Skip to content
2000
Volume 18, Issue 4
  • ISSN: 1874-4710
  • E-ISSN: 1874-4729

Abstract

Introduction

Metformin induces radiation sensitivity in cancer cells, including colorectal cancer cells; however, the exact molecular mechanisms underlying its radiosensitive effects are not yet known. In this study, we investigated the role of the p53/miR-34a/SIRT1 pathway in the radiosensitivity of colon cancer cells.

Methods

The study was carried out from 2020 to 2022 at the Qazvin University of Medical Science's Cellular and Molecular Research Center. Two colorectal cancer cell lines (SW480 and SW620) obtained from primary and secondary tumors derived from a single patient were used as the study samples. After subjecting the cells to 50 Gy of radiation, we generated radioresistant cell lines. Resistant cells were treated with 50 µM metformin. Metformin-treated and untreated resistant cells constituted the study groups. The expression levels of miR-34-a and Sirtunin1 (SIRT1) were evaluated using Quantitative Real-time PCR. The rates of cell proliferation and apoptosis were assessed using a Cell Counting Kit-8 (CCK-8) assay and flow cytometry. Western blot analysis was performed to quantify the expression of proteins. For statistical analysis, the Student's t-test was carried out to examine the mean differences between the two groups, and analysis of variance (ANOVA) was used to examine additional groups.

Results

Our results showed that the expression of miR-34-a was downregulated (0.29 ± 0.11) in radiation-resistant cancer cells ( <0.001), while the expression of SIRT-1 was upregulated (4.5 ± 0.25) ( <0.001). Metformin increased the radiosensitivity of colon cancer cells in a time- and dose-dependent manner. Treatment with 50 µM metformin after 48h caused decreased cell viability and increased apoptosis in resistant cells. We observed downregulation of SIRT-1 (1.1 ± 0.45) and upregulation of miR-34-a (4.3 ± 1.3) ( <0.001) in metformin-treated cells. In contrast, western blotting results showed the upregulation of acetylated P53 in metformin-treated cells. Metformin function was reversed by SIRT1 inhibitors or by transfection with miR-34-a overexpressing plasmids.

Conclusion

Based on these results, one of the radiosensitivity mechanisms of metformin in colorectal cancer is the modulation of the p53/miR-34a/SIRT1 loop.

Loading

Article metrics loading...

/content/journals/crp/10.2174/0118744710331660250127115004
2025-02-04
2025-06-20
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 Countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  2. JeongY.K. KimM.S. LeeJ.Y. KimE.H. HaH. Metformin radiosensitizes p53-deficient colorectal cancer cells through induction of G2/m arrest and inhibition of DNA repair proteins.PLoS One20151011e014359610.1371/journal.pone.014359626599019
    [Google Scholar]
  3. CliffordR.E. GerrardA.D. FokM. VimalachandranD. Metformin as a radiosensitiser for pelvic malignancy: A systematic review of the literature.Eur. J. Surg. Oncol.20214761252125710.1016/j.ejso.2020.12.00933358075
    [Google Scholar]
  4. HuaY. ZhengY. YaoY. JiaR. GeS. ZhuangA. Metformin and cancer hallmarks: shedding new lights on therapeutic repurposing.J. Transl. Med.202321140310.1186/s12967‑023‑04263‑837344841
    [Google Scholar]
  5. NgC.A.W. JiangA.A. TohE.M.S. NgC.H. OngZ.H. PengS. ThamH.Y. SundarR. ChongC.S. KhooC.M. Metformin and colorectal cancer: A systematic review, meta-analysis and meta-regression.Int. J. Colorectal Dis.20203581501151210.1007/s00384‑020‑03676‑x32592092
    [Google Scholar]
  6. ChenL. LiaoF. JiangZ. ZhangC. WangZ. LuoP. JiangQ. WuJ. WangQ. LuoM. LiX. LengY. MaL. ShenG. ChenZ. WangY. TanX. GanY. LiuD. LiuY. ShiC. Metformin mitigates gastrointestinal radiotoxicity and radiosensitises P53 mutation colorectal tumours via optimising autophagy.Br. J. Pharmacol.2020177173991400610.1111/bph.1514932472692
    [Google Scholar]
  7. de MeyS. JiangH. CorbetC. WangH. DufaitI. LawK. BastienE. VerovskiV. GevaertT. FeronO. De RidderM. Antidiabetic biguanides radiosensitize hypoxic colorectal cancer cells through a decrease in oxygen consumption.Front. Pharmacol.20189107310.3389/fphar.2018.0107330337872
    [Google Scholar]
  8. ZannellaV.E. Dal PraA. MuaddiH. McKeeT.D. StapletonS. SykesJ. GlicksmanR. ChaibS. ZamiaraP. MilosevicM. WoutersB.G. BristowR.G. KoritzinskyM. Reprogramming metabolism with metformin improves tumor oxygenation and radiotherapy response.Clin. Cancer Res.201319246741675010.1158/1078‑0432.CCR‑13‑178724141625
    [Google Scholar]
  9. MuaddiH. ChowdhuryS. VellankiR. ZamiaraP. KoritzinskyM. Contributions of AMPK and p53 dependent signaling to radiation response in the presence of metformin.Radiother. Oncol.2013108344645010.1016/j.radonc.2013.06.01423891087
    [Google Scholar]
  10. SaffariF. MomeniA. RamezaniM. AnsariY. MoghbelinejadS. Metformin caused radiosensitivity of breast cancer cells through the expression modulation of miR-21-5p/SESN1axis.Asian Pac. J. Cancer Prev.202324113715372710.31557/APJCP.2023.24.11.371538019229
    [Google Scholar]
  11. MostaghimiT. BahadoranE. BakhtM. TaheriS. SadeghiH. BabaeiA. Role of lncRNAs in Helicobacter pylori and Epstein-Barr virus associated gastric cancers.Life Sci.202433612231610.1016/j.lfs.2023.12231638035995
    [Google Scholar]
  12. BabaeiA. YazdiA.T. RanjiR. BahadoranE. TaheriS. NikkhahiF. GhorbaniS. AbbasiA. Therapeutic effects of exosomal miRNA-4731‐5p from adipose tissue-derived stem cells on human glioblastoma cells.Arch. Med. Res.202455710306110.1016/j.arcmed.2024.10306139098111
    [Google Scholar]
  13. Gholamzadeh KhoeiS. ManoochehriH. SaidijamM. Systemic biological study for identification of miR-299-5p target genes in cancer.Meta Gene20202410065510.1016/j.mgene.2020.100655
    [Google Scholar]
  14. KiaheyratiN. BabaeiA. RanjiR. BahadoranE. TaheriS. FarokhpourZ. Cancer therapy with the viral and bacterial pathogens: The past enemies can be considered the present allies.Life Sci.202434912273410.1016/j.lfs.2024.12273438788973
    [Google Scholar]
  15. LouG. LiuY. WuS. XueJ. YangF. FuH. ZhengM. ChenZ. The p53/miR-34a/SIRT1 positive feedback loop in quercetin-induced apoptosis.Cell. Physiol. Biochem.20153562192220210.1159/00037402425896587
    [Google Scholar]
  16. GaoJ. LiN. DongY. LiS. XuL. LiX. LiY. LiZ. NgS.S. SungJ.J. ShenL. YuJ. miR-34a-5p suppresses colorectal cancer metastasis and predicts recurrence in patients with stage II/III colorectal cancer.Oncogene201534314142415210.1038/onc.2014.34825362853
    [Google Scholar]
  17. ShiX. KallerM. RokavecM. KirchnerT. HorstD. HermekingH. Characterization of a p53/miR-34a/CSF1R/STAT3 feedback loop in colorectal cancer.Cell. Mol. Gastroenterol. Hepatol.202010239141810.1016/j.jcmgh.2020.04.00232304779
    [Google Scholar]
  18. LiH. RokavecM. JiangL. HorstD. HermekingH. Antagonistic effects of p53 and HIF1A on microRNA-34a regulation of PPP1R11 and STAT3 and hypoxia-induced epithelial to mesenchymal transition in colorectal cancer cells.Gastroenterology2017153250552010.1053/j.gastro.2017.04.01728435028
    [Google Scholar]
  19. YamakuchiM. LowensteinC.J. MiR-34, SIRT1, and p53: The feedback loop.Cell Cycle20098571271510.4161/cc.8.5.775319221490
    [Google Scholar]
  20. GongJ. CongM. WuH. WangM. BaiH. WangJ. QueK. ZhengK. ZhangW. YangX. GongJ. ShiH. MiaoM. YuanF. P53/miR-34a/SIRT1 positive feedback loop regulates the termination of liver regeneration.Aging20231561859187710.18632/aging.20392036988541
    [Google Scholar]
  21. LinH.C. KachingweB.H. LinH.L. ChengH.W. UangY.S. WangL.H. Effects of metformin dose on cancer risk reduction in patients with type 2 diabetes mellitus: A 6-year follow-up study.Pharmacotherapy2014341364510.1002/phar.133423864581
    [Google Scholar]
  22. KheirandishM. MahboobiH. YazdanparastM. KamalW. KamalM.A. Anti-cancer effects of metformin: Recent evidences for its role in prevention and treatment of cancer.Curr. Drug Metab.201819979379710.2174/138920021966618041616184629663879
    [Google Scholar]
  23. WangY. XuW. YanZ. ZhaoW. MiJ. LiJ. YanH. Metformin induces autophagy and G0/G1 phase cell cycle arrest in myeloma by targeting the AMPK/mTORC1 and mTORC2 pathways.J. Exp. Clin. Cancer Res.20183716310.1186/s13046‑018‑0731‑529554968
    [Google Scholar]
  24. BuckleyC.E. O’BrienR.M. NugentT.S. DonlonN.E. O’ConnellF. ReynoldsJ.V. HafeezA. O’RíordáinD.S. HannonR.A. NearyP. KalbassiR. MehiganB.J. McCormickP.H. DunneC. KellyM.E. LarkinJ.O. O’SullivanJ. Lynam-LennonN. Metformin is a metabolic modulator and radiosensitiser in rectal cancer.Front. Oncol.202313121691110.3389/fonc.2023.121691137601689
    [Google Scholar]
  25. LiJ. WangY. ShenW. ZhangZ. SuZ. GuoX. PeiP. HuL. LiuT. YangK. GuoL. Mitochondria-modulating liposomes reverse radio-resistance for colorectal cancer.Adv. Sci.20241118240084510.1002/advs.20240084538520732
    [Google Scholar]
  26. FernandesJ.M. JandreyE.H.F. KoyamaF.C. LeiteK.R.M. CamargoA.A. CostaÉ.T. PerezR.O. AsprinoP.F. Metformin as an alternative radiosensitizing agent to 5-fluorouracil during neoadjuvant treatment for rectal cancer.Dis. Colon Rectum202063791892610.1097/DCR.000000000000162632229782
    [Google Scholar]
  27. FawzyM.S. IbrahiemA.T. AlSelB.T.A. AlghamdiS.A. ToraihE.A. Analysis of microRNA-34a expression profile and rs2666433 variant in colorectal cancer: A pilot study.Sci. Rep.20201011694010.1038/s41598‑020‑73951‑y33037254
    [Google Scholar]
  28. RoyS. LeviE. MajumdarA.P.N. SarkarF.H. Expression of miR-34 is lost in colon cancer which can be re-expressed by a novel agent CDF.J. Hematol. Oncol.2012515810.1186/1756‑8722‑5‑5822992310
    [Google Scholar]
  29. MengF. YangM. ChenY. ChenW. WangW. miR-34a induces immunosuppression in colorectal carcinoma through modulating a SIRT1/NF-κB/B7-H3/TNF-α axis.Cancer Immunol. Immunother.20217082247225910.1007/s00262‑021‑02862‑233492448
    [Google Scholar]
  30. Truong DoM. KimH.G. ChoiJ.H. JeongH.G. Metformin induces microRNA-34a to downregulate the Sirt1/Pgc-1α/Nrf2 pathway, leading to increased susceptibility of wild-type p53 cancer cells to oxidative stress and therapeutic agents.Free Radic. Biol. Med.201474213410.1016/j.freeradbiomed.2014.06.01024970682
    [Google Scholar]
  31. SargolzaeiJ. EtemadiT. AlyasinA. The P53/microRNA network: A potential tumor suppressor with a role in anticancer therapy.Pharmacol. Res.202016010517910.1016/j.phrs.2020.10517932890739
    [Google Scholar]
  32. HüntenS. SiemensH. KallerM. HermekingH. The p53/microRNA network in cancer: experimental and bioinformatics approaches.Adv. Exp. Med. Biol.20137747710110.1007/978‑94‑007‑5590‑1_523377969
    [Google Scholar]
  33. RokavecM. LiH. JiangL. HermekingH. The p53/miR-34 axis in development and disease.J. Mol. Cell Biol.20146321423010.1093/jmcb/mju00324815299
    [Google Scholar]
  34. ElibolB. KilicU. High levels of SIRT1 expression as a protective mechanism against disease-related conditions.Front. Endocrinol.2018961410.3389/fendo.2018.0061430374331
    [Google Scholar]
  35. LinZ. FangD. The roles of SIRT1 in cancer.Gen. Cancer201343-49710410.1177/194760191247507924020000
    [Google Scholar]
/content/journals/crp/10.2174/0118744710331660250127115004
Loading
/content/journals/crp/10.2174/0118744710331660250127115004
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test