Skip to content
2000
Volume 18, Issue 2
  • ISSN: 1874-4710
  • E-ISSN: 1874-4729

Abstract

Background

Various types of radiosensitisers have been introduced from the past until the present day for applications in the biomedical field. However, there is a lack of understanding and comparison between the various parameters introduced in addition to a lack of consensus among researchers on the optimal radiosensitiser for applications in the biomedical field.

Objective

This review aimed to investigate the usage of radiosensitisers in the biomedical field, determine their important parameters, and suggest radiosensitisers with potential among the analysed radiosensitisers.

Results and Conclusion

This review has discussed several parameters for radiosensitisers, including median lethal dose, cell survival, tumour size, cell viability, Dose Enhancement Factor (DEF), Reactive Oxygen Species (ROS) concentration, radiosensitiser production complexity, radiosensitiser administration technique, and radiosensitiser toxicity. General trends regarding the development of radiosensitisers, including the types, effectiveness, and their production complexity, have also been discussed within this review article.

Loading

Article metrics loading...

/content/journals/crp/10.2174/0118744710269842240825160247
2024-09-02
2025-07-04
Loading full text...

Full text loading...

References

  1. RichardsG.J.Jr ChambersR.G. Hydroxyurea: A radiosensitizer in the treatment of neoplasms of the head and neck.AJR Am. J. Roentgenol.1969105355556510.2214/ajr.105.3.5555775014
    [Google Scholar]
  2. RajaeeA. LingyunZ. WangS. WangD. LiuY. WangJ. YingK. Multifunction bismuth gadolinium oxide nanoparticles as radiosensitizer in radiation therapy and imaging.Phys Med Biol.2019641919500710.1088/1361‑6560/ab2154
    [Google Scholar]
  3. MoiniJ. AkinsoO. FerdowsiK. MoiniM. Legal and Ethical Aspects of Health Care.Health Care Today in the United States2023476710.1016/B978‑0‑323‑99038‑7.00025‑4
    [Google Scholar]
  4. Annotations.Br Med J19542488440440510.1136/bmj.2.4884.40420788301
    [Google Scholar]
  5. SpaldingA.C. LawrenceT.S. New and emerging radiosensitizers and radioprotectors.Cancer Invest.200624444445610.1080/0735790060070570616777698
    [Google Scholar]
  6. DischeS. SaundersM.I. FlockhartI.R. LeeM.E. AndersonP. Misonidazole—A drug for trial in radiotherapy and oncology.Int. J. Radiat. Oncol. Biol. Phys.19795685186010.1016/0360‑3016(79)90070‑1227822
    [Google Scholar]
  7. WangH. MuX. HeH. ZhangX.D. Cancer Radiosensitizers.Trends Pharmacol. Sci.2018391244810.1016/j.tips.2017.11.00329224916
    [Google Scholar]
  8. FongC.W. Platinum based radiochemotherapies: Free radical mechanisms and radiotherapy sensitizers.Free Radic. Biol. Med.2016999910910.1016/j.freeradbiomed.2016.07.00627417937
    [Google Scholar]
  9. RiazM.A. SakA. ErolY.B. GronebergM. ThomaleJ. StuschkeM. Metformin enhances the radiosensitizing effect of cisplatin in non-small cell lung cancer cell lines with different cisplatin sensitivities.Sci. Rep.201991128210.1038/s41598‑018‑38004‑530718758
    [Google Scholar]
  10. SearsC.R. CooneyS.A. Chin-SinexH. MendoncaM.S. TurchiJ.J. DNA damage response (DDR) pathway engagement in cisplatin radiosensitization of non-small cell lung cancer.DNA Repair (Amst.)201640354610.1016/j.dnarep.2016.02.00426991853
    [Google Scholar]
  11. FaivreS. ChanD. SalinasR. WoynarowskaB. WoynarowskiJ.M. DNA strand breaks and apoptosis induced by oxaliplatin in cancer cells.Biochem. Pharmacol.200366222523710.1016/S0006‑2952(03)00260‑012826265
    [Google Scholar]
  12. GillM.R. VallisK.A. Transition metal compounds as cancer radiosensitizers.Chem. Soc. Rev.201948254055710.1039/C8CS00641E30499573
    [Google Scholar]
  13. BaekS.J. SatoK. NishidaN. KosekiJ. AzumaR. KawamotoK. KonnoM. HayashiK. SatohT. DokiY. MoriM. IshiiH. OgawaK. MicroRNA miR-374, a potential radiosensitizer for carbon ion beam radiotherapy.Oncol. Rep.20163652946295010.3892/or.2016.512227665739
    [Google Scholar]
  14. El BezawyR. CominettiD. FendericoN. ZucoV. BerettaG.L. DugoM. ArrighettiN. StucchiC. RancatiT. ValdagniR. ZaffaroniN. GandelliniP. miR-875-5p counteracts epithelial-to-mesenchymal transition and enhances radiation response in prostate cancer through repression of the EGFR-ZEB1 axis.Cancer Lett.2017395536210.1016/j.canlet.2017.02.03328274892
    [Google Scholar]
  15. DziegielewskiJ. BońkowskaM.A. PonieckaE.A. HeoJ. DuK. CrittendenR.B. BenderT.P. BrautiganD.L. LarnerJ.M. Deletion of the SAPS1 subunit of protein phosphatase 6 in mice increases radiosensitivity and impairs the cellular DNA damage response.DNA Repair (Amst.)20208510273710.1016/j.dnarep.2019.10273731751917
    [Google Scholar]
  16. YangJ. WuZ. ChenY. HuC. LiD. ChenY. ImaniS. WenQ. FuS. WuJ. Pre-treatment with Bifidobacterium infantis and its specific antibodies enhance targeted radiosensitization in a murine model for lung cancer.J. Cancer Res. Clin. Oncol.2021147241142210.1007/s00432‑020‑03434‑033130941
    [Google Scholar]
  17. PanditaT.K. PanditaS. BhaumikS.R. Molecular parameters of hyperthermia for radiosensitization.Crit. Rev. Eukaryot. Gene Expr.200919323525110.1615/CritRevEukarGeneExpr.v19.i3.5019883367
    [Google Scholar]
  18. FieldS.B. BleehenN.M. Hyperthermia in the treatment of cancer.Cancer Treat. Rev.1979626394https://doi.org/https://doi.org/10.1016/S0305-7372(79)80043-210.1016/S0305‑7372(79)80043‑239673
    [Google Scholar]
  19. SabaH. A Review on Nanoparticles: Their Synthesis and Types.Res. J. Recent Sci. Res . J . Recent . Sci.2015413
    [Google Scholar]
  20. HainfeldJ.F. SlatkinD.N. SmilowitzH.M. The use of gold nanoparticles to enhance radiotherapy in mice.Phys. Med. Biol.20044918N309N31510.1088/0031‑9155/49/18/N0315509078
    [Google Scholar]
  21. HuX. ZhangY. DingT. LiuJ. ZhaoH. Multifunctional Gold Nanoparticles: A Novel Nanomaterial for Various Medical Applications and Biological Activities.Front. Bioeng. Biotechnol.20208August99010.3389/fbioe.2020.0099032903562
    [Google Scholar]
  22. SantS. TaoS.L. FisherO.Z. XuQ. PeppasN.A. KhademhosseiniA. Microfabrication technologies for oral drug delivery.Adv. Drug Deliv. Rev.201264649650710.1016/j.addr.2011.11.01322166590
    [Google Scholar]
  23. TreguerM. de CointetC. RemitaH. KhatouriJ. MostafaviM. AmblardJ. BelloniJ. de KeyzerR. Dose Rate Effects on Radiolytic Synthesis of Gold−Silver Bimetallic Clusters in Solution.J. Phys. Chem. B1998102224310432110.1021/jp981467n
    [Google Scholar]
  24. LangeR. PihlA. The radiosensitizing effect of thioglycolic acid, dithiodiglycolic acid, and homocystine on muscle glyceraldehyde-3-phosphate dehydrogenase.Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med.19613324925810.1080/0955300611455117113758815
    [Google Scholar]
  25. BianchiM.R. BoccacciM. Misiti-DorelloP. QuintilianiM. Further Observations on in Vitro Radiosensitization of Rabbit Erythrocytes by Iodoacetic Acid and Related Substances.Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med.19648432934210.1080/0955300641455039114274304
    [Google Scholar]
  26. ChuF. NoriD. KimJ.H. HilarisB.S. ChuF. Radiosensitizers and Protectors.Cancer Invest.19842432133010.3109/073579084090184466088002
    [Google Scholar]
  27. AdamsG.E. AsquithJ.C. DeweyD.L. FosterJ.L. MichaelB.D. WillsonR.L. Electron affinic sensitization. II. Para-nitroacetophenone: a radiosensitizer for anoxic bacterial and mammalian cells.Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med.197119657558510.1080/095530071145507514938626
    [Google Scholar]
  28. AdamsG.E. ClarkeE.D. FlockhartI.R. JacobsR.S. SehmiD.S. StratfordI.J. WardmanP. WattsM.E. ParrickJ. WallaceR.G. SmithenC.E. Structure-activity relationships in the development of hypoxic cell radiosensitizers. I. Sensitization efficiency.Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med.197935213315010.1080/09553007914550151312783
    [Google Scholar]
  29. AdamsG.E. ClarkeE.D. GrayP. JacobsR.S. StratfordI.J. WardmanP. WattsM.E. ParrickJ. WallaceR.G. SmithenC.E. Structure-activity relationships in the development of hypoxic cell radiosensitizers. II. Cytotoxicity and therapeutic ratio.Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med.197935215116010.1080/09553007914550161312784
    [Google Scholar]
  30. RudatV. KüpperJ.H. WeberK.J. Trans-dominant inhibition of poly(ADP-ribosyl)ation leads to decreased recovery from ionizing radiation-induced cell killing.Int. J. Radiat. Biol.199873332533010.1080/0955300981424289525261
    [Google Scholar]
  31. HeroldD.M. DasI.J. StobbeC.C. IyerR.V. ChapmanJ.D. Gold microspheres: a selective technique for producing biologically effective dose enhancement.Int. J. Radiat. Biol.200076101357136410.1080/0955300005015163711057744
    [Google Scholar]
  32. BiadeS. StobbeC.C. BoydJ.T. ChapmanJ.D. Chemical agents that promote chromatin compaction radiosensitize tumour cells.Int. J. Radiat. Biol.200177101033104210.1080/0955300011006606811682008
    [Google Scholar]
  33. MachidaH. MatsumotoY. ShiraiM. KubotaN. Geldanamycin, an inhibitor of Hsp90, sensitizes human tumour cells to radiation.Int. J. Radiat. Biol.2003791297398010.1080/0955300031000162613514713575
    [Google Scholar]
  34. LinM.H. HsuT.S. YangP.M. TsaiM.Y. PerngT.P. LinL.Y. Comparison of organic and inorganic germanium compounds in cellular radiosensitivity and preparation of germanium nanoparticles as a radiosensitizer.Int. J. Radiat. Biol.200985321422610.1080/0955300090274858319296338
    [Google Scholar]
  35. JinC. WuH. LiuJ. BaiL. GuoG. The effect of paclitaxel-loaded nanoparticles with radiation on hypoxic MCF-7 cells.J. Clin. Pharm. Ther.2007321414710.1111/j.1365‑2710.2007.00796.x17286788
    [Google Scholar]
  36. JinC. BaiL. WuH. TianF. GuoG. Radiosensitization of paclitaxel, etanidazole and paclitaxel+etanidazole nanoparticles on hypoxic human tumor cells in vitro.Biomaterials200728253724373010.1016/j.biomaterials.2007.04.03217509678
    [Google Scholar]
  37. JinC. BaiL. WuH. LiuJ. GuoG. ChenJ. Paclitaxel-loaded poly(D,L-lactide-co-glycolide) nanoparticles for radiotherapy in hypoxic human tumor cells in vitro.Cancer Biol. Ther.20087691191610.4161/cbt.7.6.591218367873
    [Google Scholar]
  38. OronskyB. ScicinskiJ. NingS. PeehlD. OronskyA. CabralesP. BednarskiM. KnoxS. RRx-001, A novel dinitroazetidine radiosensitizer.Invest. New Drugs201634337137710.1007/s10637‑016‑0326‑y26841903
    [Google Scholar]
  39. BarazzuolL. JeynesJ.C.G. MerchantM.J. WéraA.C. BarryM.A. KirkbyK.J. SuzukiM. Radiosensitization of glioblastoma cells using a histone deacetylase inhibitor (SAHA) comparing carbon ions with X-rays.Int. J. Radiat. Biol.2015911909810.3109/09553002.2014.94611125040548
    [Google Scholar]
  40. RaeC. MairsR.J. Evaluation of the radiosensitizing potency of chemotherapeutic agents in prostate cancer cells.Int. J. Radiat. Biol.201793219420310.1080/09553002.2017.123194627600766
    [Google Scholar]
  41. WardmanP. Nitroimidazoles as hypoxic cell radiosensitizers and hypoxia probes: Misonidazole, myths and mistakes.Br. J. Radiol.20189210932017091510.1259/bjr.20170915
    [Google Scholar]
  42. HehlgansS. OppermannJ. ReichertS. FuldaS. RödelC. RödelF. The SMAC mimetic BV6 sensitizes colorectal cancer cells to ionizing radiation by interfering with DNA repair processes and enhancing apoptosis.Radiat. Oncol.201510119810.1186/s13014‑015‑0507‑426383618
    [Google Scholar]
  43. LeiY. LiH.X. JinW.S. PengW.R. ZhangC.J. BuL.J. DuY.Y. MaT. SunG.P. The radiosensitizing effect of Paeonol on lung adenocarcinoma by augmentation of radiation-induced apoptosis and inhibition of the PI3K/Akt pathway.Int. J. Radiat. Biol.201389121079108610.3109/09553002.2013.82505823875954
    [Google Scholar]
  44. LanK. LanK. SheuM. ChenM. ShihY. HsuF. WangH.M. LiuR. YenS. Honokiol inhibits hypoxia-inducible factor-1 pathway.Int. J. Radiat. Biol.201187657959010.3109/09553002.2011.56857221473672
    [Google Scholar]
  45. ZhangT. ShenY. ChenY. HsiehJ.T. KongZ. The ATM inhibitor KU55933 sensitizes radioresistant bladder cancer cells with DAB2IP gene defect.Int. J. Radiat. Biol.201591436837810.3109/09553002.2015.100153125585815
    [Google Scholar]
  46. ZhangF. LiuS. ZhangN. KuangY. LiW. GaiS. HeF. GulzarA. YangP. X-ray-triggered NO-released Bi–SNO nanoparticles: all-in-one nano-radiosensitizer with photothermal/gas therapy for enhanced radiotherapy.Nanoscale20201237192931930710.1039/D0NR04634E32935695
    [Google Scholar]
  47. HoJ.J.D. ManH.S.J. MarsdenP.A. Nitric oxide signaling in hypoxia.J. Mol. Med. (Berl.)201290321723110.1007/s00109‑012‑0880‑522349396
    [Google Scholar]
  48. SinghR. SwannerJ. MimsJ. AkmanS. FurduiC. TortiS. CarrollD. Differential cytotoxic and radiosensitizing effects of silver nanoparticles on triple-negative breast cancer and non-triple-negative breast cells.Int. J. Nanomedicine2015103937395310.2147/IJN.S8034926185437
    [Google Scholar]
  49. Khairil AnuarM.A. RashidR.A. LazimR.M. DollahN. RazakK.A. RahmanW.N. Evaluation of radiosensitization effects by platinum nanodendrites for 6 MV Photon beam radiotherapy.Radiat. Phys. Chem.2018150404510.1016/j.radphyschem.2018.04.018
    [Google Scholar]
  50. ButterworthK.T. McMahonS.J. CurrellF.J. PriseK.M. Physical basis and biological mechanisms of gold nanoparticle radiosensitization.Nanoscale20124164830483810.1039/c2nr31227a22767423
    [Google Scholar]
  51. McMahonS.J. PaganettiH. PriseK.M. Optimising element choice for nanoparticle radiosensitisers.Nanoscale20168158158910.1039/C5NR07089A26645621
    [Google Scholar]
  52. ShuklaR.K. KumarA. GurbaniD. PandeyA.K. SinghS. DhawanA. TiO 2 nanoparticles induce oxidative DNA damage and apoptosis in human liver cells.Nanotoxicology201371486010.3109/17435390.2011.62974722047016
    [Google Scholar]
  53. ShaoY. WangL. FuJ. ShiC. XuJ. ZhuY. Efficient free radical generation against cancer cells by low-dose X-ray irradiation with a functional SPC delivery nanosystem.J. Mater. Chem. B Mater. Biol. Med.20164355863587210.1039/C6TB00734A32263759
    [Google Scholar]
  54. GillesM. BrunE. Sicard-RoselliC. Quantification of hydroxyl radicals and solvated electrons produced by irradiated gold nanoparticles suggests a crucial role of interfacial water.J. Colloid Interface Sci.2018525313810.1016/j.jcis.2018.04.01729680301
    [Google Scholar]
  55. HowardD. SebastianS. LeQ.V.C. ThierryB. KempsonI. Chemical Mechanisms of Nanoparticle Radiosensitization and Radioprotection: A Review of Structure-Function Relationships Influencing Reactive Oxygen Species.Int. J. Mol. Sci.202021257910.3390/ijms2102057931963205
    [Google Scholar]
  56. KleinS. SommerA. DistelL.V.R. HazemannJ.L. KrönerW. NeuhuberW. MüllerP. ProuxO. KryschiC. Superparamagnetic iron oxide nanoparticles as novel X-ray enhancer for low-dose radiation therapy.J. Phys. Chem. B2014118236159616610.1021/jp502622424827589
    [Google Scholar]
  57. HavakiS. KotsinasA. ChronopoulosE. KletsasD. GeorgakilasA. GorgoulisV.G. The role of oxidative DNA damage in radiation induced bystander effect.Cancer Lett.20153561435110.1016/j.canlet.2014.01.02324530228
    [Google Scholar]
  58. PanY. LeifertA. RuauD. NeussS. BornemannJ. SchmidG. BrandauW. SimonU. Jahnen-DechentW. Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage.Small20095182067207610.1002/smll.20090046619642089
    [Google Scholar]
  59. MenonS. KsS.D. RS. SR. SV.K. Selenium nanoparticles: A potent chemotherapeutic agent and an elucidation of its mechanism.Colloids Surf. B Biointerfaces2018170May28029210.1016/j.colsurfb.2018.06.00629936381
    [Google Scholar]
  60. RosaS. ConnollyC. SchettinoG. ButterworthK.T. PriseK.M. Biological mechanisms of gold nanoparticle radiosensitization.Cancer Nanotechnol.201781210.1186/s12645‑017‑0026‑028217176
    [Google Scholar]
  61. NajafiM. FardidR. HadadiG. FardidM. The mechanisms of radiation-induced bystander effect.J. Biomed. Phys. Eng.20144416317225599062
    [Google Scholar]
  62. JetteD.C. WiebeL.I. ChapmanJ.D. Synthesis and in vivo studies of the radiosensitizer 4-[82Br]bromomisonidazole.Int. J. Nucl. Med. Biol.198310420521010.1016/0047‑0740(83)90080‑36662623
    [Google Scholar]
  63. GaoQ. ZhangJ. GaoJ. ZhangZ. ZhuH. WangD. Gold Nanoparticles in Cancer Theranostics.Front. Bioeng. Biotechnol.20219April64790510.3389/fbioe.2021.64790533928072
    [Google Scholar]
  64. SabaleS. KandesarP. JadhavV. KomorekR. MotkuriR.K. YuX.Y. Recent developments in the synthesis, properties, and biomedical applications of core/shell superparamagnetic iron oxide nanoparticles with gold.Biomater. Sci.20175112212222510.1039/C7BM00723J28901350
    [Google Scholar]
  65. HeM.Q. YuY.L. WangJ.H. Biomolecule-tailored assembly and morphology of gold nanoparticles for LSPR applications.Nano Today20203510100510.1016/j.nantod.2020.101005
    [Google Scholar]
  66. WangJ. ZhangH.Z. LiR.S. HuangC.Z. Localized surface plasmon resonance of gold nanorods and assemblies in the view of biomedical analysis.Trends Analyt. Chem.20168042944310.1016/j.trac.2016.03.015
    [Google Scholar]
  67. ZhouZ. HuangH. ChenY. LiuF. HuangC.Z. LiN. A distance-dependent metal-enhanced fluorescence sensing platform based on molecular beacon design.Biosens. Bioelectron.201452367373https://doi.org/https://doi.org/10.1016/j.bios.2013.09.01310.1016/j.bios.2013.09.01324080216
    [Google Scholar]
  68. ChenS. YuY.L. WangJ.H. Inner filter effect-based fluorescent sensing systems: A review.Anal. Chim. Acta2018999132610.1016/j.aca.2017.10.02629254563
    [Google Scholar]
  69. LeeJ.H. ChoH.Y. ChoiH.K. LeeJ.Y. ChoiJ.W. Application of Gold Nanoparticle to Plasmonic Biosensors.Int. J. Mol. Sci.2018197202110.3390/ijms1907202129997363
    [Google Scholar]
  70. ZengJ. ZhangY. ZengT. AleisaR. QiuZ. ChenY. HuangJ. WangD. YanZ. YinY. Anisotropic plasmonic nanostructures for colorimetric sensing.Nano Today20203210085510.1016/j.nantod.2020.100855
    [Google Scholar]
  71. MaX. HeS. QiuB. LuoF. GuoL. LinZ. Noble Metal Nanoparticle-Based Multicolor Immunoassays: An Approach toward Visual Quantification of the Analytes with the Naked Eye.ACS Sens.20194478279110.1021/acssensors.9b0043830896159
    [Google Scholar]
  72. HeH. XuX. WuH. ZhaiY. JinY. In situ nanoplasmonic probing of enzymatic activity of monolayer-confined glucose oxidase on colloidal nanoparticles.Anal. Chem.20138594546455310.1021/ac400180523531235
    [Google Scholar]
  73. HamadaK. FujitaK. SmithN.I. KobayashiM. InouyeY. KawataS. Raman microscopy for dynamic molecular imaging of living cells.J. Biomed. Opt.2008134110.1117/1.295219219021354
    [Google Scholar]
  74. PuppelsG.J. de MulF.F.M. OttoC. GreveJ. Robert-NicoudM. Arndt-JovinD.J. JovinT.M. Studying single living cells and chromosomes by confocal Raman microspectroscopy.Nature1990347629030130310.1038/347301a02205805
    [Google Scholar]
  75. ZhengX.S. HuP. CuiY. ZongC. FengJ.M. WangX. RenB. BSA-coated nanoparticles for improved SERS-based intracellular pH sensing.Anal. Chem.20148624122501225710.1021/ac503404u25418952
    [Google Scholar]
  76. ZhangL. ZhaoQ. JiangZ. ShenJ. WuW. LiuX. FanQ. HuangW. Recent Progress of SERS Nanoprobe for pH Detecting and Its Application in Biological Imaging.Biosensors (Basel)202111828210.3390/bios1108028234436084
    [Google Scholar]
  77. ZhaoX. CampbellS. WallaceG.Q. ClaingA. BazuinC.G. MassonJ.F. Branched Au Nanoparticles on Nanofibers for Surface-Enhanced Raman Scattering Sensing of Intracellular pH and Extracellular pH Gradients.ACS Sens.2020572155216710.1021/acssensors.0c0078432515184
    [Google Scholar]
  78. ChenM. HoughA.M. LawrenceT.S. The role of p53 in gemcitabine-mediated cytotoxicity and radiosensitization.Cancer Chemother. Pharmacol.200045536937410.1007/s00280005100410803919
    [Google Scholar]
  79. ZhuangH.Q. SunJ. YuanZ.Y. WangJ. ZhaoL.J. WangP. RenX.B. WangC.L. Radiosensitizing effects of gefitinib at different administration times in vitro.Cancer Sci.200910081520152510.1111/j.1349‑7006.2009.01190.x19432883
    [Google Scholar]
  80. TokumitsuH. HiratsukaJ. SakuraiY. KobayashiT. IchikawaH. FukumoriY. Gadolinium neutron-capture therapy using novel gadopentetic acid–chitosan complex nanoparticles: In vivo growth suppression of experimental melanoma solid tumor.Cancer Lett.2000150217718210.1016/S0304‑3835(99)00388‑210704740
    [Google Scholar]
  81. MowatP. MignotA. RimaW. LuxF. TillementO. RoulinC. DutreixM. BechetD. HugerS. HumbertL. Barberi-HeyobM. AloyM.T. ArmandyE. Rodriguez-LafrasseC. Le DucG. RouxS. PerriatP. In vitro radiosensitizing effects of ultrasmall gadolinium based particles on tumour cells.J. Nanosci. Nanotechnol.20111197833783910.1166/jnn.2011.472522097494
    [Google Scholar]
  82. HossainM. SuM. Nanoparticle location and material dependent dose enhancement in X-ray radiation therapy.J. Phys. Chem. C201211643230472305210.1021/jp306543q23393610
    [Google Scholar]
  83. RimaW. SanceyL. AloyM.T. ArmandyE. AlcantaraG.B. EpicierT. MalchèreA. Joly-PottuzL. MowatP. LuxF. TillementO. BurdinB. RivoireA. BouléC. Anselme-BertrandI. PourchezJ. CottierM. RouxS. Rodriguez-LafrasseC. PerriatP. Internalization pathways into cancer cells of gadolinium-based radiosensitizing nanoparticles.Biomaterials201334118119510.1016/j.biomaterials.2012.09.02923046756
    [Google Scholar]
  84. BhattaraiS.R. DerryP.J. AzizK. SinghP.K. KhooA.M. ChadhaA.S. LiopoA. ZubarevE.R. KrishnanS. Gold nanotriangles: Scale up and X-ray radiosensitization effects in mice.Nanoscale20179165085509310.1039/C6NR08172J28134383
    [Google Scholar]
  85. Molina HigginsM.C. RojasJ.V. X-ray radiation enhancement of gold-TiO2 nanocomposites.Appl. Surf. Sci.2019480February1147115510.1016/j.apsusc.2019.02.234
    [Google Scholar]
  86. RahmanW.N. KadianS.N.M. Ab RashidR. AbdullahR. Abdul RazakK. PhamB.T.T. HawkettB.S. GesoM. Radiosensitization characteristic of superparamagnetic iron oxide nanoparticles in electron beam radiotherapy and brachytherapy.J. Phys. Conf. Ser.20191248101206810.1088/1742‑6596/1248/1/012068
    [Google Scholar]
  87. FathyM.M. FahmyH.M. SaadO.A. ElshemeyW.M. Silica-coated iron oxide nanoparticles as a novel nano-radiosensitizer for electron therapy.Life Sci.2019234August11675610.1016/j.lfs.2019.11675631419444
    [Google Scholar]
  88. DuoY. HuangY. LiangW. YuanR. LiY. ChenT. ZhangH. Ultraeffective Cancer Therapy with an Antimonene-Based X-Ray Radiosensitizer.Adv. Funct. Mater.2020304190601010.1002/adfm.201906010
    [Google Scholar]
  89. MeidanchiA. MotamedA. Preparation, characterization and in vitro evaluation of magnesium ferrite superparamagnetic nanoparticles as a novel radiosensitizer of breast cancer cells.Ceram. Int.20204611175771758310.1016/j.ceramint.2020.04.057
    [Google Scholar]
  90. WhbaF. MohamedF. Md RosliN.R.A. Abdul RahmanI. IdrisM.I. The crystalline structure of gadolinium oxide nanoparticles (Gd2O3-NPs) synthesized at different temperatures via95 X-ray diffraction (XRD) technique.Radiat. Phys. Chem.202117910921210.1016/j.radphyschem.2020.109212
    [Google Scholar]
  91. YoungS.W. QingF. HarrimanA. SesslerJ.L. DowW.C. ModyT.D. HemmiG.W. HaoY. MillerR.A. Gadolinium(III) texaphyrin: a tumor selective radiation sensitizer that is detectable by MRI.Proc. Natl. Acad. Sci. USA199693136610661510.1073/pnas.93.13.66108692865
    [Google Scholar]
  92. NingS. YuN. BrownD.M. KanekalS. KnoxS.J. Radiosensitization by intratumoral administration of cisplatin in a sustained-release drug delivery system.Radiother. Oncol.199950221522310.1016/S0167‑8140(98)00134‑010368046
    [Google Scholar]
  93. ChiuS.J. LeeM.Y. ChouW.G. LinL.Y. Germanium oxide enhances the radiosensitivity of cells.Radiat. Res.2003159339140010.1667/0033‑7587(2003)159[0391:GOETRO]2.0.CO;212600242
    [Google Scholar]
  94. AsquithJ.C. FosterJ.L. WillsonR.L. IngsR. McFadzeanJ.A. Metronidazole (“Flagyl”). A radiosensitizer of hypoxic cells.Br. J. Radiol.19744756047448110.1259/0007‑1285‑47‑560‑4744608801
    [Google Scholar]
  95. StratfordI.J. AdamsG.E. Effect of hyperthermia on differential cytotoxicity of a hypoxic cell radiosensitizer, Ro-07-0582, on mammalian cells in vitro.Br. J. Cancer197735330731310.1038/bjc.1977.44856238
    [Google Scholar]
  96. Martin BrownJ. YuN.Y. BrownD.M. LeeW.W.Sr SR-2508: A 2-nitroimidazole amide which should be superior to misonidazole as a radiosensitizer for clinical use.Int. J. Radiat. Oncol. Biol. Phys.19817669570310.1016/0360‑3016(81)90460‑06457018
    [Google Scholar]
  97. RaseyJ.S. KrohnK.A. FreauffS. Bromomisonidazole: synthesis and characterization of a new radiosensitizer.Radiat. Res.1982913542554https://doi.org/https://doi.org/10.2307/357589110.2307/35758917122830
    [Google Scholar]
  98. StewartD.J. LeavensM. MaorM. FeunL. LunaM. BonuraJ. CaprioliR. LooT.L. BenjaminR.S. Human central nervous system distribution of cis-diamminedichloroplatinum and use as a radiosensitizer in malignant brain tumors.Cancer Res.1982426247424796280860
    [Google Scholar]
  99. ColemanC.N. UrtasunR.C. WassermanT.H. HancockS. HarrisJ.W. HalseyJ. HirstV.K. Initial report of the phase I trial of the hypoxic cell radiosensitizer SR-2508.Int. J. Radiat. Oncol. Biol. Phys.19841091749175310.1016/0360‑3016(84)90542‑X6237086
    [Google Scholar]
  100. PalcicB. FaddegonB. SkarsgardL.D. The effect of misonidazole as a hypoxic radiosensitizer at low dose.Radiat. Res.1984100234034710.2307/35763556494445
    [Google Scholar]
  101. KinsellaT.J. RussoA. MitchellJ.B. CollinsJ.M. RowlandJ. WrightD. GlatsteinE. A phase i study of intravenous iododeoxyuridine as a clinical radiosensitizer.Int. J. Radiat. Oncol. Biol. Phys.198511111941194610.1016/0360‑3016(85)90275‑52997090
    [Google Scholar]
  102. Norman ColemanC. WassermanT.H. UrtasunR.C. HalseyJ. HirstV.K. HancockS. PhillipsT.L. PhaseI. Phase I trial of the hypoxic cell radiosensitizer SR-2508: The results of the five to six week drug schedule.Int. J. Radiat. Oncol. Biol. Phys.19861271105110810.1016/0360‑3016(86)90236‑13017904
    [Google Scholar]
  103. HorsmanM.R. BrownJ.M. PhilD. HirstV.K. LemmonM.J. WoodP.J. DunphyE.P. OvergaardJ. Mechanism of action of the selective tumor radiosensitizer nicotinamide.Int. J. Radiat. Oncol. Biol. Phys.1988153685690https://doi.org/https://doi.org/10.1016/0360-3016(88)90312-410.1016/0360‑3016(88)90312‑42971029
    [Google Scholar]
  104. LiebmannJ. CookJ.A. FisherJ. TeagueD. MitchellJ.B. In vitro studies of Taxol as a radiation sensitizer in human tumor cells.J. Natl. Cancer Inst.199486644144610.1093/jnci/86.6.4417907149
    [Google Scholar]
  105. LawrenceT.S. ChangE.Y. HahnT.M. HertelL.W. ShewachD.S. Radiosensitization of pancreatic cancer cells by 2′,2′-difluoro-2′-deoxycytidine.Int. J. Radiat. Oncol. Biol. Phys.199634486787210.1016/0360‑3016(95)02134‑58598364
    [Google Scholar]
  106. DeviP.U. AkagiK. OstapenkoV. TanakaY. SugaharaT. WithaferinA. Withaferin A: a new radiosensitizer from the Indian medicinal plant Withania somnifera.Int. J. Radiat. Biol.199669219319710.1080/0955300961460208609455
    [Google Scholar]
  107. HorsmanM.R. SiemannD.W. ChaplinD.J. OvergaardJ. Nicotinamide as a radiosensitizer in tumours and normal tissues: the importance of drug dose and timing.Radiother. Oncol.199745216717410.1016/S0167‑8140(97)00127‑89424008
    [Google Scholar]
  108. OvergaardJ. Sand HansenH. OvergaardM. BastholtL. BerthelsenA. SpechtL. LindeløvB. JørgensenK. A randomized double-blind phase III study of nimorazole as a hypoxic radiosensitizer of primary radiotherapy in supraglottic larynx and pharynx carcinoma. Results of the Danish Head and Neck Cancer Study (DAHANCA) Protocol 5-85.Radiother. Oncol.199846213514610.1016/S0167‑8140(97)00220‑X9510041
    [Google Scholar]
  109. OgawaY. TakahashiT. KobayashiT. KariyaS. NishiokaA. OhnishiT. SaibaraT. HamasatoS. TaniT. SeguchiH. YoshidaS. SonobeH. Apoptotic-resistance of the human osteosarcoma cell line HS-Os-1 to irradiation is converted to apoptotic-susceptibility by hydrogen peroxide: A potent role of hydrogen peroxide as a new radiosensitizer.Int. J. Mol. Med.200312684585010.3892/ijmm.12.6.84514612955
    [Google Scholar]
  110. KulkaU. SchafferM. SiefertA. SchafferP.M. ÖlsnerA. KassebK. HofstetterA. DühmkeE. JoriG. Photofrin as a radiosensitizer in an in vitro cell survival assay.Biochem. Biophys. Res. Commun.200331119810310.1016/j.bbrc.2003.09.17014575700
    [Google Scholar]
  111. RosliN.R.A.M. MohamedF. HengC.K. RahmanI.A. AhmadA.F. MohamadH.M.K. Synthesis and Radiosensitization Properties of Hydrogen Peroxide and Sodium Hyaluronate Complex.AIP Conf. Proc.201416141788110.1063/1.4895175
    [Google Scholar]
  112. HengC.K. MohamedF. RahmanI.A. Effect of Radiation on the Viability of HepG2 Cancer Cell Line Targeted with Different Amount of Radiosensitizer.Malays. J. Anal. Sci.2015192402405
    [Google Scholar]
  113. JayakumarS. PatwardhanR.S. PalD. SharmaD. SandurS.K. Dimethoxycurcumin, a metabolically stable analogue of curcumin enhances the radiosensitivity of cancer cells: Possible involvement of ROS and thioredoxin reductase.Biochem. Biophys. Res. Commun.2016478144645410.1016/j.bbrc.2016.06.14427381867
    [Google Scholar]
  114. GhashghaeiM. PaliourasM. HeraviM. BekeratH. TrifiroM. NiaziT.M. MuanzaT. Enhanced radiosensitization of enzalutamide via schedule dependent administration to androgen-sensitive prostate cancer cells.Prostate2018781647510.1002/pros.2344529134684
    [Google Scholar]
  115. HolahanE.V. HighfieldD.P. HolahanP.K. DeweyW.C. Hyperthermic killing and hyperthermic radiosensitization in Chinese hamster ovary cells: Effects of pH and thermal tolerance.Radiat. Res.198497110813110.2307/35761936695037
    [Google Scholar]
  116. FujiwaraK. WatanabeT. Effects of hyperthermia, radiotherapy and thermoradiotherapy on tumor microvascular permeability.Acta Pathol. Jpn.1990402798410.1111/j.1440‑1827.1990.tb01546.x2160185
    [Google Scholar]
  117. FuQ. HuangT. WangX. LuC. LiuF. YangG. WangY. WangB. Association of elevated reactive oxygen species and hyperthermia induced radiosensitivity in cancer stem-like cells.Oncotarget201786010156010157110.18632/oncotarget.2167829254186
    [Google Scholar]
  118. NurhasanahI. SafitriW. ArifinZ. SubagioA. WindartiT. Antioxidant Activity and Dose Enhancement Factor of CeO2 Nanoparticles Synthesized by Precipitation Method.IOP Conf. Ser. Mater. Sci. Eng.201810.1088/1757‑899X/432/1/012031
    [Google Scholar]
  119. Molina HigginsM.C. CliffordD.M. RojasJ.V. Au@TiO2 nanocomposites synthesized by X-ray radiolysis as potential radiosensitizers.Appl. Surf. Sci.201842770271010.1016/j.apsusc.2017.08.094
    [Google Scholar]
  120. BrandelliA. LopesN.A. BoelterJ.F. Food Applications of Nanostructured AntimicrobialsElsevier Inc.201710.1016/B978‑0‑12‑804303‑5.00002‑X
    [Google Scholar]
  121. McGinnC.J. ShewachD.S. LawrenceT.S. Radiosensitizing Nucleosides.J. Natl. Cancer Inst.199688171193120310.1093/jnci/88.17.11938780628
    [Google Scholar]
  122. HorsmanM.R. ChaplinD.J. BrownJ.M. Radiosensitization by nicotinamide in vivo: A greater enhancement of tumor damage compared to that of normal tissues.Radiat. Res.1987109347948910.2307/35770482951765
    [Google Scholar]
  123. DeyD.K. ChangS.N. VadlamudiY. ParkJ.G. KangS.C. Synergistic therapy with tangeretin and 5-fluorouracil accelerates the ROS/JNK mediated apoptotic pathway in human colorectal cancer cell.Food Chem. Toxicol.202014311152910.1016/j.fct.2020.11152932619557
    [Google Scholar]
  124. McGinnC.J. LawrenceT.S. Recent advances in the use of radiosensitizing nucleosides.Semin. Radiat. Oncol.200111427028010.1053/srao.2001.2600211677652
    [Google Scholar]
  125. GhahremaniF. Shahbazi-GahroueiD. KefayatA. MotaghiH. MehrgardiM.A. JavanmardS.H. AS1411 aptamer conjugated gold nanoclusters as a targeted radiosensitizer for megavoltage radiation therapy of 4T1 breast cancer cells.RSC Advances2018884249425810.1039/C7RA11116A
    [Google Scholar]
  126. YoukhanaE.Q. FeltisB. BlencoweA. GesoM. Titanium Dioxide Nanoparticles as Radiosensitisers: An In vitro and Phantom-Based Study.Int. J. Med. Sci.201714660261410.7150/ijms.1905828638277
    [Google Scholar]
  127. JacksonR.K. LiewL.P. HayM.P. Overcoming Radioresistance: Small Molecule Radiosensitisers and Hypoxia-activated Prodrugs.Clin. Oncol. (R. Coll. Radiol.)201931529030210.1016/j.clon.2019.02.00430853148
    [Google Scholar]
  128. BuckleyC.E. O’BrienR.M. NugentT.S. DonlonN.E. O’ConnellF. ReynoldsJ.V. HafeezA. O’RíordáinD.S. HannonR.A. NearyP. KalbassiR. MehiganB.J. McCormickP.H. DunneC. KellyM.E. LarkinJ.O. O’SullivanJ. Lynam-LennonN. Metformin is a metabolic modulator and radiosensitiser in rectal cancer.Front. Oncol.202313August121691110.3389/fonc.2023.121691137601689
    [Google Scholar]
  129. WuJ. The Enhanced Permeability and Retention (EPR) Effect: The Significance of the Concept and Methods to Enhance Its Application.J. Pers. Med.202111877110.3390/jpm1108077134442415
    [Google Scholar]
/content/journals/crp/10.2174/0118744710269842240825160247
Loading
/content/journals/crp/10.2174/0118744710269842240825160247
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test