Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-398X
  • E-ISSN:

Abstract

Rett Syndrome (RTT) is a rare and severe neurodevelopmental disorder affecting children in the early stages of infancy and associated with a MECP2 mutation in 95-97% of individuals with typical RTT. Nearly all of the patients show breathing abnormalities during their lifespan, both in wake and sleep and respiratory illness represents an important cause of morbidity and mortality in RTT. Pathogenic mechanisms underlying breath-holding and other breathing abnormalities in RTT are mainly related to dysautonomia and an alteration in respiratory control at different levels, including several regions of the central and peripheral nervous system. Pathogenic variants in the MECP2 gene have been implicated in the dysfunction of respiratory pathways, affecting chemosensitivity and the response to neurotransmitters. In addition, frequent comorbidities such as scoliosis, dysphagia, sleep disorders, and epilepsy can further impair the respiratory function in these patients.

Loading

Article metrics loading...

/content/journals/crmr/10.2174/011573398X284907240426054522
2024-04-30
2024-11-23
Loading full text...

Full text loading...

References

  1. RettA. About a peculiar cerebral atrophic syndrome in hyperammonemia in children [On a unusual brain atrophy syndrome in hyperammonemia in childhood].Vienna Med Weekly.1966116377236German.
    [Google Scholar]
  2. HagbergB. AicardiJ. DiasK. RamosO. A progressive syndrome of autism, dementia, ataxia, and loss of purposeful hand use in girls: Rett’s syndrome: Report of 35 cases.Ann. Neurol.198314447147910.1002/ana.4101404126638958
    [Google Scholar]
  3. PetritiU. DudmanD.C. ScosyrevE. LeonL.S. Global prevalence of Rett syndrome: Systematic review and meta-analysis.Syst. Rev.2023121510.1186/s13643‑023‑02169‑636642718
    [Google Scholar]
  4. AmirR.E. den VeyverV.I.B. WanM. TranC.Q. FranckeU. ZoghbiH.Y. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2.Nat. Genet.199923218518810.1038/1381010508514
    [Google Scholar]
  5. ChinE.W.M. GohE.L.K. MeCP2 dysfunction in rett syndrome and neuropsychiatric disorders.Methods Mol. Biol.2019201157359110.1007/978‑1‑4939‑9554‑7_3331273722
    [Google Scholar]
  6. RamirezJ.M. AmaranteK.M. WangJ.D.J. HuffA. BurgraffN. Breathing disturbances in Rett syndrome.Handb. Clin. Neurol.202218913915110.1016/B978‑0‑323‑91532‑8.00018‑536031301
    [Google Scholar]
  7. AmaddeoA. SanctisD.L. ArroyoJ.O. KhiraniS. BuissonB.N. FaurouxB. Polysomnographic findings in Rett syndrome.Eur. J. Paediatr. Neurol.201923121422110.1016/j.ejpn.2018.09.00330262236
    [Google Scholar]
  8. NeulJ.L. FangP. BarrishJ. LaneJ. CaegE.B. SmithE.O. ZoghbiH. PercyA. GlazeD.G. Specific mutations in Methyl-CpG-Binding Protein 2 confer different severity in Rett syndrome.Neurology200870161313132110.1212/01.wnl.0000291011.54508.aa18337588
    [Google Scholar]
  9. DemarestS. KnightP.E.M. OlsonH.E. DownsJ. MarshE.D. KaufmannW.E. PartridgeC.A. LeonardH. SridharG.F. FrameK.E. CrossJ.H. ChinR.F.M. ParikhS. PanzerA. WeisenbergJ. UtleyK. JakshaA. AminS. KhwajaO. DevinskyO. NeulJ.L. PercyA.K. BenkeT.A. Severity assessment in CDKL5 deficiency disorder.Pediatr. Neurol.201997384210.1016/j.pediatrneurol.2019.03.01731147226
    [Google Scholar]
  10. PercyA.K. LaneJ. AnneseF. WarrenH. SkinnerS.A. NeulJ.L. When Rett syndrome is due to genes other than MECP2. Transl. Sci. Rare Dis.201831495310.3233/TRD‑18002129682453
    [Google Scholar]
  11. PercyA.K. LaneJ.B. ChildersJ. SkinnerS. AnneseF. BarrishJ. CaegE. GlazeD.G. MacLeodP. Rett syndrome: North American database.J. Child Neurol.200722121338134110.1177/088307380730871518174548
    [Google Scholar]
  12. KaufmannW.E. GlazeD.G. ChristodoulouJ. ClarkeA.J. BuissonB.N. LeonardH. BaileyM.E.S. SchanenN.C. ZappellaM. RenieriA. HuppkeP. PercyA.K. PercyA.K. Rett syndrome: Revised diagnostic criteria and nomenclature.Ann. Neurol.201068694495010.1002/ana.2212421154482
    [Google Scholar]
  13. AldosaryM. BakheetA.A. DhalaanA.H. AlmassR. AlsagobM. YounesA.B. AlQuaitL. MustafaO.M. BulbulM. RahbeeniZ. AlfadhelM. ChedrawiA. HassnanA.Z. AlDosariM. ZaidanA.H. MuhaizeaA.M.A. AlSayedM.D. SalihM.A. AlShammariM. HaqueF.U.M. ChishtiM.A. HaraziA.O. OdaibA.A. KayaN. ColakD. Rett Syndrome, a Neurodevelopmental Disorder, Whole-Transcriptome, and Mitochondrial Genome Multiomics Analyses Identify Novel Variations and Disease Pathways.OMICS202024316017110.1089/omi.2019.019232105570
    [Google Scholar]
  14. LeonardH. CobbS. DownsJ. Clinical and biological progress over 50 years in Rett syndrome.Nat. Rev. Neurol.2017131375110.1038/nrneurol.2016.18627934853
    [Google Scholar]
  15. RomanoA. CaprìT. SeminoM. BizzegoI. RosaD.G. FabioR.A. Gross Motor, Physical Activity and Musculoskeletal Disorder Evaluation Tools for Rett Syndrome: A Systematic Review.Dev. Neurorehabil.202023848550110.1080/17518423.2019.168076131668104
    [Google Scholar]
  16. PanayotisN. EhingerY. FelixM.S. RouxJ.C. State-of-the-art therapies for Rett syndrome.Dev. Med. Child Neurol.202365216217010.1111/dmcn.1538336056801
    [Google Scholar]
  17. FabioR. GangemiA. SeminoM. VignoliA. PrioriA. CaneviniM. Di RosaG. CaprìT. Effects of Combined Transcranial Direct Current Stimulation with Cognitive Training in Girls with Rett Syndrome.Brain Sci.202010527610.3390/brainsci1005027632370253
    [Google Scholar]
  18. CooreyB. HaaseF. EllawayC. ClarkeA. LisowskiL. GoldW.A. Gene Editing and Rett Syndrome: Does It Make the Cut?CRISPR J.20225449049910.1089/crispr.2022.002035881862
    [Google Scholar]
  19. MacKayJ. LeonardH. WongK. WilsonA. DownsJ. Respiratory morbidity in Rett syndrome: An observational study.Dev. Med. Child Neurol.201860995195710.1111/dmcn.1372629536504
    [Google Scholar]
  20. TarquinioD.C. HouW. NeulJ.L. BerkmenG.K. DrummondJ. AronoffE. HarrisJ. LaneJ.B. KaufmannW.E. MotilK.J. GlazeD.G. SkinnerS.A. PercyA.K. The course of awake breathing disturbances across the lifespan in Rett syndrome.Brain Dev.201840751552910.1016/j.braindev.2018.03.01029657083
    [Google Scholar]
  21. CarrollJ.L. AgarwalA. Development of ventilatory control in infants.Paediatr. Respir. Rev.201011419920710.1016/j.prrv.2010.06.00221109177
    [Google Scholar]
  22. CarotenutoM. EspositoM. D’AnielloA. RippaC.D. PrecenzanoF. PascottoA. BravaccioC. EliaM. Polysomnographic findings in Rett syndrome: A case–control study.Sleep Breath.2013171939810.1007/s11325‑012‑0654‑x22392651
    [Google Scholar]
  23. MayerW.D.E. LieskeS.P. BoothbyC.M. KennyA.S. BennettH.L. SilvestriJ.M. RamirezJ.M. Autonomic nervous system dysregulation: Breathing and heart rate perturbation during wakefulness in young girls with Rett syndrome.Pediatr. Res.200660444344910.1203/01.pdr.0000238302.84552.d016940240
    [Google Scholar]
  24. SinghJ. LanzariniE. SantoshP. Autonomic dysfunction and sudden death in patients with Rett syndrome: A systematic review.J. Psychiatry Neurosci.202045315018110.1503/jpn.19003331702122
    [Google Scholar]
  25. MantiS. ParisiG.F. GiacchiV. SciaccaP. TardinoL. CuppariC. SalpietroC. ChikermaneA. LeonardiS. Pilot study shows right ventricular diastolic function impairment in young children with obstructive respiratory disease.Acta Paediatr.2019108474074410.1111/apa.1457430194783
    [Google Scholar]
  26. SinghJ. LanzariniE. SantoshP. Autonomic Characteristics of Sudden Unexpected Death in Epilepsy in Children—A Systematic Review of Studies and Their Relevance to the Management of Epilepsy in Rett Syndrome.Front. Neurol.20211163251010.3389/fneur.2020.63251033613425
    [Google Scholar]
  27. HerreraJ.A. WardC.S. WehrensX.H.T. NeulJ.L. Methyl-CpG binding-protein 2 function in cholinergic neurons mediates cardiac arrhythmogenesis.Hum. Mol. Genet.20162522ddw32610.1093/hmg/ddw32628159985
    [Google Scholar]
  28. AshhadS. KamK. NegroD.C.A. FeldmanJ.L. Breathing Rhythm and Pattern and Their Influence on Emotion.Annu. Rev. Neurosci.202245122324710.1146/annurev‑neuro‑090121‑01442435259917
    [Google Scholar]
  29. AmoreG. SpotoG. IeniA. VetriL. QuatrosiG. RosaD.G. NicoteraA.G. A Focus on the Cerebellum: From Embryogenesis to an Age-Related Clinical Perspective.Front. Syst. Neurosci.20211564605210.3389/fnsys.2021.64605233897383
    [Google Scholar]
  30. DutschmannM. DickT.E. Pontine mechanisms of respiratory control.Compr. Physiol.2012242443246910.1002/cphy.c10001523720253
    [Google Scholar]
  31. AbdalaA.P. TowardM.A. DutschmannM. BissonnetteJ.M. PatonJ.F.R. Deficiency of GABAergic synaptic inhibition in the Kölliker–Fuse area underlies respiratory dysrhythmia in a mouse model of Rett syndrome.J. Physiol.2016594122323710.1113/JP27096626507912
    [Google Scholar]
  32. DhingraR.R. ZhuY. JaconoF.J. KatzD.M. GalánR.F. DickT.E. Decreased Hering-Breuer input-output entrainment in a mouse model of Rett syndrome.Front. Neural Circuits201374210.3389/fncir.2013.0004223565077
    [Google Scholar]
  33. VoituronN. ZanellaS. MenuetC. DutschmannM. HilaireG. Early breathing defects after moderate hypoxia or hypercapnia in a mouse model of Rett syndrome.Respir. Physiol. Neurobiol.20091681-210911810.1016/j.resp.2009.05.01319524074
    [Google Scholar]
  34. JiangC. CuiN. ZhongW. JohnsonC.M. WuY. Breathing abnormalities in animal models of Rett syndrome a female neurogenetic disorder.Respir. Physiol. Neurobiol.2017245455210.1016/j.resp.2016.11.01127884797
    [Google Scholar]
  35. HuangT.W. KochukovM.Y. WardC.S. MerrittJ. ThomasK. NguyenT. ArenkielB.R. NeulJ.L. Progressive Changes in a Distributed Neural Circuit Underlie Breathing Abnormalities in Mice Lacking MeCP2.J. Neurosci.201636205572558610.1523/JNEUROSCI.2330‑15.201627194336
    [Google Scholar]
  36. MezzedimiC. LiviW. FeliceD.C. CoccaS. Dysphagia in Rett Syndrome: A Descriptive Study.Ann. Otol. Rhinol. Laryngol.2017126964064510.1177/000348941772303328766954
    [Google Scholar]
  37. RamirezJ.M. AmaranteK.M. WangJ.D.J. BushN.E. CarrollM.S. MayerW.D.E. HuffA. The Pathophysiology of Rett Syndrome With a Focus on Breathing Dysfunctions.Physiology202035637539010.1152/physiol.00008.202033052774
    [Google Scholar]
  38. AbrahamS.S. TaraginB. DjukicA. Co-occurrence of dystonic and dyskinetic tongue movements with oral apraxia in post-regression dysphagia in classical rett syndrome years of life 1 through 5.Dysphagia201530212813810.1007/s00455‑014‑9587‑925533180
    [Google Scholar]
  39. MarsegliaG.L. MantiS. ChiappiniE. BrambillaI. CaffarelliC. CalvaniM. CardinaleF. CravidiC. DuseM. MartelliA. MinasiD. GiudiceD.M.M. PajnoG. PeroniD.G. ToscaM.A. LicariA. CiprandiG. Chronic cough in childhood: A systematic review for practical guidance by the Italian Society of Pediatric Allergy and Immunology.Allergol. Immunopathol.202149213315410.15586/aei.v49i2.4433641305
    [Google Scholar]
  40. KidaH. TakahashiT. NakamuraY. KinoshitaT. HaraM. OkamotoM. OkayamaS. NakamuraK. KosaiK. TaniwakiT. YamashitaY. MatsuishiT. Pathogenesis of Lethal Aspiration Pneumonia in Mecp2-null Mouse Model for Rett Syndrome.Sci. Rep.2017711203210.1038/s41598‑017‑12293‑828931890
    [Google Scholar]
  41. BongiovanniA. MantiS. ParisiG.F. PapaleM. MulèE. RotoloN. LeonardiS. Focus on gastroesophageal reflux disease in patients with cystic fibrosis.World J. Gastroenterol.202026416322633410.3748/wjg.v26.i41.632233244195
    [Google Scholar]
  42. MurgiaV. MantiS. LicariA. FilippoD.M. CiprandiG. MarsegliaG.L. Upper Respiratory Tract Infection-Associated Acute Cough and the Urge to Cough: New Insights for Clinical Practice.Pediatr. Allergy Immunol. Pulmonol.202033131110.1089/ped.2019.113533406022
    [Google Scholar]
  43. LeonardiS. CuppariC. LanzafameA. AttardoD. TardinoL. ParisiG. GiacchiV. MantiS. ArrigoT. Exhaled breath temperature in asthmatic children.J. Biol. Regul. Homeost. Agents2015292S1475426634587
    [Google Scholar]
  44. MarcusC.L. CarrollJ.L. McColleyS.A. LoughlinG.M. CurtisS. PyzikP. NaiduS. Polysomnographic characteristics of patients with Rett syndrome.J. Pediatr.1994125221822410.1016/S0022‑3476(94)70196‑28040765
    [Google Scholar]
  45. TasciniG. Dell’IsolaG.B. MencaroniE. Di CaraG. StrianoP. VerrottiA. Sleep disorders in rett syndrome and rett-related disorders: a narrative review.Front. Neurol.20221381719510.3389/fneur.2022.81719535299616
    [Google Scholar]
  46. LiQ. LohD.H. KudoT. TruongD. DerakhsheshM. KaswanZ.M. GhianiC.A. TsoaR. ChengY. SunY.E. ColwellC.S. Circadian rhythm disruption in a mouse model of Rett syndrome circadian disruption in RTT.Neurobiol. Dis.20157715516410.1016/j.nbd.2015.03.00925779967
    [Google Scholar]
  47. BlueM.E. KaufmannW.E. BresslerJ. EyringC. O’driscollC. NaiduS. JohnstonM.V. Temporal and regional alterations in NMDA receptor expression in Mecp2-null mice.Anat. Rec.2011294101624163410.1002/ar.2138021901842
    [Google Scholar]
  48. JohnstonM.V. AmmanuelS. O’DriscollC. WozniakA. NaiduS. KadamS.D. Twenty-four hour quantitative-EEG and in-vivo glutamate biosensor detects activity and circadian rhythm dependent biomarkers of pathogenesis in Mecp2 null mice.Front. Syst. Neurosci.2014811810.3389/fnsys.2014.0011825018705
    [Google Scholar]
  49. KadamS.D. SullivanB.J. GoyalA. BlueM.E. Smith-HicksC. Rett syndrome and CDKL5 deficiency disorder: From bench to clinic.Int. J. Mol. Sci.20192020509810.3390/ijms2020509831618813
    [Google Scholar]
  50. NomuraY. Early behavior characteristics and sleep disturbance in Rett syndrome.Brain Dev.2005271S35S4210.1016/j.braindev.2005.03.01716182496
    [Google Scholar]
  51. MainieriG. MontiniA. NicoteraA. RosaD.G. ProviniF. LoddoG. The Genetics of Sleep Disorders in Children: A Narrative Review.Brain Sci.20211110125910.3390/brainsci1110125934679324
    [Google Scholar]
  52. ReissA.L. FaruqueF. NaiduS. AbramsM. BeatyT. BryanR.N. MoserH. Neuroanatomy of Rett syndrome: A volumetric imaging study.Ann. Neurol.199334222723410.1002/ana.4103402208338347
    [Google Scholar]
  53. ArmstrongD.D. Rett syndrome neuropathology review 2000.Brain Dev.200123S1S72S7610.1016/S0387‑7604(01)00332‑111738845
    [Google Scholar]
  54. MoserS.J. WeberP. LütschgJ. Rett syndrome: Clinical and electrophysiologic aspects.Pediatr. Neurol.20073629510010.1016/j.pediatrneurol.2006.10.00317275660
    [Google Scholar]
  55. SabyJ.N. PetersS.U. RobertsT.P.L. NelsonC.A. MarshE.D. Evoked potentials and EEG analysis in rett syndrome and related developmental encephalopathies: towards a biomarker for translational research.Front. Integr. Nuerosci.2020143010.3389/fnint.2020.0003032547374
    [Google Scholar]
  56. AmmanuelS. ChanW.C. AdlerD.A. LakshamananB.M. GuptaS.S. EwenJ.B. JohnstonM.V. MarcusC.L. NaiduS. KadamS.D. Heightened delta power during slow-wave-sleep in patients with rett syndrome associated with poor sleep efficiency.PLoS One20151010e013811310.1371/journal.pone.013811326444000
    [Google Scholar]
  57. RamirezJ.M. GarciaA.J.III AndersonT.M. KoschnitzkyJ.E. PengY.J. KumarG.K. PrabhakarN.R. Central and peripheral factors contributing to obstructive sleep apneas.Respir. Physiol. Neurobiol.2013189234435310.1016/j.resp.2013.06.00423770311
    [Google Scholar]
  58. SelimB.J. JunnaM.R. MorgenthalerT.I. Therapy for sleep hypoventilation and central apnea syndromes.Curr. Treat. Options Neurol.201214542743710.1007/s11940‑012‑0188‑322923141
    [Google Scholar]
  59. WardC.S. HuangT.W. HerreraJ.A. SamacoR.C. McGrawC.M. ParraD.E. ArvideE.M. IshidaI.A. MengX. UreK. ZoghbiH.Y. NeulJ.L. Loss of MeCP2 function across several neuronal populations impairs breathing response to acute hypoxia.Front. Neurol.20201159355410.3389/fneur.2020.59355433193060
    [Google Scholar]
  60. TabataM. KurosawaH. KikuchiY. HidaW. OgawaH. OkabeS. TunY. HattoriT. ShiratoK. Role of GABA within the nucleus tractus solitarii in the hypoxic ventilatory decline of awake rats.Am. J. Physiol. Regul. Integr. Comp. Physiol.20012815R1411R141910.1152/ajpregu.2001.281.5.R141111641110
    [Google Scholar]
  61. RamirezJ.M. WardC.S. NeulJ.L. Breathing challenges in Rett Syndrome: Lessons learned from humans and animal models.Respir. Physiol. Neurobiol.2013189228028710.1016/j.resp.2013.06.02223816600
    [Google Scholar]
  62. KlineD.D. OgierM. KunzeD.L. KatzD.M. Exogenous brain-derived neurotrophic factor rescues synaptic dysfunction in Mecp2-null mice.J. Neurosci.201030155303531010.1523/JNEUROSCI.5503‑09.201020392952
    [Google Scholar]
  63. MoreiraT.S. TakakuraA.C. ColombariE. GuyenetP.G. Activation of 5-hydroxytryptamine type 3 receptor-expressing C-fiber vagal afferents inhibits retrotrapezoid nucleus chemoreceptors in rats.J. Neurophysiol.20079863627363710.1152/jn.00675.200717928558
    [Google Scholar]
  64. PatonJ.F.R. Pattern of cardiorespiratory afferent convergence to solitary tract neurons driven by pulmonary vagal C-fiber stimulation in the mouse.J. Neurophysiol.19987952365237310.1152/jn.1998.79.5.23659582212
    [Google Scholar]
  65. ZhangX. SuJ. CuiN. GaiH. WuZ. JiangC. The disruption of central CO2 chemosensitivity in a mouse model of Rett syndrome.Am. J. Physiol. Cell Physiol.20113013C729C73810.1152/ajpcell.00334.201021307341
    [Google Scholar]
  66. BissonnetteJ.M. SchaevitzL.R. KnoppS.J. ZhouZ. Respiratory phenotypes are distinctly affected in mice with common Rett syndrome mutations MeCP2 T158A and R168X.Neuroscience201426716617610.1016/j.neuroscience.2014.02.04324626160
    [Google Scholar]
  67. StallworthJ.L. DyM.E. BuchananC.B. ChenC.F. ScottA.E. GlazeD.G. LaneJ.B. LiebermanD.N. ObermanL.M. SkinnerS.A. TierneyA.E. CutterG.R. PercyA.K. NeulJ.L. KaufmannW.E. Hand stereotypies.Neurology20199222e2594e260310.1212/WNL.000000000000756031053667
    [Google Scholar]
  68. LormanF.R.M. KurianJ.R. AugerA.P. MeCP2 regulates GFAP expression within the developing brain.Brain Res.2014154315115810.1016/j.brainres.2013.11.01124269336
    [Google Scholar]
  69. LioyD.T. GargS.K. MonaghanC.E. RaberJ. FoustK.D. KasparB.K. HirrlingerP.G. KirchhoffF. BissonnetteJ.M. BallasN. MandelG. A role for glia in the progression of Rett’s syndrome.Nature2011475735749750010.1038/nature1021421716289
    [Google Scholar]
  70. ViemariJ.C. RouxJ.C. TrybaA.K. SaywellV. BurnetH. PeñaF. ZanellaS. BévengutM. RequinB.M. HerzingL.B.K. MonclaA. ManciniJ. RamirezJ.M. VillardL. HilaireG. Mecp2 deficiency disrupts norepinephrine and respiratory systems in mice.J. Neurosci.20052550115211153010.1523/JNEUROSCI.4373‑05.200516354910
    [Google Scholar]
  71. StettnerG.M. HuppkeP. BrendelC. RichterD.W. GärtnerJ. DutschmannM. Breathing dysfunctions associated with impaired control of postinspiratory activity in Mecp2 −/y knockout mice.J. Physiol.2007579386387610.1113/jphysiol.2006.11996617204503
    [Google Scholar]
  72. FeliceD.C. RossiM. LeonciniS. ChisciG. SignoriniC. LonettiG. VannucciniL. SpinaD. GinoriA. IaconaI. CortelazzoA. PecorelliA. ValacchiG. CiccoliL. PizzorussoT. HayekJ. Inflammatory lung disease in Rett syndrome.Mediators Inflamm.2014201411510.1155/2014/56012024757286
    [Google Scholar]
  73. HalbachN.S.J. SmeetsE.E.J. van den BraakN. van RoozendaalK.E.P. BlokR.M.J. StumpelS.C.T.R.M. FrijnsJ.P. MaaskantM.A. CurfsL.M.G. Genotype–phenotype relationships as prognosticators in Rett syndrome should be handled with care in clinical practice.Am. J. Med. Genet. A.2012158A234035010.1002/ajmg.a.3441822190343
    [Google Scholar]
  74. DempseyJA XieA PatzDS WangD Physiology in medicine: Obstructive sleep apnea pathogenesis and treatment--considerations beyond airway anatomy.J Appl Physiol.1985116131210.1152/japplphysiol.01054.2013
    [Google Scholar]
  75. TurovskyE. KaragiannisA. AbdalaA.P. GourineA.V. Impaired CO2 sensitivity of astrocytes in a mouse model of Rett syndrome.J. Physiol.2015593143159316810.1113/JP27036925981852
    [Google Scholar]
  76. PrabhakarN.R. PengY.J. NanduriJ. Hypoxia-inducible factors and obstructive sleep apnea.J. Clin. Invest.2020130105042505110.1172/JCI13756032730232
    [Google Scholar]
  77. SemenzaG.L. PrabhakarN.R. The role of hypoxia-inducible factors in carotid body (patho) physiology.J. Physiol.2018596152977298310.1113/JP27569629359806
    [Google Scholar]
  78. RioD.R. MoyaE.A. IturriagaR. Carotid body potentiation during chronic intermittent hypoxia: Implication for hypertension.Front. Physiol.2014543410.3389/fphys.2014.0043425429271
    [Google Scholar]
  79. GarciaA.J.III ZanellaS. DashevskiyT. KhanS.A. KhuuM.A. PrabhakarN.R. RamirezJ.M. Chronic Intermittent Hypoxia Alters Local Respiratory Circuit Function at the Level of the preBötzinger Complex.Front. Neurosci.201610410.3389/fnins.2016.0000426869872
    [Google Scholar]
  80. GarciaA.J.III DashevskiyT. KhuuM.A. RamirezJ.M. Chronic Intermittent Hypoxia Differentially Impacts Different States of Inspiratory Activity at the Level of the preBötzinger Complex.Front. Physiol.2017857110.3389/fphys.2017.0057128936176
    [Google Scholar]
  81. LeonciniS. FeliceD.C. SignoriniC. PecorelliA. DurandT. ValacchiG. CiccoliL. HayekJ. Oxidative stress in Rett syndrome: Natural history, genotype, and variants.Redox Rep.201116414515310.1179/1351000211Y.000000000421888765
    [Google Scholar]
  82. ShulyakovaN. AndreazzaA.C. MillsL.R. EubanksJ.H. Mitochondrial dysfunction in the pathogenesis of rett syndrome: implications for mitochondria-targeted therapies.Front. Cell. Neurosci.2017115810.3389/fncel.2017.0005828352216
    [Google Scholar]
  83. AbdalaA.P. LioyD.T. GargS.K. KnoppS.J. PatonJ.F.R. BissonnetteJ.M. Effect of Sarizotan, a 5-HT1a and D2-like receptor agonist, on respiration in three mouse models of Rett syndrome.Am. J. Respir. Cell Mol. Biol.20145061031103910.1165/rcmb.2013‑0372OC24351104
    [Google Scholar]
  84. ChaoH.T. ChenH. SamacoR.C. XueM. ChahrourM. YooJ. NeulJ.L. GongS. LuH.C. HeintzN. EkkerM. RubensteinJ.L.R. NoebelsJ.L. RosenmundC. ZoghbiH.Y. Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes.Nature2010468732126326910.1038/nature0958221068835
    [Google Scholar]
  85. IdeS. ItohM. GotoY. Defect in normal developmental increase of the brain biogenic amine concentrations in the mecp2-null mouse.Neurosci. Lett.20053861141710.1016/j.neulet.2005.05.05615975715
    [Google Scholar]
  86. KatzD.M. Brain-derived neurotrophic factor and Rett syndrome.Handb. Exp. Pharmacol.201422048149510.1007/978‑3‑642‑45106‑5_1824668484
    [Google Scholar]
  87. MantiS. XerraF. SpotoG. ButeraA. GittoE. RosaD.G. NicoteraA.G. Neurotrophins: Expression of Brain–Lung Axis Development.Int. J. Mol. Sci.2023248708910.3390/ijms2408708937108250
    [Google Scholar]
  88. DhingraR.R. DutschmannM. DickT.E. Blockade of dorsolateral pontine 5HT1A receptors destabilizes the respiratory rhythm in C57BL6/J wild-type mice.Respir. Physiol. Neurobiol.201622611011410.1016/j.resp.2016.01.00726840837
    [Google Scholar]
  89. HodgesM.R. TattersallG.J. HarrisM.B. McEvoyS.D. RichersonD.N. DenerisE.S. JohnsonR.L. ChenZ.F. RichersonG.B. Defects in breathing and thermoregulation in mice with near-complete absence of central serotonin neurons.J. Neurosci.200828102495250510.1523/JNEUROSCI.4729‑07.200818322094
    [Google Scholar]
  90. RayR.S. CorcoranA.E. BrustR.D. KimJ.C. RichersonG.B. NattieE. DymeckiS.M. Impaired respiratory and body temperature control upon acute serotonergic neuron inhibition.Science2011333604263764210.1126/science.120529521798952
    [Google Scholar]
  91. RichersonG.B. Serotonergic neurons as carbon dioxide sensors that maintain ph homeostasis.Nat. Rev. Neurosci.20045644946110.1038/nrn140915152195
    [Google Scholar]
  92. GuideriF. AcampaM. BlardiP. de LallaA. ZappellaM. HayekY. Cardiac dysautonomia and serotonin plasma levels in Rett syndrome.Neuropediatrics2004351363810.1055/s‑2004‑81578915002050
    [Google Scholar]
  93. AbdalaA.P.L. DutschmannM. BissonnetteJ.M. PatonJ.F.R. Correction of respiratory disorders in a mouse model of Rett syndrome.Proc. Natl. Acad. Sci. USA201010742182081821310.1073/pnas.101210410720921395
    [Google Scholar]
  94. SamacoR.C. HogartA. LaSalleJ.M. Epigenetic overlap in autism-spectrum neurodevelopmental disorders: MECP2 deficiency causes reduced expression of UBE3A and GABRB3.Hum. Mol. Genet.200514448349210.1093/hmg/ddi04515615769
    [Google Scholar]
  95. YoungJ.I. HongE.P. CastleJ.C. BarretoC.J. BowmanA.B. RoseM.F. KangD. RichmanR. JohnsonJ.M. BergetS. ZoghbiH.Y. Regulation of RNA splicing by the methylation-dependent transcriptional repressor methyl-CpG binding protein 2.Proc. Natl. Acad. Sci.200510249175511755810.1073/pnas.050785610216251272
    [Google Scholar]
  96. TowardM.A. AbdalaA.P. KnoppS.J. PatonJ.F.R. BissonnetteJ.M. Increasing brain serotonin corrects CO2 chemosensitivity in methyl-CpG-binding protein 2 (Mecp2)-deficient mice.Exp. Physiol.201398384284910.1113/expphysiol.2012.06987223180809
    [Google Scholar]
  97. SabusA. FeinsteinJ. RomaniP. GoldsonE. BlackmerA. Management of self-injurious behaviors in children with neurodevelopmental disorders: a pharmacotherapy overview.Pharmacotherapy201939664566410.1002/phar.223830793794
    [Google Scholar]
  98. LambertiM. SiracusanoR. ItalianoD. AlosiN. CucinottaF. Di RosaG. GermanòE. SpinaE. GaglianoA. Head-to-head comparison of aripiprazole and risperidone in the treatment of ADHD symptoms in children with autistic spectrum disorder and ADHD: A pilot, open-label, randomized controlled study.Paediatr. Drugs201618431932910.1007/s40272‑016‑0183‑327278054
    [Google Scholar]
  99. RosaD.G. DicanioD. NicoteraA.G. MondelloP. CannavòL. GittoE. Efficacy of intravenous hydrocortisone treatment in refractory neonatal seizures: a report on three cases.Brain Sci.2020101188510.3390/brainsci1011088533233684
    [Google Scholar]
  100. PintaudiM. CalevoM.G. VignoliA. BagliettoM.G. HayekY. TraversoM. GiacominiT. GiordanoL. RenieriA. RussoS. CaneviniM. VeneselliE. Antiepileptic drugs in rett syndrome.Eur. J. Paediatr. Neurol.201519444645210.1016/j.ejpn.2015.02.00725814391
    [Google Scholar]
  101. RosaD.G. LenzoP. ParisiE. NeriM. GuerreraS. NicoteraA. AlibrandiA. GermanòE. CaccamoD. SpanòM. TortorellaG. Role of plasma homocysteine levels and MTHFR polymorphisms on IQ scores in children and young adults with epilepsy treated with antiepileptic drugs.Epilepsy Behav.201329354855110.1016/j.yebeh.2013.09.03424183735
    [Google Scholar]
  102. CicaloniV. PecorelliA. CordoneV. TintiL. RossiM. HayekJ. SalviniL. TintiC. ValacchiG. A proteomics approach to further highlight the altered inflammatory condition in Rett syndrome.Arch. Biochem. Biophys.202069610866010.1016/j.abb.2020.10866033159892
    [Google Scholar]
  103. RanaK.S. NairM.N. Rett’s syndrome following bronchopneumonia.Indian Pediatr.200441329729815064530
    [Google Scholar]
  104. MantiS. ToscaM.A. LicariA. BrambillaI. FoiadelliT. CiprandiG. MarsegliaG.L. Cough Remedies for Children and Adolescents: Current and Future Perspectives.Paediatr. Drugs202022661763410.1007/s40272‑020‑00420‑432929686
    [Google Scholar]
  105. AndersonA. WongK. JacobyP. DownsJ. LeonardH. Twenty years of surveillance in Rett syndrome: What does this tell us?Orphanet J. Rare Dis.2014918710.1186/1750‑1172‑9‑8724942262
    [Google Scholar]
  106. DownsJ. TorodeI. WongK. EllawayC. ElliottE.J. ChristodoulouJ. JacobyP. ThomsonM.R. IzattM.T. AskinG.N. McPheeB.I. BridgeC. CundyP. LeonardH. The natural history of scoliosis in females with rett syndrome.Spine2016411085686310.1097/BRS.000000000000139926679887
    [Google Scholar]
  107. ProesmansM. VreysM. HuenaertsE. HaestE. CoremansS. VermeulenF. FeysH. Respiratory morbidity in children with profound intellectual and multiple disability.Pediatr. Pulmonol.201550101033103810.1002/ppul.2311425327770
    [Google Scholar]
  108. DownsJ. LeonardH. WongK. NewtonN. HillK. Quantification of walking-based physical activity and sedentary time in individuals with Rett syndrome.Dev. Med. Child Neurol.201759660561110.1111/dmcn.1339828164278
    [Google Scholar]
  109. ChengH. DuC. ZhangY. JamesA.F. DempseyC.E. AbdalaA.P. HancoxJ.C. Potent hERG channel inhibition by sarizotan, an investigative treatment for Rett Syndrome.J. Mol. Cell. Cardiol.2019135223010.1016/j.yjmcc.2019.07.01231362019
    [Google Scholar]
/content/journals/crmr/10.2174/011573398X284907240426054522
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test