Skip to content
2000
Volume 18, Issue 3
  • ISSN: 1874-4710
  • E-ISSN: 1874-4729

Abstract

Introduction

Radiation-induced damage to the hematopoietic and gastrointestinal systems, especially the intestine, is a major concern for individuals exposed to whole-body radiation during an accident. Resveratrol has shown potential in mitigating radiation-induced toxicity, but its efficacy may be limited by its low bioavailability. In this study, we aimed to evaluate the effectiveness of resveratrol-loaded polymeric-based nanocapsules in mitigating radiation-induced injury in the hematopoietic system and intestine after whole-body exposure to radiation.

Methods

Sixty male mice were randomly divided into four groups: control, radiation (single dose of 7.2 Gy of X-ray) only, resveratrol-loaded polymeric-based nanocapsules (RES-ACN) only, and radiation plus RES-ACN. Mice were exposed to a single dose of 7.2 Gy of X-ray radiation. RES-ACN was administered to the mice starting 24 h after irradiation up to day 7 post-irradiation. Then, blood and tissue samples were collected for complete blood count and histopathological and biochemical evaluation. Survival analyses were also conducted.

Results

The findings showed that RES-ACN significantly mitigated radiation-induced injury to the hematopoietic system and intestine. The histopathological evaluation showed the mitigation of villi shortening, inflammation, and mucous layer thickness following treatment with RES-ACN. Biochemical evaluation also demonstrated a significant increase in the activity of glutathione peroxidase and superoxide dismutase and a significant reduction in the concentrations of malondialdehyde and nitric oxide. Treatment with RES-ACN also showed a significant improvement in some of the blood parameters and increased survival compared to radiation only.

Conclusion

The findings suggest that resveratrol-loaded polymeric-based nanocapsules can be an effective approach to mitigate radiation-induced damage to the hematopoietic system and intestine after whole-body exposure to X-ray radiation in mice. Further research is needed to explore the optimal dose and timing of resveratrol administration and to investigate the potential for clinical translation of this approach.

Loading

Article metrics loading...

/content/journals/crp/10.2174/0118744710335266250206060602
2025-02-12
2025-06-20
Loading full text...

Full text loading...

References

  1. ChalkiaM. ArkoudisN.A. MaragkoudakisE. RallisS. TremiI. GeorgakilasA.G. KoulouliasV. EfstathopoulosE. PlatoniK. The role of ionizing radiation for diagnosis and treatment against COVID-19: Evidence and considerations.Cells202211346710.3390/cells1103046735159277
    [Google Scholar]
  2. Geras’kinStanislav ChuryukinRoman VolkovaPolina BitarishviliSofiya. Using Ionizing Radiation for Improving the Development and Yield of Agricultural Crops.CABI202142443210.1079/9781789249095.0043
    [Google Scholar]
  3. TimakovaR. RadkovskayaE. Mathematical modeling in research on the use of ionizing radiation in the food industry.AIP Conf. Proc.20232812102008110.1063/5.0161817
    [Google Scholar]
  4. AgbeleA.T. FasoroO.J. FabamiseO.M. OluyideO.O. IdolorO.R. BamiseE.A. Protection against ionizing radiation-induced normal tissue damage by resveratrol: A systematic review.Eurasian J. Med.202052329830310.5152/eurasianjmed.2020.2014333209085
    [Google Scholar]
  5. WongK. DelaneyG.P. BartonM.B. Evidence-based optimal number of radiotherapy fractions for cancer: A useful tool to estimate radiotherapy demand.Radiother. Oncol.2016119114514910.1016/j.radonc.2015.12.00126718152
    [Google Scholar]
  6. BaskarR. DaiJ. WenlongN. YeoR. YeohK.W. Biological response of cancer cells to radiation treatment.Front. Mol. Biosci.201412410.3389/fmolb.2014.0002425988165
    [Google Scholar]
  7. ShimizuY KodamaK NishiN KasagiF SuyamaA SodaM GrantE.J SugiyamaH SakataR MoriwakiH HayashiM KondaM ShoreR.E Radiation exposure and circulatory disease risk: Hiroshima and nagasaki atomic bomb survivor data.BMJ2010340b534910.1136/bmj.b534920075151
    [Google Scholar]
  8. BergerE.M. The chernobyl disaster, concern about the environment, and life satisfaction.BMJ2010631810.1111/j.1467‑6435.2010.00457.x
    [Google Scholar]
  9. EspinalA EpperlyMW MukherjeeA FisherR ShieldsD WangH Intestinal radiation protection and mitigation by second-generation probiotic lactobacillus-reuteri engineered to deliver interleukin-22.Int. J. Mol. Sci.20222310561610.3390/ijms23105616
    [Google Scholar]
  10. FrantzM.C. SkodaE.M. SacherJ.R. EpperlyM.W. GoffJ.P. GreenbergerJ.S. WipfP. Synthesis of analogs of the radiation mitigator JP4-039 and visualization of BODIPY derivatives in mitochondria.Org. Biomol. Chem.201311254147415310.1039/c3ob40489g23715589
    [Google Scholar]
  11. BasileL.A. EllefsonD. Gluzman-PoltorakZ. Junes-GillK. MarV. MendoncaS. MillerJ.D. TomJ. TrinhA. GallaherT.K. HemaMax™, A recombinant human interleukin-12, is a potent mitigator of acute radiation injury in mice and non-human primates.PLoS One201272e3043410.1371/journal.pone.003043422383962
    [Google Scholar]
  12. WangB. TanakaK. MoritaA. NinomiyaY. MaruyamaK. FujitaK. HosoiY. NenoiM. Sodium orthovanadate (vanadate), a potent mitigator of radiation-induced damage to the hematopoietic system in mice.J. Radiat. Res. (Tokyo)201354462062910.1093/jrr/rrs14023349341
    [Google Scholar]
  13. MillerA.C. RivasR. McMahonR. MillerK. TesoroL. VillaV. YanushkevichD. LisonP. Radiation protection and mitigation potential of phenylbutyrate: delivered via oral administration.Int. J. Radiat. Biol.201793990791910.1080/09553002.2017.135030128749244
    [Google Scholar]
  14. AminiP AshrafizadehM MotevaseliE NajafiM ShiraziA Mitigation of radiation-induced hematopoietic system injury by melatonin.Environ Toxicol.202035881582110.1002/tox.2291732125094
    [Google Scholar]
  15. ShabeebD MusaAE Abd AliHS NajafiM Curcumin protects against radiotherapy-induced oxidative injury to the skin.Drug Des. Devel. Ther.2020143159316310.2147/DDDT.S26522832848362
    [Google Scholar]
  16. SiteniS. BarronS. LuitelK. ShayJ.W. Radioprotective effect of the anti-diabetic drug metformin.PLoS One2024197e030759810.1371/journal.pone.030759839042641
    [Google Scholar]
  17. ZhangS. ZhangG. WangP. WangL. FangB. HuangJ. Effect of selenium and selenoproteins on radiation resistance.Nutrients20241617290210.3390/nu16172902
    [Google Scholar]
  18. SezgiC. TarakçıoğluM.S. TaysiS. The efficacy of caffeic acid phenethyl ester (CAPE) in the protection against radiation-induced oxidative stress in the lung as a distant organ.J. Radiat. Res. Appl. Sci.202316310059910.1016/j.jrras.2023.100599
    [Google Scholar]
  19. XuJ AlameriAA ZabibahRS GabrGA Ramírez-CoronelAA BagheriH Abedi-FirouzjahR Protective potentials of alpha-lipoic acid against ionizing radiation-induced brain damage in rats.Oxid. Med. Cell Longev.20232023499930610.1155/2023/499930636778212
    [Google Scholar]
  20. Ghasempour DabaghiG. Rabiee RadM. Mohammad-ZamaniM. Karimi ShervedaniA. Bahrami-SamaniF. Heshmat-GhahdarijaniK. The role of coenzyme Q10 as a preventive and therapeutic agent for the treatment of cancers.Curr. Probl. Cancer20244810106310.1016/j.currproblcancer.2024.10106338330781
    [Google Scholar]
  21. FaramarziS. PiccolellaS. MantiL. PacificoS. Could polyphenols really be a good radioprotective strategy?Molecules20212616496910.3390/molecules2616496934443561
    [Google Scholar]
  22. Reagan-ShawS. MukhtarH. AhmadN. Resveratrol imparts photoprotection of normal cells and enhances the efficacy of radiation therapy in cancer cells.Toxicol. Appl. Pharmacol.2008842415421
    [Google Scholar]
  23. SeoK. SeoS. HanJ.Y. KiS.H. ShinS.M. Resveratrol attenuates methylglyoxal-induced mitochondrial dysfunction and apoptosis by Sestrin2 induction.Toxicol. Appl. Pharmacol.2014280231432210.1016/j.taap.2014.08.01125151220
    [Google Scholar]
  24. HonariM. ShafabakhshR. ReiterR.J. MirzaeiH. AsemiZ. Resveratrol is a promising agent for colorectal cancer prevention and treatment: Focus on molecular mechanisms.Cancer Cell Int.201919118010.1186/s12935‑019‑0906‑y31341423
    [Google Scholar]
  25. SunH CaiH FuY WangQ JiK DuL The protection effect of resveratrol against radiation-induced inflammatory bowel disease via nlrp-3 inflammasome repression in mice.Dose. Response.2020182155932582093129210.1177/155932582093129232636719
    [Google Scholar]
  26. KoJ.H. SethiG. UmJ.Y. ShanmugamM.K. ArfusoF. KumarA.P. BishayeeA. AhnK.S. The role of resveratrol in cancer therapy.Int. J. Mol. Sci.20171812258910.3390/ijms1812258929194365
    [Google Scholar]
  27. KursvietieneL. KopustinskieneD.M. StanevicieneI. MongirdieneA. KubováK. MasteikovaR. Anti-cancer properties of resveratrol: A focus on its impact on mitochondrial functions.Antioxidants20231212205610.3390/antiox1212205638136176
    [Google Scholar]
  28. ShaitoA PosadinoAM YounesN HasanH HalabiS AlhababiD Potential adverse effects of resveratrol: A literature review.Int J Mol Sci.2020216208410.3390/ijms2106208432197410
    [Google Scholar]
  29. WalleT. HsiehF. DeLeggeM.H. OatisJ.E.Jr WalleU.K. High absorption but very low bioavailability of oral resveratrol in humans.Drug Metab. Dispos.200432121377138210.1124/dmd.104.00088515333514
    [Google Scholar]
  30. WangY. HongC. WuZ. LiS. XiaY. LiangY. HeX. XiaoX. TangW. Resveratrol in intestinal health and disease: focusing on intestinal barrier.Front. Nutr.2022984840010.3389/fnut.2022.84840035369090
    [Google Scholar]
  31. LiB. ShaoH. GaoL. LiH. ShengH. ZhuL. Nano-drug co-delivery system of natural active ingredients and chemotherapy drugs for cancer treatment: A review.Drug Deliv.20222912130216110.1080/10717544.2022.209449835815678
    [Google Scholar]
  32. Fonseca-SantosB. ChorilliM. The uses of resveratrol for neurological diseases treatment and insights for nanotechnology based-drug delivery systems.Int. J. Pharm.202058911983210.1016/j.ijpharm.2020.11983232877730
    [Google Scholar]
  33. MotieiM KashanianS Novel amphiphilic chitosan nanocarriers for sustained oral delivery of hydrophobic drugs.Eur. J. Pharm. Sci.20179928529110.1016/j.ejps.2016.12.03528057549
    [Google Scholar]
  34. NajafiM. ChekiM. AminiP. JavadA. ShabeebD. Eleojo MusaA. Evaluating the protective effect of resveratrol, Q10, and alpha-lipoic acid on radiation-induced mice spermatogenesis injury: A histopathological study.Int. J. Reprod. Biomed. (Yazd)2019171290791410.18502/ijrm.v17i12.579131970312
    [Google Scholar]
  35. FarhoodB. HassanzadehG. AminiP. ShabeebD. MusaA.E. KhodamoradiE. MohseniM. AliasgharzadehA. MoradiH. NajafiM. Mitigation of radiation-induced gastrointestinal system injury using resveratrol or alpha-lipoic acid: a pilot histopathological study.Antiinflamm. Antialler. Agents Med. Chem.202019441342410.2174/187152301866619111112402831713500
    [Google Scholar]
  36. AzmoonfarR. AminiP. YahyapourR. RezaeyanA. TavassoliA. MotevaseliE. KhodamoradiE. ShabeebD. MusaA.E. NajafiM. Mitigation of radiation-induced pneumonitis and lung fibrosis using alpha-lipoic acid and resveratrol.Antiinflamm. Antialler. Agents Med. Chem.202019214915710.2174/187152301866619031914402030892165
    [Google Scholar]
  37. MortezaeeK. NajafiM. FarhoodB. AhmadiA. ShabeebD. MusaA.E. Resveratrol as an adjuvant for normal tissues protection and tumor sensitization.Curr. Canc. Drug Targ.202020213014510.2174/156800961966619101914353931738153
    [Google Scholar]
  38. SalehiS BayatianiM YaghmaeiP RajabiS GoodarziM Jalali MashayekhiFJ Protective effects of resveratrol against X-ray irradiation by regulating antioxidant defense system.Radioprotection201853429329810.1051/radiopro/2018034
    [Google Scholar]
  39. SimsekY. GurocakS. TurkozY. AkpolatN. CelikO. OzerA. YılmazE. TurhanU. OzyalinF. Ameliorative effects of resveratrol on acute ovarian toxicity induced by total body irradiation in young adult rats.J. Pediatr. Adolesc. Gynecol.201225426226610.1016/j.jpag.2012.04.00122840937
    [Google Scholar]
  40. ZhangH. ZhaiZ. WangY. ZhangJ. WuH. WangY. LiC. LiD. LuL. WangX. ChangJ. HouQ. JuZ. ZhouD. MengA. Resveratrol ameliorates ionizing irradiation-induced long-term hematopoietic stem cell injury in mice.Free Radic. Biol. Med.201354405010.1016/j.freeradbiomed.2012.10.53023124026
    [Google Scholar]
  41. KhoschsorurG.A. Winklhofer-RoobB.M. RablH. AuerT. PengZ. SchaurR.J. Evaluation of a sensitive HPLC method for the determination of Malondialdehyde, and application of the method to different biological materials.Chromatographia2000523-418118410.1007/BF02490453
    [Google Scholar]
  42. FinchS.C. Landmark perspective: Acute radiation syndrome.JAMA1987258566466710.1001/jama.1987.034000501060373302322
    [Google Scholar]
  43. LangloisR.G. BigbeeW.L. KyoizumiS. NakamuraN. BeanM.A. AkiyamaM. JensenR.H. Evidence for increased somatic cell mutations at the glycophorin a locus in atomic bomb survivors.Science1987236480044544810.1126/science.35635203563520
    [Google Scholar]
  44. KyoizumiS. NakamuraN. HakodaM. AwaA.A. BeanM.A. JensenR.H. AkiyamaM. Detection of somatic mutations at the glycophorin a locus in erythrocytes of atomic bomb survivors using a single beam flow sorter.Cancer Res.19894935815882910480
    [Google Scholar]
  45. KrestininaL.Y. PrestonD.L. OstroumovaE.V. DegtevaM.O. RonE. VyushkovaO.V. StartsevN.V. KossenkoM.M. AkleyevA.V. Protracted radiation exposure and cancer mortality in the Techa River Cohort.Radiat. Res.2005164560261110.1667/RR3452.116238437
    [Google Scholar]
  46. GaleR.P. ButturiniA. The role of hematopoietic growth factors in nuclear and radiation accidents.Exp. Hematol.19901889589642201559
    [Google Scholar]
  47. WuS. TianC. TuZ. GuoJ. XuF. QinW. ChangH. WangZ. HuT. SunX. NingH. LiY. GouW. HouW. Protective effect of total flavonoids of engelhardia roxburghiana wall. leaves against radiation-induced intestinal injury in mice and its mechanism.J. Ethnopharmacol.202331111642810.1016/j.jep.2023.11642836997130
    [Google Scholar]
  48. PannkukE.L. LaiakisE.C. GarciaM. FornaceA.J.Jr SinghV.K. Nonhuman primates with acute radiation syndrome: Results from a global serum metabolomics study after 7.2 gy total-body irradiation.Radiat. Res.2018190657658310.1667/RR15167.130183511
    [Google Scholar]
  49. SeongS.Y. KangM.K. KangH. LeeH.J. KangY.R. LeeC.G. SohnD.H. HanS.J. Low dose rate radiation impairs early follicles in young mice.Reprod. Biol.202323410081710.1016/j.repbio.2023.10081737890397
    [Google Scholar]
  50. DamrotJ. NübelT. EpeB. RoosW.P. KainaB. FritzG. Lovastatin protects human endothelial cells from the genotoxic and cytotoxic effects of the anticancer drugs doxorubicin and etoposide.Br. J. Pharmacol.2006149898899710.1038/sj.bjp.070695317088865
    [Google Scholar]
  51. BrookI. ElliottT.B. Quinolone therapy in the prevention of mortality after irradiation.Radiat. Res.1991128110010310.2307/35780721924719
    [Google Scholar]
  52. KomorowskaD. RadzikT. KalenikS. RodackaA. Natural radiosensitizers in radiotherapy: Cancer treatment by combining ionizing radiation with resveratrol.Int. J. Mol. Sci.202223181062710.3390/ijms23181062736142554
    [Google Scholar]
  53. ShahcheraghiSH SalemiF SmallS SyedS SalariF AlamW CheangWS SasoL KhanH. Resveratrol regulates inflammation and improves oxidative stress via Nrf2 signaling pathway: Therapeutic and biotechnological prospectsPhytother. Res.20233741590160510.1002/ptr.775436752350
    [Google Scholar]
  54. WallerathT. DeckertG. TernesT. AndersonH. LiH. WitteK. FörstermannU. Resveratrol, a polyphenolic phytoalexin present in red wine, enhances expression and activity of endothelial nitric oxide synthase.Circulation2002106131652165810.1161/01.CIR.0000029925.18593.5C12270858
    [Google Scholar]
  55. SpanierG XuH XiaN TobiasS DengS WojnowskiL ForstermannU LiH Resveratrol reduces endothelial oxidative stress by modulating the gene expression of superoxide dismutase 1 (SOD1), glutathione peroxidase 1 (GPx1) and NADPH oxidase subunit (Nox4).J. Physiol. Pharmacol.200960Suppl 411111620083859
    [Google Scholar]
  56. BrunetA. SweeneyL.B. SturgillJ.F. ChuaK.F. GreerP.L. LinY. TranH. RossS.E. MostoslavskyR. CohenH.Y. HuL.S. ChengH.L. JedrychowskiM.P. GygiS.P. SinclairD.A. AltF.W. GreenbergM.E. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase.Science200430356662011201510.1126/science.109463714976264
    [Google Scholar]
  57. SaidR.S. El-DemerdashE. NadaA.S. KamalM.M. Resveratrol inhibits inflammatory signaling implicated in ionizing radiation-induced premature ovarian failure through antagonistic crosstalk between silencing information regulator 1 (SIRT1) and poly(ADP-ribose) polymerase 1 (PARP-1).Biochem. Pharmacol.201610314015010.1016/j.bcp.2016.01.01926827941
    [Google Scholar]
  58. AshrafizadehM TaebS Haghi-AminjanH AfrashiS MoloudiK MusaAE NajafiK FarhoodB Resveratrol as an enhancer of apoptosis in cancer: A mechanistic review.Antican. Agen. Med. Chem.202121172327233610.2174/187152062066620102016034833081687
    [Google Scholar]
  59. ZhangH. YanH. ZhouX. WangH. YangY. ZhangJ. WangH. The protective effects of resveratrol against radiation-induced intestinal injury.BMC Complement. Altern. Med.201717141010.1186/s12906‑017‑1915‑928814292
    [Google Scholar]
  60. RadwanR.R. KaramH.M. Resveratrol attenuates intestinal injury in irradiated rats via PI3K/Akt/mTOR signaling pathway.Environ. Toxicol.202035222323010.1002/tox.2285931633274
    [Google Scholar]
  61. BanegasYC OcolotobicheEE PadulaG CórdobaEE FernándezE GüerciAM Evaluation of resveratrol radiomodifying potential for radiotherapy treatment.Mutat. Res. Genet. Toxicol. Environ. Mutagen.2018836Pt B798310.1016/j.mrgentox.2018.06.00430442349
    [Google Scholar]
  62. KoohianF. ShaneiA. Shahbazi-GahroueiD. HejaziS.H. MoradiM.T. The radioprotective effect of resveratrol against genotoxicity induced by γ-Irradiation in mice blood lymphocytes.Dose Response2017152155932581770569910.1177/155932581770569928566983
    [Google Scholar]
  63. YahyapourR. AminiP. SaffarH. MotevaseliE. FarhoodB. PooladvandV. ShabeebD. MusaA.E. NajafiM. Protective effect of metformin, resveratrol and alpha-lipoic acid on radiation- induced pneumonitis and fibrosis: A histopathological study.Curr. Drug Res. Rev.201911211111710.2174/258997751166619101818075831875783
    [Google Scholar]
  64. WangH. YangY. ZhangH. YanH. WuX. ZhangC. Administration of the resveratrol analogues isorhapontigenin and heyneanol-A protects mice hematopoietic cells against irradiation injuries.BioMed. Res. Int.201420141910.1155/2014/28265725050334
    [Google Scholar]
  65. VermaP. SharmaP. ParmarJ. SharmaP. AgrawalA. GoyalP.K. Amelioration of radiation-induced hematological and biochemical alterations in Swiss albino mice by Panax ginseng extract.Integr. Cancer Ther.2011101778410.1177/153473541037509820702497
    [Google Scholar]
  66. SunM. PangL. JuX. SunH. YuJ. ZhaoH. YaoW. WeiM. Attenuating effects of omega-3 fatty acids (Omegaven) on irradiation-induced intestinal injury in mice.Food. Chem. Toxicol.20146427528010.1016/j.fct.2013.11.05124316316
    [Google Scholar]
  67. LiY. KongS. YangF. XuW. Protective effects of 2-amino-5,6-dihydro-4H-1,3-thiazine and its derivative against radiation-induced hematopoietic and intestinal injury in mice.Int. J. Mol. Sci.2018195153010.3390/ijms1905153029883417
    [Google Scholar]
  68. GridleyD.S. PecautM.J. MillerG.M. MoyersM.F. NelsonG.A. Dose and dose rate effects of whole-body gamma-irradiation: II. Hematological variables and cytokines.In Vivo200115320921611491015
    [Google Scholar]
  69. Eldawy H, El-Khafif M, Ragab M, Tawfik S. Role of Taurine as a Treatment for Oxidative Damage and Sperm Head Abnormalities in Irradiated Mice and Their Male Offspring. Egyptian Journal of Radiation Sciences and Applications.200720116
    [Google Scholar]
  70. NuniaV. GoyalP.K. Prevention of gamma radiation induced anaemia in mice by diltiazem.J. Radiat. Res. (Tokyo)2004451111710.1269/jrr.45.1115133284
    [Google Scholar]
  71. BradamanteS. BarenghiL. VillaA. Cardiovascular protective effects of resveratrol.Cardiovasc. Drug Rev.200422316918810.1111/j.1527‑3466.2004.tb00139.x15492766
    [Google Scholar]
  72. HalliwellB. ChiricoS. Lipid peroxidation: Its mechanism, measurement, and significance.Am. J. Clin. Nutr.1993575Suppl.715S725S10.1093/ajcn/57.5.715S8475889
    [Google Scholar]
  73. SlaterT.F. Overview of methods used for detecting lipid peroxidation.Metho. Enzymol.198410528329310.1016/S0076‑6879(84)05036‑96427549
    [Google Scholar]
  74. CaginY.F. ParlakpinarH. PolatA. VardiN. AtayanY. ErdoganM.A. EkiciK. YildizA. SarihanM.E. AladagH. The protective effects of apocynin on ionizing radiation-induced intestinal damage in rats.Drug Dev. Ind. Pharm.201642231732410.3109/03639045.2015.105208026072994
    [Google Scholar]
  75. KhanF.H. DervanE. BhattacharyyaD.D. McAuliffeJ.D. MirandaK.M. GlynnS.A. The role of nitric oxide in cancer: Master regulator or not?Int. J. Mol. Sci.20202124939310.3390/ijms2124939333321789
    [Google Scholar]
  76. WeiT. ChenC. HouJ. XinW. MoriA. Nitric oxide induces oxidative stress and apoptosis in neuronal cells.Biochim. Biophys. Acta Mol. Cell Res.200014981727910.1016/S0167‑4889(00)00078‑111042352
    [Google Scholar]
  77. LubosE HandyDE LoscalzoJ Role of oxidative stress and nitric oxide in atherothrombosis.Front. Biosci.20081353234410.2741/308418508590
    [Google Scholar]
  78. Wrońska-NoferT. NoferJ.R. JajteJ. DziubałtowskaE. SzymczakW. KrajewskiW. WąsowiczW. RydzyńskiK. Oxidative DNA damage and oxidative stress in subjects occupationally exposed to nitrous oxide (N2O).Mutat. Res.20127311-2586310.1016/j.mrfmmm.2011.10.01022085808
    [Google Scholar]
  79. MacNaughtonW.K. AuroraA.R. BhamraJ. SharkeyK.A. MillerM.J.S. Expression, activity and cellular localization of inducible nitric oxide synthase in rat ileum and colon post-irradiation.Int. J. Radiat. Biol.199874225526410.1080/0955300981416459712555
    [Google Scholar]
  80. RobbE.L. PageM.M. WiensB.E. StuartJ.A. Molecular mechanisms of oxidative stress resistance induced by resveratrol: Specific and progressive induction of MnSOD.Biochem. Biophys. Res. Commun.2008367240641210.1016/j.bbrc.2007.12.13818167310
    [Google Scholar]
  81. BorgesS.C. FerreiraP.E.B. da SilvaL.M. de Paula WernerM.F. IracheJ.M. CavalcantiO.A. ButtowN.C. Evaluation of the treatment with resveratrol-loaded nanoparticles in intestinal injury model caused by ischemia and reperfusion.Toxicology2018396-397132210.1016/j.tox.2018.02.00229427784
    [Google Scholar]
  82. KeskekM. GocmenE. KilicM. GencturkS. CanB. CengizM. OktenR.M. KocM. Increased expression of cyclooxygenase-2 (COX-2) in radiation-induced small bowel injury in rats.J. Surg. Res.20061351768410.1016/j.jss.2006.03.03116780881
    [Google Scholar]
  83. OrhonZ.N. UzalC. KanterM. ErbogaM. DemirogluM. Protective effects of Nigella sativa on gamma radiation-induced jejunal mucosal damage in rats.Pathol. Res. Pract.2016212543744310.1016/j.prp.2016.02.01726944830
    [Google Scholar]
/content/journals/crp/10.2174/0118744710335266250206060602
Loading
/content/journals/crp/10.2174/0118744710335266250206060602
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test