Skip to content
2000
Volume 18, Issue 2
  • ISSN: 1874-4710
  • E-ISSN: 1874-4729

Abstract

Introduction

The lung is a moderately radio-sensitive organ. When cells are damaged due to accidental radiation exposure or treatment, they release molecules that lead to the recruitment of immune cells, accumulating inflammatory cytokines at the site of damage. Apigenin (Api) is a natural flavonoid known for its anti-inflammatory properties. In this study, we investigated the radioprotective properties of Api in the lung.

Methods

Thirty-six Wistar rats were randomly assigned to nine groups: control, radiation (Rad), CMC+Rad, Api10+Rad, and Api20+Rad. Api was administered with an intraperitoneal injection for 7 days, after which the rats were irradiated with 6 Gy whole-body X-ray. At 6 and 72 hours post-irradiation, the rats were euthanized, and their lung tissue was extracted.

Results

Radiation led to increased alveolar wall thickness and the infiltration of macrophages and lymphocytes. Furthermore, the expression levels of inflammatory factors such as a nuclear factor of kappa light polypeptide gene enhancer in B-cells (NF-ĸB), Glycogen synthase kinase-3 beta (GSK-3β), transforming growth factor-beta1 (TGF-β1), and epigenetic factors including DNA methyltransferase 3a (DNMT3a) and Histone deacetylase 2 (HDAC2) were elevated in the lung tissue following radiation. Meanwhile, the expression level of IκB-α decreased. However, administration of Api (at both 10&20 mg/kg) reversed the adverse effects of radiation.

Conclusion

Api administration mitigated radiation-induced lung damage by reversing inflammatory and epigenetic changes.

Loading

Article metrics loading...

/content/journals/crp/10.2174/0118744710336823241011095632
2024-10-23
2025-06-20
Loading full text...

Full text loading...

References

  1. RoyS. SalernoK.E. CitrinD.E. Biology of radiation-induced lung injury. Seminars in radiation oncology.Elsevier2021
    [Google Scholar]
  2. GrovesA.M. WilliamsJ.P. HernadyE. ReedC. FentonB. LoveT. FinkelsteinJ.N. JohnstonC.J. A potential biomarker for predicting the risk of radiation-induced fibrosis in the lung.Radiat. Res.2018190551352510.1667/RR15122.130117783
    [Google Scholar]
  3. JinH. YooY. KimY. KimY. ChoJ. LeeY.S. Radiation-induced lung fibrosis: Preclinical animal models and therapeutic strategies.Cancers2020126156110.3390/cancers1206156132545674
    [Google Scholar]
  4. GiurannoL. IentJ. De RuysscherD. VooijsM.A. Radiation-induced lung injury (RILI).Front. Oncol.2019987710.3389/fonc.2019.0087731555602
    [Google Scholar]
  5. StraubJ.M. NewJ. HamiltonC.D. LominskaC. ShnayderY. ThomasS.M. Radiation-induced fibrosis: Mechanisms and implications for therapy.J. Cancer Res. Clin. Oncol.2015141111985199410.1007/s00432‑015‑1974‑625910988
    [Google Scholar]
  6. Arroyo-HernándezM. MaldonadoF. Lozano-RuizF. Muñoz-MontañoW. Nuñez-BaezM. ArrietaO. Radiation-induced lung injury: Current evidence.BMC Pulm. Med.2021211910.1186/s12890‑020‑01376‑433407290
    [Google Scholar]
  7. O’BrienE.C. HellkampA.S. NeelyM.L. SwaminathanA. BenderS. SnyderL.D. CulverD.A. ConoscentiC.S. ToddJ.L. PalmerS.M. LeonardT.B. AsiW. BakerA. BeegleS. BelperioJ.A. CondosR. CordovaF. CulverD.A. de AndradeJ.A.M. DillingD. FlahertyK.R. GlassbergM. GulatiM. GuntupalliK. GuptaN. Hajari CaseA. HotchkinD. HuieT. KanerR. KimH. KreiderM. LancasterL. LaskyJ. LedererD. LeeD. LieschingT. LipchikR. LoboJ. MagetoY. MenonP. MorrisonL. NamenA. OldhamJ. RajR. RamaswamyM. RussellT. SachsP. SafdarZ. SigalB. SilhanL. StrekM. SulimanS. TabakJ. WaliaR. WhelanT.P. IPF-PRO Registry investigators Disease severity and quality of life in patients with idiopathic pulmonary fibrosis: A cross-sectional analysis of the IPF-PRO registry.Chest202015751188119810.1016/j.chest.2019.11.04231954102
    [Google Scholar]
  8. PrasadN.R. ThayalanK. BegumN. Apigenin protects gamma-radiation induced oxidative stress, hematological changes and animal survival in whole body irradiated Swiss albino mice.Int. J. Nutr. Pharmacol. Neurol. Dis.201221455210.4103/2231‑0738.93134
    [Google Scholar]
  9. SmithT.A. KirkpatrickD.R. SmithS. SmithT.K. PearsonT. KailasamA. HerrmannK.Z. SchubertJ. AgrawalD.K. Radioprotective agents to prevent cellular damage due to ionizing radiation.J. Transl. Med.201715123210.1186/s12967‑017‑1338‑x29121966
    [Google Scholar]
  10. XiongS. PanX. XuL. YangZ. GuoR. GuY. Regulatory T cells promote β-catenin–mediated epithelium-to-mesenchyme transition during radiation-induced pulmonary fibrosisInt. J. Radiat. Oncol. Biol. Phys.2015932425435
    [Google Scholar]
  11. SimoneC.B.II Thoracic radiation normal tissue injury. Seminars in radiation oncology.Elsevier2017
    [Google Scholar]
  12. WangJ. XuH.W. LiB.S. ZhangJ. ChengJ. Preliminary study of protective effects of flavonoids against radiation-induced lung injury in mice.Asian Pac. J. Cancer Prev.201213126441644610.7314/APJCP.2012.13.12.644123464472
    [Google Scholar]
  13. MushtaqZ. SadeerN.B. HussainM. Mahwish AlsagabyS.A. ImranM. MumtazT. UmarM. TauseefA. Al AbdulmonemW. TufailT. Al JbawiE. MahomoodallyM.F. Therapeutical properties of apigenin: A review on the experimental evidence and basic mechanisms.Int. J. Food Prop.20232611914193910.1080/10942912.2023.2236329
    [Google Scholar]
  14. GinwalaR. BhavsarR. ChigbuD.G.I. JainP. KhanZ.K. Potential role of flavonoids in treating chronic inflammatory diseases with a special focus on the anti-inflammatory activity of apigenin.Antioxidants2019823510.3390/antiox802003530764536
    [Google Scholar]
  15. BegumN. Rajendra PrasadN. KanimozhiG. AgilanB. Apigenin prevents gamma radiation-induced gastrointestinal damages by modulating inflammatory and apoptotic signalling mediators.Nat. Prod. Res.20223661631163510.1080/14786419.2021.189331633673794
    [Google Scholar]
  16. LiuD. PengR. ChenZ. YuH. WangS. DongS. LiW. ShaoW. DaiJ. LiF. JiangQ. SunW. The Protective Effects of Apigenin Against Radiation‐Induced Intestinal Injury.Dose Response202220310.1177/1559325822111379135859853
    [Google Scholar]
  17. ZhouX. GaoT. JiangX.G. XieM.L. Protective effect of apigenin on bleomycin-induced pulmonary fibrosis in mice by increments of lung antioxidant ability and PPARγ expression.J. Funct. Foods20162438238910.1016/j.jff.2016.04.039
    [Google Scholar]
  18. SeyedpourN. MotevaseliE. TaebS. NowrouziA. MirzaeiF. BahriM. Dehghan-ManshadiH.R. ZhalehM. RashidiK. AzmoonfarR. YahyapourR. NajafiM. Protective effects of alpha-lipoic acid, resveratrol, and apigenin against oxidative damages, histopathological changes, and mortality induced by lung irradiation in ratsCurr. Radiopharm.20241719911010.2174/011874471024435723101807031337909433
    [Google Scholar]
  19. PanF. ZhengY.B. ShiC.J. ZhangF. ZhangJ. FuW. H19-Wnt/β-catenin regulatory axis mediates the suppressive effects of apigenin on tumor growth in hepatocellular carcinoma.Eur. J. Pharmacol.202189317381010.1016/j.ejphar.2020.17381033345859
    [Google Scholar]
  20. ZoisC.E. GiatromanolakiA. KainulainenH. BotaitisS. TorvinenS. SimopoulosC. KortsarisA. SivridisE. KoukourakisM.I. Lung autophagic response following exposure of mice to whole body irradiation, with and without amifostine.Biochem. Biophys. Res. Commun.2011404155255810.1016/j.bbrc.2010.12.02421145309
    [Google Scholar]
  21. NagarajanD. WangL. ZhaoW. HanX. Trichostatin A inhibits radiation-induced epithelial-to-mesenchymal transition in the alveolar epithelial cells.Oncotarget201786010174510175910.18632/oncotarget.2166429254201
    [Google Scholar]
  22. HuangM.Y. LianS.L. WuH.L. ChaiC.Y. ChangS.J. HuangC.J. TangJ.Y. Effects of zinc compound on body weight and recovery of bone marrow in mice treated with total body irradiation.Kaohsiung J. Med. Sci.200723945346210.1016/S1607‑551X(08)70053‑617766214
    [Google Scholar]
  23. HaipingZ. TakayamaK. UchinoJ. HaradaA. AdachiY. KuraS. CaicunZ. TsuzukiT. NakanishiY. Prevention of radiation-induced pneumonitis by recombinant adenovirus-mediated transferring of soluble TGF-β type II receptor gene.Cancer Gene Ther.200613986487210.1038/sj.cgt.770095916710346
    [Google Scholar]
  24. JiangX. JiangX. QuC. ChangP. ZhangC. QuY. LiuY. Intravenous delivery of adipose-derived mesenchymal stromal cells attenuates acute radiation-induced lung injury in rats.Cytotherapy201517556057010.1016/j.jcyt.2015.02.01125791071
    [Google Scholar]
  25. XuY. ZhaiD. GotoS. ZhangX. JinguK. LiT.S. Nicaraven mitigates radiation-induced lung injury by downregulating the NF-κB and TGF-β/Smad pathways to suppress the inflammatory response.J. Radiat. Res. 202263215816510.1093/jrr/rrab11234999842
    [Google Scholar]
  26. Motamed NezhadA BehrooziZ KookliK GhadaksazA FazeliSM MoshiriA Evaluation of photobiomodulation therapy (117 and 90s) on pain, regeneration, and epigenetic factors (HDAC 2, DNMT3a) expression following spinal cord injury in a rat modelPhotochemical and photobiological sciences: Official journal of the European Photochemistry Association and the European Society for Photobiology2023221125272540
    [Google Scholar]
  27. JanzadehA. SarveazadA. YousefifardM. DameniS. SamaniF.S. MokhtarianK. NasirinezhadF. Combine effect of Chondroitinase ABC and low level laser (660 nm) on spinal cord injury model in adult male rats.Neuropeptides201765909910.1016/j.npep.2017.06.00228716393
    [Google Scholar]
  28. PhyuS.L. TurnbullC. TalbotN. Basic respiratory physiology.Medicine.2023511067968310.1016/j.mpmed.2023.07.006
    [Google Scholar]
  29. XueT. QiuX. LiuH. GanC. TanZ. XieY. WangY. YeT. Epigenetic regulation in fibrosis progress.Pharmacol. Res.202117310591010.1016/j.phrs.2021.10591034562602
    [Google Scholar]
  30. ChenX. TangJ. ShuaiW. MengJ. FengJ. HanZ. Macrophage polarization and its role in the pathogenesis of acute lung injury/acute respiratory distress syndrome.Inflamm. Res.202069988389510.1007/s00011‑020‑01378‑232647933
    [Google Scholar]
  31. KorfeiM. MahavadiP. GuentherA. Targeting histone deacetylases in idiopathic pulmonary fibrosis: A future therapeutic option.Cells20221110162610.3390/cells1110162635626663
    [Google Scholar]
  32. KohH.B. ScruggsA.M. HuangS.K. Transforming growth factor-β1 increases DNA methyltransferase 1 and 3a expression through distinct post-transcriptional mechanisms in lung fibroblasts.J. Biol. Chem.201629137192871929810.1074/jbc.M116.72308027405758
    [Google Scholar]
  33. TangD. ShiY. KangR. LiT. XiaoW. WangH. XiaoX. Hydrogen peroxide stimulates macrophages and monocytes to actively release HMGB1.J. Leukoc. Biol.200781374174710.1189/jlb.080654017135572
    [Google Scholar]
  34. WarburtonD. ShiW. XuB. TGF-β-Smad3 signaling in emphysema and pulmonary fibrosis: An epigenetic aberration of normal development?Am. J. Physiol. Lung Cell. Mol. Physiol.20133042L83L8510.1152/ajplung.00258.201223161884
    [Google Scholar]
  35. YueX. ShanB. LaskyJ.A. A Lasky J. TGF-β: Titan of lung fibrogenesis.Curr. Enzym. Inhib.201062677710.2174/15734081079123303324187529
    [Google Scholar]
  36. ChenP. ChenF. GuoZ. LeiJ. ZhouB. Recent advancement in bioeffect, metabolism, stability, and delivery systems of apigenin, a natural flavonoid compound: Challenges and perspectives.Front. Nutr.202310122122710.3389/fnut.2023.122122737565039
    [Google Scholar]
  37. BadryR. El-NahassM.M. NadaN. ElhaesH. IbrahimM.A. Structural and UV-blocking properties of carboxymethyl cellulose sodium/CuO nanocomposite films.Sci. Rep.2023131112310.1038/s41598‑023‑28032‑136670212
    [Google Scholar]
  38. BasuP. NarendrakumarU. ArunachalamR. DeviS. ManjubalaI. Characterization and evaluation of carboxymethyl cellulose-based films for healing of full-thickness wounds in normal and diabetic rats.ACS Omega2018310126221263210.1021/acsomega.8b0201530411013
    [Google Scholar]
  39. OhtaS. MitsuhashiK. ChandelA.K.S. QiP. NakamuraN. NakamichiA. YoshidaH. YamaguchiG. HaraY. SasakiR. FukeM. TakaiM. ItoT. Silver-loaded carboxymethyl cellulose nonwoven sheet with controlled counterions for infected wound healing.Carbohydr. Polym.202228611928910.1016/j.carbpol.2022.11928935337531
    [Google Scholar]
  40. OzerhanI.H. UrkanM. MeralU.M. UnluA. ErsözN. DemiragF. YagciG. Comparison of the effects of Mitomycin-C and sodium hyaluronate/carboxymethylcellulose [NH/CMC] (Seprafilm) on abdominal adhesions.Springerplus20165184610.1186/s40064‑016‑2359‑227386295
    [Google Scholar]
  41. RübeC.E. UtheD. SchmidK.W. RichterK.D. WesselJ. SchuckA. WillichN. RübeC. Dose-dependent induction of transforming growth factor β (TGF-β) in the lung tissue of fibrosis-prone mice after thoracic irradiation.Int. J. Radiat. Oncol. Biol. Phys.20004741033104210.1016/S0360‑3016(00)00482‑X10863076
    [Google Scholar]
  42. FarhoodB. khodamoradiE. Hoseini-GhahfarokhiM. MotevaseliE. Mirtavoos-MahyariH. Eleojo MusaA. NajafiM. TGF-β in radiotherapy: Mechanisms of tumor resistance and normal tissues injury.Pharmacol. Res.202015510474510.1016/j.phrs.2020.10474532145401
    [Google Scholar]
  43. SahinI. EturiA. De SouzaA. PamarthyS. TavoraF. GilesF.J. CarneiroB.A. Glycogen synthase kinase-3 beta inhibitors as novel cancer treatments and modulators of antitumor immune responses.Cancer Biol. Ther.20192081047105610.1080/15384047.2019.159528330975030
    [Google Scholar]
  44. ZhangT. ZhouJ. YueH. DuC. XiaoZ. ZhaoW. LiN. WangX. LiuX. LiY. GengX. ZhangY. LiL. TianJ. Glycogen synthase kinase‐3β promotes radiation‐induced lung fibrosis by regulating β‐catenin/lin28 signaling network to determine type II alveolar stem cell transdifferentiation state.FASEB J.2020349124661248010.1096/fj.20200151832706136
    [Google Scholar]
/content/journals/crp/10.2174/0118744710336823241011095632
Loading
/content/journals/crp/10.2174/0118744710336823241011095632
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): apigenin; flavonoid; inflammation; Lung; radiation fibrosis; radioprotective; radiotherapy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test