Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-398X
  • E-ISSN: 1875-6387

Abstract

Breathing is an automatic process generated by the central nervous system, crucial for the homeostasis of several body processes. This vital process is underpinned by an intricate network in which distinct functional and anatomical factors and structures play a role. Transcription factors (, PHOX2B and Pbx proteins), as well as neuromodulators (, serotonin, noradrenaline, GABA, and glycine), have been demonstrated as implicated in the regulation of breathing. Besides, the several intertwined excitatory and inhibitory brainstem neural circuits comprising the so-called central pattern generator (CPG) have recently demonstrated a potential role of cerebellar structures and circuits in coordinating the complex and coordinated respiratory act in eupnea. A disruption affecting one of these components, which may also occur on a genetic basis, may indeed result in complex and heterogeneous disorders, including neurodevelopmental ones (such as Rett and Prader-Willi syndrome), which may also present with neuropsychiatric and breathing manifestations and potentially lead to sudden infant death syndrome (SIDS). Herein, we discuss the main factors and systems involved in respiratory control and modulation, outlining some of the associated neurodevelopmental disorders (NDDs) deriving from an impairment in their expression/function. Further studies are needed to deepen our knowledge of the complexity underpinning “breathing” and the relation between respiratory implications and congenital and developmental disorders.

Loading

Article metrics loading...

/content/journals/crmr/10.2174/011573398X283376240222051823
2024-02-29
2025-02-17
Loading full text...

Full text loading...

References

  1. DutschmannM. DickT.E. Pontine mechanisms of respiratory control.Compr. Physiol.2012242443246910.1002/cphy.c10001523720253
    [Google Scholar]
  2. SmithJ.C. Respiratory rhythm and pattern generation: Brainstem cellular and circuit mechanisms.Handb. Clin. Neurol.202218813510.1016/B978‑0‑323‑91534‑2.00004‑735965022
    [Google Scholar]
  3. BellinghamM.C. Driving respiration: The respiratory central pattern generator.Clin. Exp. Pharmacol. Physiol.1998251084785610.1111/j.1440‑1681.1998.tb02166.x9784928
    [Google Scholar]
  4. RichterD.W. Generation and maintenance of the respiratory rhythm.J. Exp. Biol.198210019310710.1242/jeb.100.1.936757372
    [Google Scholar]
  5. DutschmannM. JonesS.E. SubramanianH.H. StanicD. BautistaT.G. The physiological significance of postinspiration in respiratory control.Prog. Brain Res.201421211313010.1016/B978‑0‑444‑63488‑7.00007‑025194196
    [Google Scholar]
  6. MaceyP.M. WooM.A. MaceyK.E. KeensT.G. SaeedM.M. AlgerJ.R. HarperR.M. Hypoxia reveals posterior thalamic, cerebellar, midbrain, and limbic deficits in congenital central hypoventilation syndrome.J. Appl. Physiol.200598395896910.1152/japplphysiol.00969.2004
    [Google Scholar]
  7. ParsonsL.M. EganG. LiottiM. BrannanS. DentonD. ShadeR. RobillardR. MaddenL. AbplanalpB. FoxP.T. Neuroimaging evidence implicating cerebellum in the experience of hypercapnia and hunger for air.Proc. Natl. Acad. Sci.20019842041204610.1073/pnas.98.4.204111172072
    [Google Scholar]
  8. GaytánS.P. PásaroR. Connections of the rostral ventral respiratory neuronal cell group: An anterograde and retrograde tracing study in the rat.Brain Res. Bull.199847662564210.1016/S0361‑9230(98)00125‑710078619
    [Google Scholar]
  9. ZhuJ.N. YungW.H. ChowK.C.B. ChanY.S. WangJ.J. The cerebellar-hypothalamic circuits: Potential pathways underlying cerebellar involvement in somatic-visceral integration.Brain Res. Brain Res. Rev.20065219310610.1016/j.brainresrev.2006.01.00316497381
    [Google Scholar]
  10. LiuY. QiS. ThomasF. CorreiaB.L. TaylorA.P. SillitoeR.V. HeckD.H. Loss of cerebellar function selectively affects intrinsic rhythmicity of eupneic breathing.Biol. Open202094bio.04878510.1242/bio.04878532086251
    [Google Scholar]
  11. BonhamA.C. Neurotransmitters in the CNS control of breathing.Respir. Physiol.1995101321923010.1016/0034‑5687(95)00045‑F8606995
    [Google Scholar]
  12. LiljestrandG. Acetylcholine and Respiration.Acta Physiol. Scand.1951242-322524610.1111/j.1748‑1716.1951.tb00841.x14894264
    [Google Scholar]
  13. BialkowskaM. BoguszewskiP. PokorskiM. Breathing in parkinsonism in the rat.Adv. Exp. Med. Biol.201588411110.1007/5584_2015_17726542599
    [Google Scholar]
  14. BialkowskaM. ZajacD. MazzatentaA. Di GiulioC. PokorskiM. Inhibition of peripheral dopamine metabolism and the ventilatory response to hypoxia in the rat.Adv. Exp. Med. Biol.201483791710.1007/5584_2014_7225310955
    [Google Scholar]
  15. HilaireG. Endogenous noradrenaline affects the maturation and function of the respiratory network: Possible implication for SIDS.Auton. Neurosci.2006126-12732033110.1016/j.autneu.2006.01.02116603418
    [Google Scholar]
  16. PatersonD.S. TrachtenbergF.L. ThompsonE.G. BelliveauR.A. BeggsA.H. DarnallR. ChadwickA.E. KrousH.F. KinneyH.C. Multiple serotonergic brainstem abnormalities in sudden infant death syndrome.JAMA2006296172124213210.1001/jama.296.17.212417077377
    [Google Scholar]
  17. ViemariJ.C. TrybaA.K. Bioaminergic neuromodulation of respiratory rhythm in vitro .Respir. Physiol. Neurobiol.20091681-2697510.1016/j.resp.2009.03.01119538922
    [Google Scholar]
  18. Weese-MayerD.E. ZhouL. KravisB.E.M. MaherB.S. SilvestriJ.M. MarazitaM.L. Association of the serotonin transporter gene with sudden infant death syndrome: A haplotype analysis.Am. J. Med. Genet. A.2003122A323824510.1002/ajmg.a.2042712966525
    [Google Scholar]
  19. ZanellaS. WatrinF. MebarekS. MarlyF. RousselM. GireC. DieneG. TauberM. MuscatelliF. HilaireG. Necdin plays a role in the serotonergic modulation of the mouse respiratory network: Implication for Prader-Willi syndrome.J. Neurosci.20082871745175510.1523/JNEUROSCI.4334‑07.200818272695
    [Google Scholar]
  20. StettnerG.M. ZanellaS. HuppkeP. GärtnerJ. HilaireG. DutschmannM. Spontaneous central apneas occur in the C57BL/6J mouse strain.Respir. Physiol. Neurobiol.20081601212710.1016/j.resp.2007.07.01117869191
    [Google Scholar]
  21. YamanishiT. TakaoK. KoizumiH. IshihamaK. NoharaK. KomakiM. EnomotoA. YokotaY. KogoM. Alpha2-adrenoceptors coordinate swallowing and respiration.J. Dent. Res.201089325826310.1177/002203450936031220139342
    [Google Scholar]
  22. EzureK. TanakaI. KondoM. Glycine is used as a transmitter by decrementing expiratory neurons of the ventrolateral medulla in the rat.J. Neurosci.200323268941894810.1523/JNEUROSCI.23‑26‑08941.200314523096
    [Google Scholar]
  23. KoizumiH. KoshiyaN. ChiaJ.X. CaoF. NugentJ. ZhangR. SmithJ.C. Structural-functional properties of identified excitatory and inhibitory interneurons within pre-Botzinger complex respiratory microcircuits.J. Neurosci.20133372994300910.1523/JNEUROSCI.4427‑12.201323407957
    [Google Scholar]
  24. MarchenkoV. KoizumiH. MosherB. KoshiyaN. TariqM.F. BezdudnayaT.G. ZhangR. MolkovY.I. RybakI.A. SmithJ.C. Perturbations of respiratory rhythm and pattern by disrupting synaptic inhibition within pre-bötzinger and bötzinger complexes.eNeuro201632ENEURO.0011-1610.1523/ENEURO.0011‑16.2016
    [Google Scholar]
  25. GhaliM.G.Z. BeshayS. Role of fast inhibitory synaptic transmission in neonatal respiratory rhythmogenesis and pattern formation.Mol. Cell. Neurosci.201910010340010.1016/j.mcn.2019.10340031472222
    [Google Scholar]
  26. DuffinJ. Functional organization of respiratory neurones: A brief review of current questions and speculations.Exp. Physiol.200489551752910.1113/expphysiol.2004.02802715258123
    [Google Scholar]
  27. EzureK. Reflections on respiratory rhythm generation.Prog. Brain Res.2004143677410.1016/S0079‑6123(03)43007‑014653152
    [Google Scholar]
  28. AlheidG.F. McCrimmonD.R. The chemical neuroanatomy of breathing.Respir. Physiol. Neurobiol.20081641-231110.1016/j.resp.2008.07.01418706532
    [Google Scholar]
  29. ShaweeshA.J.M. DreshajI.A. HaxhiuM.A. MartinR.J. Central GABAergic mechanisms are involved in apnea induced by SLN stimulation in piglets.J. Appl. Physiol.20019041570157610.1152/jappl.2001.90.4.1570
    [Google Scholar]
  30. MillerM.J. HaxhiuM.A. Haxhiu-PoskuricaB. DreshajI.A. DiFioreJ.M. MartinR.J. Recurrent hypoxic exposure and reflex responses during development in the piglet.Respir. Physiol.20001231-2516110.1016/S0034‑5687(00)00149‑310996187
    [Google Scholar]
  31. DreshajI.A. HaxhiuM.A. Abu-ShaweeshJ. CareyR.E. MartinR.J. CO2-induced prolongation of expiratory time during early development.Respir. Physiol.19991162-312513210.1016/S0034‑5687(99)00039‑010487298
    [Google Scholar]
  32. CannavòL. PerroneS. ViolaV. MarsegliaL. RosaD.G. GittoE. Oxidative stress and respiratory diseases in preterm newborns.Int. J. Mol. Sci.202122221250410.3390/ijms22221250434830385
    [Google Scholar]
  33. Di RosaG. CavallaroT. AlibrandiA. MarsegliaL. LambertiM. GiaimoE. NicoteraA. BonsignoreM. GaglianoA. Predictive role of early milestones-related psychomotor profiles and long-term neurodevelopmental pitfalls in preterm infants.Early Hum. Dev.2016101495510.1016/j.earlhumdev.2016.04.01227405056
    [Google Scholar]
  34. BallanyiK. VölkerA. RichterD.W. Anoxia induced functional inactivation of neonatal respiratory neurones in vitro .Neuroreport19946116516810.1097/00001756‑199412300‑000427703406
    [Google Scholar]
  35. GaoX. LiuQ. LiuQ. Wong-RileyM.T.T. Excitatory–inhibitory imbalance in hypoglossal neurons during the critical period of postnatal development in the rat.J. Physiol.201158981991200610.1113/jphysiol.2010.19894521486774
    [Google Scholar]
  36. SingerJ.H. TalleyE.M. BaylissD.A. BergerA.J. Development of glycinergic synaptic transmission to rat brain stem motoneurons.J. Neurophysiol.19988052608262010.1152/jn.1998.80.5.26089819267
    [Google Scholar]
  37. RybakI.A. ShevtsovaN.A. PtakK. McCrimmonD.R. Intrinsic bursting activity in the pre-bötzinger complex: Role of persistent sodium and potassium currents.Biol. Cybern.2004901597410.1007/s00422‑003‑0447‑114762725
    [Google Scholar]
  38. KoizumiH. SmithJ.C. Persistent Na+ and K+-dominated leak currents contribute to respiratory rhythm generation in the pre-Bötzinger complex in vitro .J. Neurosci.20082871773178510.1523/JNEUROSCI.3916‑07.200818272697
    [Google Scholar]
  39. FeldmanJ.L. NegroD.C.A. Looking for inspiration: New perspectives on respiratory rhythm.Nat. Rev. Neurosci.20067323224110.1038/nrn187116495944
    [Google Scholar]
  40. PfeifferA. ZhangW. Postnatal development of GABAB-receptor- mediated modulation of potassium currents in brainstem respiratory network of mouse.Respir. Physiol. Neurobiol.20071581222910.1016/j.resp.2007.03.00217428748
    [Google Scholar]
  41. RitterB. ZhangW. Early postnatal maturation of GABA A -mediated inhibition in the brainstem respiratory rhythm-generating network of the mouse.Eur. J. Neurosci.20001282975298410.1046/j.1460‑9568.2000.00152.x10971638
    [Google Scholar]
  42. DelpireE. Cation-chloride cotransporters in neuronal communication.Int. Union Physiol. Sci./Am.Physiol. Soc.200015630931210.1152/physiologyonline.2000.15.6.309
    [Google Scholar]
  43. RussellJ.M. Sodium-potassium-chloride cotransport.Physiol. Rev.200080121127610.1152/physrev.2000.80.1.21110617769
    [Google Scholar]
  44. RileyW.M.T.T. LiuQ. Neurochemical development of brain stem nuclei involved in the control of respiration.Respir. Physiol. Neurobiol.20051491-3839810.1016/j.resp.2005.01.01116203213
    [Google Scholar]
  45. SmithJ.C. EllenbergerH.H. BallanyiK. RichterD.W. FeldmanJ.L. Pre-Bötzinger complex: A brainstem region that may generate respiratory rhythm in mammals.Science1991254503272672910.1126/science.16830051683005
    [Google Scholar]
  46. SmithJ.C. BallanyiK. RichterD.W. Whole-cell patch-clamp recordings from respiratory neurons in neonatal rat brainstem in vitro .Neurosci. Lett.1992134215315610.1016/0304‑3940(92)90504‑Z1589140
    [Google Scholar]
  47. MoonR.Y. HorneR.S.C. HauckF.R. Sudden infant death syndrome.Lancet200737095981578158710.1016/S0140‑6736(07)61662‑617980736
    [Google Scholar]
  48. BrunetJ.F. PattynA. Phox2 genes — From patterning to connectivity.Curr. Opin. Genet. Dev.200212443544010.1016/S0959‑437X(02)00322‑212100889
    [Google Scholar]
  49. WrobelL.J. OgierM. ChatonnetF. AutranS. MézièresV. BrissonT.M. McLeanH. TaeronC. ChampagnatJ. Abnormal inspiratory depth in Phox2a haploinsufficient mice.Neuroscience2007145138439210.1016/j.neuroscience.2006.11.05517218061
    [Google Scholar]
  50. AmielJ. LaudierB. BitachA.T. TrangH. de PontualL. GenerB. TrochetD. EtcheversH. RayP. SimonneauM. VekemansM. MunnichA. GaultierC. LyonnetS. Polyalanine expansion and frameshift mutations of the paired-like homeobox gene PHOX2B in congenital central hypoventilation syndrome.Nat. Genet.200333445946110.1038/ng113012640453
    [Google Scholar]
  51. BachettiT. MateraI. BorghiniS. DucaM.D. RavazzoloR. CeccheriniI. Distinct pathogenetic mechanisms for PHOX2B associated polyalanine expansions and frameshift mutations in congenital central hypoventilation syndrome.Hum. Mol. Genet.200514131815182410.1093/hmg/ddi18815888479
    [Google Scholar]
  52. AbbottS.B.G. StornettaR.L. FortunaM.G. DepuyS.D. WestG.H. HarrisT.E. GuyenetP.G. Photostimulation of retrotrapezoid nucleus phox2b-expressing neurons in vivo produces long-lasting activation of breathing in rats.J. Neurosci.200929185806581910.1523/JNEUROSCI.1106‑09.200919420248
    [Google Scholar]
  53. MateraI. BachettiT. PuppoF. Di DucaM. MorandiF. CasiraghiG.M. CilioM.R. HennekamR. HofstraR. SchöberJ.G. RavazzoloR. OttonelloG. CeccheriniI. PHOX2B mutations and polyalanine expansions correlate with the severity of the respiratory phenotype and associated symptoms in both congenital and late onset Central Hypoventilation syndrome.J. Med. Genet.200441537338010.1136/jmg.2003.01541215121777
    [Google Scholar]
  54. de PontualL. NépoteV. BitachA.T. HalabiahA.H. TrangH. ElghouzziV. LevacherB. BenihoudK. AugéJ. FaureC. LaudierB. VekemansM. MunnichA. PerricaudetM. GuillemotF. GaultierC. LyonnetS. SimonneauM. AmielJ. Noradrenergic neuronal development is impaired by mutation of the proneural HASH-1 gene in congenital central hypoventilation syndrome (Ondine’s curse).Hum. Mol. Genet.200312233173318010.1093/hmg/ddg33914532329
    [Google Scholar]
  55. RheeJ.W. ArataA. SelleriL. JacobsY. ArataS. OnimaruH. ClearyM.L. Pbx3 deficiency results in central hypoventilation.Am. J. Pathol.200416541343135010.1016/S0002‑9440(10)63392‑515466398
    [Google Scholar]
  56. ThaparA. CooperM. RutterM. Neurodevelopmental disorders.Lancet Psychiatry20174433934610.1016/S2215‑0366(16)30376‑527979720
    [Google Scholar]
  57. Morris-RosendahlD.J. CrocqM.A. Neurodevelopmental disorders—the history and future of a diagnostic concept. Dialogues Clin. Neurosci.2020221657210.31887/DCNS.2020.22.1/macrocq32699506
    [Google Scholar]
  58. TarquinioD.C. HouW. NeulJ.L. BerkmenG.K. DrummondJ. AronoffE. HarrisJ. LaneJ.B. KaufmannW.E. MotilK.J. GlazeD.G. SkinnerS.A. PercyA.K. The course of awake breathing disturbances across the lifespan in Rett syndrome.Brain Dev.201840751552910.1016/j.braindev.2018.03.01029657083
    [Google Scholar]
  59. OldforsA. SouranderP. ArmstrongD.L. PercyA.K. EngerströmW.I. HagbergB.A. Rett syndrome: Cerebellar pathology.Pediatr. Neurol.19906531031410.1016/0887‑8994(90)90022‑S2242172
    [Google Scholar]
  60. MurakamiJ.W. CourchesneE. HaasR.H. PressG.A. CourchesneY.R. Cerebellar and cerebral abnormalities in Rett syndrome: A quantitative MR analysis.AJR Am. J. Roentgenol.1992159117718310.2214/ajr.159.1.16096931609693
    [Google Scholar]
  61. EbertD. HefterH. DohleC. FreundH.J. Ataxic breathing during alternating forearm movements of various frequencies in cerebellar patients.Neurosci. Lett.1995193314514810.1016/0304‑3940(95)11674‑L7478169
    [Google Scholar]
  62. ZoghbiH.Y. PercyA.K. GlazeD.G. ButlerI.J. RiccardiV.M. Reduction of biogenic amine levels in the Rett syndrome.N. Engl. J. Med.19853131592192410.1056/NEJM1985101031315042412119
    [Google Scholar]
  63. GuyenetP.G. Regulation of breathing and autonomic outflows by chemoreceptors.Compr. Physiol.2014441511156210.1002/cphy.c14000425428853
    [Google Scholar]
  64. TowardM.A. AbdalaA.P. KnoppS.J. PatonJ.F.R. BissonnetteJ.M. Increasing brain serotonin corrects CO2 chemosensitivity in methyl-CpG-binding protein 2 (Mecp2)-deficient mice.Exp. Physiol.201398384284910.1113/expphysiol.2012.06987223180809
    [Google Scholar]
  65. RouxJ.C. DuraE. MonclaA. ManciniJ. VillardL. Treatment with desipramine improves breathing and survival in a mouse model for Rett syndrome.Eur. J. Neurosci.20072571915192210.1111/j.1460‑9568.2007.05466.x17439480
    [Google Scholar]
  66. LioyD.T. GargS.K. MonaghanC.E. RaberJ. FoustK.D. KasparB.K. HirrlingerP.G. KirchhoffF. BissonnetteJ.M. BallasN. MandelG. A role for glia in the progression of Rett’s syndrome.Nature2011475735749750010.1038/nature1021421716289
    [Google Scholar]
  67. TurovskyE. KaragiannisA. AbdalaA.P. GourineA.V. Impaired CO 2 sensitivity of astrocytes in a mouse model of Rett syndrome.J. Physiol.2015593143159316810.1113/JP27036925981852
    [Google Scholar]
  68. StaflerP. WallisC. Prader-Willi syndrome: Who can have growth hormone?Arch. Dis. Child.200893434134510.1136/adc.2007.12633418089632
    [Google Scholar]
  69. MillerJ.L. CouchJ. SchwenkK. LongM. TowlerS. TheriaqueD.W. HeG. LiuY. DriscollD.J. LeonardC.M. Early childhood obesity is associated with compromised cerebellar development.Dev. Neuropsychol.200934327228310.1080/8756564080253096119437203
    [Google Scholar]
  70. ChanderV. WanglerM. GibbsR. MurdockD. Xia-gibbs syndrome. AdamM.P. Seattle: GeneReviews®. University of Washington 2021.
    [Google Scholar]
  71. GoyalC. NaqviW.M. SahuA. AujlaA.S. Xia-gibbs syndrome: A review of literature.Cureus20201212e1235210.7759/cureus.1235233520547
    [Google Scholar]
  72. ZweierC. StichtH. BijlsmaE.K. SmithC.J. BoonenS.E. FryerA. GreallyM.T. HoffmannL. den HollanderN.S. JongmansM. KantS.G. KingM.D. LynchS.A. McKeeS. MidroA.T. ParkS-M. RicottiV. TarantinoE. WesselsM. PeippoM. RauchA. Further delineation of Pitt-Hopkins syndrome: Phenotypic and genotypic description of 16 novel patients.J. Med. Genet.2008451173874410.1136/jmg.2008.06012918728071
    [Google Scholar]
  73. AmielJ. RioM. PontualL. RedonR. MalanV. BoddaertN. PlouinP. CarterN.P. LyonnetS. MunnichA. ColleauxL. Mutations in TCF4, encoding a class I basic helix-loop-helix transcription factor, are responsible for Pitt-Hopkins syndrome, a severe epileptic encephalopathy associated with autonomic dysfunction.Am. J. Hum. Genet.200780598899310.1086/51558217436254
    [Google Scholar]
  74. MainieriG. MontiniA. NicoteraA. RosaD.G. ProviniF. LoddoG. The genetics of sleep disorders in children: A narrative review.Brain Sci.20211110125910.3390/brainsci1110125934679324
    [Google Scholar]
  75. MantiS. CutrupiM.C. CuppariC. FerroE. DipasqualeV. Di RosaG. ChimenzR. La RosaM.A. ValentiA. SalpietroV. Inflammatory biomarkers and intellectual disability in patients with Down syndrome.J. Intellect. Disabil. Res.201862538239010.1111/jir.1247029349839
    [Google Scholar]
  76. KazachkovM. PalmaJ.A. KaufmannN.L. Respiratory care in familial dysautonomia: Systematic review and expert consensus recommendations.Respir. Med.20181413746
    [Google Scholar]
  77. PalmaJ. A. KaufmannN.L. MoraF.C. PercivalL. SantiestebanM.C. KaufmannH. Current treatments in familial dysautonomia.Expert Opin Pharmacother.201415182653267110.1517/14656566.2014.970530
    [Google Scholar]
  78. AxelrodF.B. Familial dysautonomia.Muscle & nerve200429335236310.1002/mus.1049
    [Google Scholar]
  79. ZabalaL.M. GuzzettaN.A. Cyanotic congenital heart disease (CCHD): Focus on hypoxemia, secondary erythrocytosis, and coagulation alterations.Paediatr. Anaesth.2015251098198910.1111/pan.12705
    [Google Scholar]
  80. SadowskaM. HujarS.B. KopytaI. Cerebral palsy: Current opinions on definition, epidemiology, risk factors, classification and treatment options.Neuropsychiatr. Dis. Treat.2020161505151810.2147/NDT.S23516532606703
    [Google Scholar]
  81. SpotoG. AmoreG. VetriL. QuatrosiG. CafeoA. GittoE. NicoteraA.G. Di RosaG. Cerebellum and prematurity: A complex interplay between disruptive and dysmaturational events.Front. Syst. Neurosci.20211565516410.3389/fnsys.2021.65516434177475
    [Google Scholar]
  82. MarretS. VanhulleC. LaquerriereA. Pathophysiology of cerebral palsy.Handb. Clin. Neurol.201311116917610.1016/B978‑0‑444‑52891‑9.00016‑623622161
    [Google Scholar]
  83. MantiS. XerraF. SpotoG. ButeraA. GittoE. RosaD.G. NicoteraA.G. Neurotrophins: Expression of brain–lung axis development.Int. J. Mol. Sci.2023248708910.3390/ijms2408708937108250
    [Google Scholar]
  84. MarpoleR. BlackmoreA.M. GibsonN. CooperM.S. LangdonK. WilsonA.C. Evaluation and management of respiratory illness in children with cerebral palsy.Front Pediatr.2020833310.3389/fped.2020.0033332671000
    [Google Scholar]
  85. BoelL. PernetK. ToussaintM. IdesK. LeemansG. HaanJ. HoorenbeeckV.K. VerhulstS. Respiratory morbidity in children with cerebral palsy: An overview.Dev. Med. Child Neurol.201961664665310.1111/dmcn.1406030320434
    [Google Scholar]
  86. MantiS. GaldoF. ParisiG.F. NapolitanoM. DecimoF. LeonardiS. GiudiceM.D.M. Long-term effects of bronchopulmonary dysplasia on lung function: A pilot study in preschool children’s cohort.J. Asthma20215891186119310.1080/02770903.2020.177928932508174
    [Google Scholar]
  87. BongiovanniA. MantiS. ParisiG.F. PapaleM. MulèE. RotoloN. LeonardiS. Focus on gastroesophageal reflux disease in patients with cystic fibrosis.World J. Gastroenterol.202026416322633410.3748/wjg.v26.i41.632233244195
    [Google Scholar]
  88. PulvirentiG. SortinoV. MantiS. ParisiG.F. PapaleM. GiallongoA. LeonardiS. Pathogenesis, diagnosis, dietary management, and prevention of gastrointestinal disorders in the paediatric population.Ital. J. Pediatr.202248117210.1186/s13052‑022‑01366‑836089576
    [Google Scholar]
  89. GarciaJ. WicalB. WicalW. SchafferL. WicalT. WendorfH. RoikoS. Obstructive sleep apnea in children with cerebral palsy and epilepsy.Dev. Med. Child Neurol.201658101057106210.1111/dmcn.1309126991829
    [Google Scholar]
  90. ElsayedR. HasaneinB. SayyahH. El-AuotyM. TharwatN. BelalT. Sleep assessment of children with cerebral palsy: Using validated sleep questionnaire.Ann. Indian Acad. Neurol.2013161626510.4103/0972‑2327.10770823661965
    [Google Scholar]
  91. RomeoD.M. BrognaC. QuintilianiM. BaranelloG. PaglianoE. CasalinoT. SaccoA. RicciD. MallardiM. MustoE. SivoS. CotaF. BattagliaD. BruniO. MercuriE. Sleep disorders in children with cerebral palsy: Neurodevelopmental and behavioral correlates.Sleep Med.201415221321810.1016/j.sleep.2013.08.79324424102
    [Google Scholar]
  92. KohS. WardS.L. LinM. ChenL.S. Sleep apnea treatment improves seizure control in children with neurodevelopmental disorders.Pediatr. Neurol.2000221363910.1016/S0887‑8994(99)00114‑910669203
    [Google Scholar]
  93. MarsegliaL.M. NicoteraA. SalpietroV. GiaimoE. CardileG. BonsignoreM. AlibrandiA. CaccamoD. MantiS. D’AngeloG. MamìC. RosaD.G. Hyperhomocysteinemia and MTHFR polymorphisms as antenatal risk factors of white matter abnormalities in two cohorts of late preterm and full term newborns.Oxid. Med. Cell. Longev.201520151810.1155/2015/54313425829992
    [Google Scholar]
  94. KouchiH. OgierM. DieusetG. MoralesA. GeorgesB. RouanetJ.L. MartinB. RyvlinP. RheimsS. BezinL. Respiratory dysfunction in two rodent models of chronic epilepsy and acute seizures and its link with the brainstem serotonin system.Sci. Rep.20221211024810.1038/s41598‑022‑14153‑635715469
    [Google Scholar]
  95. SomboonT. DambergerG.M.M. SchaeferF.N. Epilepsy and sleep-related breathing disturbances.Chest2019156117218110.1016/j.chest.2019.01.01630711481
    [Google Scholar]
  96. SpotoG. ValentiniG. SaiaM.C. ButeraA. AmoreG. SalpietroV. NicoteraA.G. RosaD.G. Synaptopathies in developmental and epileptic encephalopathies: A focus on pre-synaptic dysfunction.Front. Neurol.20221382621110.3389/fneur.2022.82621135350397
    [Google Scholar]
  97. TeranF.A. BravoE. RichersonG.B. Sudden unexpected death in epilepsy: Respiratory mechanisms.Handb. Clin. Neurol.202218915317610.1016/B978‑0‑323‑91532‑8.00012‑436031303
    [Google Scholar]
  98. VerducciC. HussainF. DonnerE. MoseleyB.D. BuchhalterJ. HesdorfferD. FriedmanD. DevinskyO. SUDEP in the north American SUDEP registry.Neurology2019933e227e23610.1212/WNL.000000000000777831217259
    [Google Scholar]
  99. SpotoG. SaiaM.C. AmoreG. GittoE. LoddoG. MainieriG. NicoteraA.G. RosaD.G. Neonatal seizures: An overview of genetic causes and treatment options.Brain Sci.20211110129510.3390/brainsci1110129534679360
    [Google Scholar]
  100. OliveiraA.J. ZamagniM. DolsoP. BassettiM.A. GigliG.L. Respiratory disorders during sleep in patients with epilepsy: Effect of ventilatory therapy on EEG interictal epileptiform discharges.Clin. Neurophysiol.2000111S2S141S14510.1016/S1388‑2457(00)00415‑610996568
    [Google Scholar]
  101. GuilmatreA. LegallicS. SteelG. WillisA. Di RosaG. GoldenbergA. GarraudD.V. GuetA. MignotC. PortesD.V. ValayannopoulosV. Van MaldergemL. HoffmanJ.D. IzziC. TarisE.C. OrcesiS. BonaféL. Le GalloudecE. MaureyH. IoosC. AfenjarA. BlanchetP. EchenneB. RoubertieA. FrebourgT. ValleD. CampionD. Type I hyperprolinemia: Genotype/phenotype correlations.Hum. Mutat.201031896196510.1002/humu.2129620524212
    [Google Scholar]
/content/journals/crmr/10.2174/011573398X283376240222051823
Loading
/content/journals/crmr/10.2174/011573398X283376240222051823
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test