J. Clin. Exp. Med. 9 9 17664 17669
    [Google Scholar]
  117. Jeon H. Huynh D.T.N. Baek N. Nguyen T.L.L. Heo K.S. Ginsenoside-Rg2 affects cell growth via regulating ROS-mediated AMPK activation and cell cycle in MCF-7 cells. Phytomedicine 2021 85 153549 10.1016/j.phymed.2021.153549 33819767
    [Google Scholar]
  118. Han J.S. Sung J.H. Lee S.K. Inhibition of cholesterol synthesis in HepG2 cells by GINST—decreasing HMG‐CoA reductase expression via AMP‐activated protein kinase. J. Food Sci. 2017 82 11 2700 2705 10.1111/1750‑3841.13828 29065216
    [Google Scholar]
  119. Kim D.Y. Yuan H.D. Chung I.K. Chung S.H. Compound K. Compound K, intestinal metabolite of ginsenoside, attenuates hepatic lipid accumulation via AMPK activation in human hepatoma cells. J. Agric. Food Chem. 2009 57 4 1532 1537 10.1021/jf802867b 19182950
    [Google Scholar]
  120. Yuan H.-D. Quan H.-Y. Zhang Y.S.H. Chung S.-H. 20(S)-Ginsenoside Rg3-induced apoptosis in HT-29 colon cancer cells is associated with AMPK signaling pathway. Mol. Med. Rep. 2010 3 5 10.3892/mmr.2010.328 21472321
    [Google Scholar]
  121. Stauffer S. Zeng Y. Santos M. Zhou J. Chen Y. Dong J. Cyclin-dependent kinase 1-mediated AMPK phosphorylation regulates chromosome alignment and mitotic progression. J. Cell Sci. 2019 132 20 jcs236000 10.1242/jcs.236000 31519809
    [Google Scholar]
  122. Rocha G.Z. Dias M.M. Ropelle E.R. Osório-Costa F. Rossato F.A. Vercesi A.E. Saad M.J.A. Carvalheira J.B.C. Metformin amplifies chemotherapy-induced AMPK activation and antitumoral growth. Clin. Cancer Res. 2011 17 12 3993 4005 10.1158/1078‑0432.CCR‑10‑2243 21543517
    [Google Scholar]
  123. Li L.Y. Chen X.S. Wang K.S. Guan Y.D. Ren X.C. Cao D.S. Sun X.Y. Li A.X. Tao Y.G. Zhang Y. Yin M.Z. Wang X.L. Wu M.H. Yang J.M. Cheng Y. RSK2 protects human breast cancer cells under endoplasmic reticulum stress through activating AMPKα2-mediated autophagy. Oncogene 2020 39 43 6704 6718 10.1038/s41388‑020‑01447‑0 32958832
    [Google Scholar]
  124. Sati P. Sharma E. Dhyani P. Attri D.C. Rana R. Kiyekbayeva L. Büsselberg D. Samuel S.M. Sharifi-Rad J. Paclitaxel and its semi-synthetic derivatives: Comprehensive insights into chemical structure, mechanisms of action, and anticancer properties. Eur. J. Med. Res. 2024 29 1 90 10.1186/s40001‑024‑01657‑2 38291541
    [Google Scholar]
  125. Shrihastini V. Muthuramalingam P. Adarshan S. Sujitha M. Chen J.T. Shin H. Ramesh M. Plant derived bioactive compounds, their anti-cancer effects and in silico approaches as an alternative target treatment strategy for breast cancer: An updated overview. Cancers (Basel) 2021 13 24 6222 10.3390/cancers13246222 34944840
    [Google Scholar]
/content/journals/cst/10.2174/0115743624331249241025024548
Loading
/content/journals/cst/10.2174/0115743624331249241025024548
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: quercetin ; bioactive compound ; icartin ; cancer ; AMPK ; naringenin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test