Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-398X
  • E-ISSN:

Abstract

Background

Epilepsy is a chronic brain condition affecting over 50 million people worldwide. Several new anti-seizure medications (ASMs) have been introduced to treat epilepsy in recent decades.

Objective

Nearby the specific therapeutic action, ASMs, like other types of pharmacotherapy, can produce various side effects. In this review, we shall analyze the different pharmaceutical classes of ASMs, their mechanism of action, and their interaction with the respiratory system.

Methods

This manuscript is based on a retrospective review of English publications indexed by Pubmed, UpToDate and datasheets published by the European Medicines Agency and the Food and Drug Administration (FDA), using various terms reminiscent of ASMs and pulmonary function.

Results

ASMs act on organism homeostasis in different ways, acting on lung function directly and indirectly and playing a protective or damaging role. A damaging direct lung involvement ranged from infections, hypersensitivity reactions, and respiratory depression to other structured pulmonary diseases. Meanwhile, a damaging indirect effect, might be constituted by pulmonary artery hypertension. On the other hand, a protective effect might be the expression of developmental processing, decreasing airway remodelling in asthma patients, vascular remodelling in pulmonary hypertension and, nonetheless, anti-inflammatory and immunomodulatory actions.

Conclusion

An adequate awareness of ASMs effects on the respiratory system seems essential for better managing frail individuals or/and those predisposed to respiratory disorders to improve our patients' clinical outcomes.

Loading

Article metrics loading...

/content/journals/crmr/10.2174/011573398X279958240131101144
2024-02-02
2024-11-23
Loading full text...

Full text loading...

References

  1. World Health Organization (WHO)EpilepsyAvailable from: https://www.who.int/news-room/fact-sheets/detail/epilepsy 2023
    [Google Scholar]
  2. SpecchioN. PietrafusaN. PeruccaE. CrossJ. H. New paradigms for the treatment of pediatric monogenic epilepsies: Progressing toward precision medicine.Epilepsy & behavior : E&B2022131Pt B10796110.1016/j.yebeh.2021.107961
    [Google Scholar]
  3. RomãoT.T. AngelimA.I.M. PradoH.J.P. GoesF.V. PiresM.E.P. FontanaR.S. PiresL.C. FernandesA.R. D’Andrea-MeiraI. Use of lacosamide in children: Experience of a tertiary medical care center in Brazil.Arq. Neuropsiquiatr.202280111090109610.1055/s‑0042‑175836636577407
    [Google Scholar]
  4. DriessenJ.T. Wammes-van der HeijdenE.A. VerschuureP. FasenK.C.F.M. TeunissenM.W.A. MajoieH.J.M. Effectiveness and tolerability of lacosamide in children with drug resistant epilepsy.Epilepsy Behav. Rep.20232110057410.1016/j.ebr.2022.10057436545476
    [Google Scholar]
  5. BeckerL.L. KaindlA.M. Corticosteroids in childhood epilepsies: A systematic review.Front. Neurol.202314114225310.3389/fneur.2023.114225336970534
    [Google Scholar]
  6. IapadreG. BalaguraG. ZagaroliL. StrianoP. VerrottiA. Pharmacokinetics and drug interaction of antiepileptic drugs in children and adolescents.Paediatr. Drugs201820542945310.1007/s40272‑018‑0302‑430003498
    [Google Scholar]
  7. SpotoG. ValentiniG. SaiaM.C. ButeraA. AmoreG. SalpietroV. NicoteraA.G. Di RosaG. Synaptopathies in developmental and epileptic encephalopathies: A focus on pre-synaptic dysfunction.Front. Neurol.20221382621110.3389/fneur.2022.82621135350397
    [Google Scholar]
  8. CornaggiaC. M. Di RosaG. PolitaM. MagauddaA. PerinC. BeghiM. Conversation analysis in the differentiation of psychogenic nonepileptic and epileptic seizures in pediatric and adolescent settingsEpilepsy & behavior : E&B20166223123810.1016/j.yebeh.2016.07.006
    [Google Scholar]
  9. VerrottiA. IapadreG. Di DonatoG. Di FrancescoL. ZagaroliL. MatricardiS. BelcastroV. IezziM.L. Pharmacokinetic considerations for anti-epileptic drugs in children.Expert Opin. Drug Metab. Toxicol.201915319921110.1080/17425255.2019.157536130689454
    [Google Scholar]
  10. SpotoG. AmoreG. VetriL. QuatrosiG. CafeoA. GittoE. NicoteraA.G. Di RosaG. Cerebellum and prematurity: A complex interplay between disruptive and dysmaturational events.Front. Syst. Neurosci.20211565516410.3389/fnsys.2021.65516434177475
    [Google Scholar]
  11. YuenA. W. C. KeezerM. R. SanderJ. W. Epilepsy is a neurological and a systemic disorder.Epilepsy & behavior : E&B201878576110.1016/j.yebeh.2017.10.010
    [Google Scholar]
  12. Di RosaG. LenzoP. ParisiE. NeriM. GuerreraS. NicoteraA. AlibrandiA. GermanòE. CaccamoD. SpanòM. TortorellaG. Role of plasma homocysteine levels and MTHFR polymorphisms on IQ scores in children and young adults with epilepsy treated with antiepileptic drugs.Epilepsy & behavior : E&B201329354855110.1016/j.yebeh.2013.09.034
    [Google Scholar]
  13. LacueyN. ZonjyB. HampsonJ.P. RaniM.R.S. ZarembaA. SainjuR.K. GehlbachB.K. SchueleS. FriedmanD. DevinskyO. NeiM. HarperR.M. AllenL. DiehlB. MillichapJ.J. BatemanL. GrannerM.A. DragonD.N. RichersonG.B. LhatooS.D. The incidence and significance of periictal apnea in epileptic seizures.Epilepsia201859357358210.1111/epi.1400629336036
    [Google Scholar]
  14. IslamM.Z. HossainS.I. DeplazesE. LuoZ. SahaS.C. The concentration-dependent effect of hydrocortisone on the structure of model lung surfactant monolayer by using an in silico approach.RSC Advances20221251333133332810.1039/D2RA05268G36506480
    [Google Scholar]
  15. MansourN.M. El-SherbinyD.T. IbrahimF.A. El-SubbaghH.I. Analysis of two mixtures containing racetams in their pharmaceuticals using simple spectrophotometric methodologies.Ann. Pharm. Fr.202280688589610.1016/j.pharma.2022.06.00135718111
    [Google Scholar]
  16. MalykhA.G. SadaieM.R. Piracetam and piracetam-like drugs: from basic science to novel clinical applications to CNS disorders.Drugs201070328731210.2165/11319230‑000000000‑0000020166767
    [Google Scholar]
  17. VerrottiA. GrassoE.A. CacciatoreM. MatricardiS. StrianoP. Potential role of brivaracetam in pediatric epilepsy.Acta Neurol. Scand.20211431192610.1111/ane.1334732966640
    [Google Scholar]
  18. Food and drug administration (FDA). Briviact (brivaracetam) prescribing information.2021Available from: https://www.accessdata.fda.gov/drugsa tfda_docs/label/2021/205836s009,205837s007,205838s006lbl.pdf
  19. European medicines agency (EMA), Keppra (Levetiracetam), Summary of product characteristics.2023Avaialbe from: https://www.ema.europa.eu/en/documents/product-information/keppra-epar-product-information_en.pdf
  20. DelantyN. JonesJ. TonnerF. Adjunctive levetiracetam in children, adolescents, and adults with primary generalized seizures: Open-label, noncomparative, multicenter, long-term follow-up study.Epilepsia201253111111910.1111/j.1528‑1167.2011.03300.x22050371
    [Google Scholar]
  21. WinbladB. Piracetam: A review of pharmacological properties and clinical uses.CNS Drug Rev.200511216918210.1111/j.1527‑3458.2005.tb00268.x16007238
    [Google Scholar]
  22. van HooftJ.A. DoughertyJ.J. EndemanD. NicholsR.A. WadmanW.J. Gabapentin inhibits presynaptic Ca2+ influx and synaptic transmission in rat hippocampus and neocortex.Eur. J. Pharmacol.2002449322122810.1016/S0014‑2999(02)02044‑712167463
    [Google Scholar]
  23. CrossA.L. ViswanathO. ShermanA.L. Pregabalin.StatPearlsStatPearls Publishing2022
    [Google Scholar]
  24. ŁukasiukK. LasońW. Emerging molecular targets for anti-epileptogenic and epilepsy modifying drugs.Int. J. Mol. Sci.2023243292810.3390/ijms2403292836769250
    [Google Scholar]
  25. MoranoA. PalleriaC. CitraroR. NesciV. De CaroC. GiallonardoA.T. De SarroG. RussoE. Di BonaventuraC. Immediate and controlled-release pregabalin for the treatment of epilepsy.Expert Rev. Neurother.201919121167117710.1080/14737175.2019.168126531623493
    [Google Scholar]
  26. ZaccaraG. GangemiP. PeruccaP. SpecchioL. The adverse event profile of pregabalin: A systematic review and meta-analysis of randomized controlled trials.Epilepsia201152482683610.1111/j.1528‑1167.2010.02966.x21320112
    [Google Scholar]
  27. PanebiancoM. Al-BachariS. HuttonJ.L. MarsonA.G. Gabapentin add-on treatment for drug-resistant focal epilepsy.Cochrane Libr.202120211CD00141510.1002/14651858.CD001415.pub433434292
    [Google Scholar]
  28. YasaeiR. KattaS. SaadabadiA. Gabapentin.StatPearlsStatPearls Publishing2022
    [Google Scholar]
  29. SmithR.V. HavensJ.R. WalshS.L. Gabapentin misuse, abuse and diversion: A systematic review.Addiction201611171160117410.1111/add.1332427265421
    [Google Scholar]
  30. AntinewJ. PitroskyB. KnappL. AlmasM. PitmanV. LiuJ. CraiuD. ModequilloM. NordliD. FarkasV. FarkasM.K. Pregabalin as adjunctive treatment for focal onset seizures in pediatric patients: A randomized controlled trial.J. Child Neurol.201934524825510.1177/088307381882103530688135
    [Google Scholar]
  31. MannD. AntinewJ. KnappL. AlmasM. LiuJ. ScavoneJ. YangR. ModequilloM. MakedonskaI. OrtizM. KyrychenkoA. NordliD. FarkasV. FarkasM.K. A0081042 study group Pregabalin adjunctive therapy for focal onset seizures in children 1 month to <4 years of age: A double-blind, placebo-controlled, video-electroencephalographic trial.Epilepsia202061461762610.1111/epi.1646632189338
    [Google Scholar]
  32. European medicines agency (EMA), neurontin (Gabapentin), scientific conclusions and grounds for amendment of the summary of product characteristics, labelling and package leaflet presented by the EMA 2023Available from: https://www.ema.europa.eu/en/documents/referral/neurontin-article-30-referral-annex-i-ii-iii_en.pdf
  33. European medicines agency (EMA), Lyrica (Pregabalin), Summary of product characteristics.2023Available from: https://www.ema.europa.eu/en/documents/product-information/lyrica-epar-product-information_en.pdf
  34. ShresthaS. PalaianS. Respiratory concerns of gabapentin and pregabalin: What does it mean to the pharmacovigilance systems in developing countries?F1000 Res.202093210.12688/f1000research.21962.133728039
    [Google Scholar]
  35. SchachterS.C. Antiseizure medications: Mechanism of action, pharmacology, and adverse effectsUpToDate 2023Available from: www.uptodate.com
    [Google Scholar]
  36. Food and drug administration (FDA) (2016), Zarontin (Ethosuximide Capsules, USP).2016Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/012380s036lbl.pdf
  37. DaviesJ.A. Mechanisms of action of antiepileptic drugs.Seizure19954426727110.1016/S1059‑1311(95)80003‑48719918
    [Google Scholar]
  38. LewisC.B. AdamsN. PhenobarbitalStatPearlsStatPearls Publishing2022
    [Google Scholar]
  39. TrinkaE. Phenobarbital in Status epilepticus - Rediscovery of an effective drug. Epilepsy & behavior : E&B202314110910410.1016/j.yebeh.2023.109104
    [Google Scholar]
  40. SuddockJ.T. KentK.J. CainM.D. Barbiturate ToxicityStatPearlsStatPearls Publishing.2023
    [Google Scholar]
  41. de GrootA.C. Patch testing in drug reaction with eosinophilia and systemic symptoms ( DRESS ): A literature review.Contact Dermat.202286644347910.1111/cod.1409035233782
    [Google Scholar]
  42. PorterR.J. DhirA. MacdonaldR.L. RogawskiM.A. Mechanisms of action of antiseizure drugs.Handb. Clin. Neurol.201210866368110.1016/B978‑0‑444‑52899‑5.00021‑622939059
    [Google Scholar]
  43. Tiagabine.LiverTox: Clinical and Research Information on Drug-Induced Liver Injury. National Institute of Diabetes and Digestive and Kidney Diseases2018
    [Google Scholar]
  44. SpillerH.A. WilesD. RussellJ.L. CasavantM.J. Review of toxicity and trends in the use of tiagabine as reported to US poison centers from 2000 to 2012.Hum. Exp. Toxicol.201635210911310.1177/096032711557920625825412
    [Google Scholar]
  45. RahmanM. AwosikaA.O. NguyenH. Valproic acid.StatPearlsStatPearls Publishing. 2023
    [Google Scholar]
  46. KashyapS. BhardwajM. HimralP. Valproic acid-induced eosinophilic pleural effusion: An uncommon occurrence.Lung India2023401828510.4103/lungindia.lungindia_440_2236695265
    [Google Scholar]
  47. RoyceS.G. DangW. VerverisK. De SampayoN. El-OstaA. TangM.L.K. KaragiannisT.C. Protective effects of valproic acid against airway hyperresponsiveness and airway remodeling in a mouse model of allergic airways disease.Epigenetics20116121463147010.4161/epi.6.12.1839622139576
    [Google Scholar]
  48. Food and drug administration (FDA), Sabril (Vigabatrin), Highlights of prescribing information.2018Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/022006s020,020427s018lbl.pdf
  49. LingeshwarP. KaurG. SinghN. SinghS. MishraA. ShuklaS. RamakrishnaR. LaxmanT.S. BhattaR.S. SiddiquiH.H. HanifK. A study on the involvement of GABA-transaminase in MCT induced pulmonary hypertension.Pulm. Pharmacol. Ther.201636102110.1016/j.pupt.2015.11.00226608704
    [Google Scholar]
  50. NickelsK.C. WirrellE.C. Stiripentol in the management of epilepsy.CNS Drugs201731540541610.1007/s40263‑017‑0432‑128434133
    [Google Scholar]
  51. BalestriniS. DocciniV. BoncristianoA. LengeM. De MasiS. GuerriniR. Efficacy and safety of long-term treatment with stiripentol in children and adults with drug-resistant epilepsies: A retrospective cohort study of 196 patients.Drugs Real World Outcomes20229345146110.1007/s40801‑022‑00305‑735680739
    [Google Scholar]
  52. MantegazzaM. CuriaG. BiaginiG. RagsdaleD.S. AvoliM. Voltage-gated sodium channels as therapeutic targets in epilepsy and other neurological disorders.Lancet Neurol.20109441342410.1016/S1474‑4422(10)70059‑420298965
    [Google Scholar]
  53. PalR. KumarB. AkhtarM.J. ChawlaP.A. Voltage gated sodium channel inhibitors as anticonvulsant drugs: A systematic review on recent developments and structure activity relationship studies.Bioorg. Chem.202111510523010.1016/j.bioorg.2021.10523034416507
    [Google Scholar]
  54. GlauserT. Ben-MenachemE. BourgeoisB. CnaanA. GuerreiroC. KälviäinenR. MattsonR. FrenchJ.A. PeruccaE. TomsonT. ILAE Subcommission on AED Guidelines Updated ILAE evidence review of antiepileptic drug efficacy and effectiveness as initial monotherapy for epileptic seizures and syndromes.Epilepsia201354355156310.1111/epi.1207423350722
    [Google Scholar]
  55. TakiaL. KcS. RandhawaM. AnguranaS.K. NallasamyK. BansalA. JayashreeM. Clinical features, intensive care needs, and outcome of carbamazepine poisoning in children.Indian J. Pediatr.202289101022102410.1007/s12098‑022‑04155‑735277811
    [Google Scholar]
  56. DyongT.M. GessB. DumkeC. RolkeR. DohrnM.F. Carbamazepine for chronic muscle pain: A retrospective assessment of indications, side effects, and treatment response.Brain Sci.202313112310.3390/brainsci1301012336672104
    [Google Scholar]
  57. GrunzeA. AmannB.L. GrunzeH. Efficacy of carbamazepine and its derivatives in the treatment of bipolar disorder.Medicina202157543310.3390/medicina5705043333946323
    [Google Scholar]
  58. GallegoM.D.C. GarcíaM.A. Acute carbamazepine intoxication.Neurol. Int.202214361461810.3390/neurolint1403004935893284
    [Google Scholar]
  59. GonçalvesD. MouraR. FerrazC. VitorA.B. VazL. Carbamazepine-induced interstitial pneumonitis associated with pan-hypogammaglobulinemia.Respir. Med. Case Rep.201256810.1016/j.rmedc.2011.12.00126029583
    [Google Scholar]
  60. WilschutF.A. CobbenN.A. ThunnissenF.B. LamersR.J. WoutersE.F. DrentM. Recurrent respiratory distress associated with carbamazepine overdose.Eur. Respir. J.19971092163216510.1183/09031936.97.100921639311520
    [Google Scholar]
  61. BarreiroB. ManresaF. ValldeperasJ. Carbamazepine and the lung.Eur. Respir. J.19903893093110.1183/09031936.93.030809302292288
    [Google Scholar]
  62. TakahashiN. AizawaH. TakataS. MatsumotoK. KotoH. InoueH. HaraN. Acute interstitial pneumonitis induced by carbamazepine.Eur. Respir. J.1993691409141110.1183/09031936.93.060914098287960
    [Google Scholar]
  63. BankaR. WardM.J. Bronchiolitis obliterans and organising pneumonia caused by carbamazepine and mimicking community acquired pneumonia.Postgrad. Med. J.20027892462162210.1136/pmj.78.924.62112415089
    [Google Scholar]
  64. Milesi-LecatA.M. SchmidtJ. AumaitreO. KemenyJ.L. MoinardJ. PietteJ.C. Lupus and pulmonary nodules consistent with bronchiolitis obliterans organizing pneumonia induced by carbamazepine.Mayo Clin. Proc.199772121145114710.4065/72.12.11459413295
    [Google Scholar]
  65. LewisI.J. RosenbloomL. Glandular fever-like syndrome, pulmonary eosinophilia and asthma associated with carbamazepine.Postgrad. Med. J.19825867610010110.1136/pgmj.58.676.1007100019
    [Google Scholar]
  66. TolmieJ. SteerC.R. EdmundsA.T. Pulmonary eosinophilia associated with carbamazepine.Arch. Dis. Child.1983581083383410.1136/adc.58.10.8336639136
    [Google Scholar]
  67. KhanF.M.A. DaveD. RohatgiS. NirhaleS. RaoP. NaphadeP. KotaruV.V.S. GuptaS. GuptaA. DubeyP. Carbamazepine-induced hypersensitivity pneumonitis in a patient with neuromyelitis optica: A case report.Indian J. Physiol. Pharmacol.202266818310.25259/IJPP_282_2021
    [Google Scholar]
  68. AcikgozM. PaksuM.S. GuzelA. AlacamA. AlacamF. Severe carbamazepine intoxication in children: Analysis of a 40-Case Series.Med. Sci. Monit.2016224729473510.12659/MSM.89889927911891
    [Google Scholar]
  69. European medicines agency (EMA). Evaluation of lamictal and associated names.2008Available from: https://www.ema.europa.eu/en/documents/referral/lamictal-article-30-referral-annex-i-ii-iii_en.pdf
  70. EgunsolaO. ChoonaraI. SammonsH.M. Safety of lamotrigine in paediatrics: A systematic review.BMJ Open201556e00771110.1136/bmjopen‑2015‑00771126070796
    [Google Scholar]
  71. SaravananN. Musibay OtaikuO. Namushi NamushiR. Interstitial pneumonitis during lamotrigine therapy.Br. J. Clin. Pharmacol.200560666666710.1111/j.1365‑2125.2005.02493.x16305594
    [Google Scholar]
  72. GhandourahH. BhandalS. BrundlerM.A. NoseworthyM. Bronchiolitis obliterans organising pneumonia associated with anticonvulsant hypersensitivity syndrome induced by lamotrigine.BMJ Case Rep.20162016bcr201420718210.1136/bcr‑2014‑20718226825933
    [Google Scholar]
  73. LayerN. BrandesJ. LührsP.J. WuttkeT.V. KochH. The effect of lamotrigine and other antiepileptic drugs on respiratory rhythm generation in the pre-Bötzinger complex.Epilepsia202162112790280310.1111/epi.1706634553376
    [Google Scholar]
  74. BeydounA. DuPontS. ZhouD. MattaM. NagireV. LagaeL. Current role of carbamazepine and oxcarbazepine in the management of epilepsy.Seizure20208325126310.1016/j.seizure.2020.10.01833334546
    [Google Scholar]
  75. PreussC.V. RandhawaG. WyT.J.P. SaadabadiA. OxcarbazepineStatPearlsStatPearls Publishing2022
    [Google Scholar]
  76. AnejaS. SharmaS. Newer anti-epileptic drugs.Indian Pediatr.201350111033104010.1007/s13312‑013‑0284‑924382900
    [Google Scholar]
  77. GambetaE. ChichorroJ.G. ZamponiG.W. Trigeminal neuralgia: An overview from pathophysiology to pharmacological treatments.Mol. Pain202016174480692090189010.1177/174480692090189031908187
    [Google Scholar]
  78. VasudevA. MacritchieK. VasudevK. WatsonS. GeddesJ. YoungA.H. Oxcarbazepine for acute affective episodes in bipolar disorder.Cochrane Libr.201112CD00485710.1002/14651858.CD004857.pub222161387
    [Google Scholar]
  79. WellingtonK. GoaK.L. Oxcarbazepine.CNS Drugs200115213716310.2165/00023210‑200115020‑0000511460891
    [Google Scholar]
  80. SalariF. GolpayeganiM. GharagozliK. Newer antiepileptic drugs discontinuation due to adverse effects: An observational study.Ann. Indian Acad. Neurol.2019221273010.4103/aian.AIAN_25_1830692756
    [Google Scholar]
  81. Abou-KhalilB.W. Antiepileptic drugs. Continuum 201613215610.1212/CON.0000000000000289
    [Google Scholar]
  82. TrinkaE. LeitingerM. Management of status epilepticus, refractory status epilepticus, and super-refractory status epilepticus.Continuum202228255960210.1212/CON.000000000000110335393970
    [Google Scholar]
  83. SchnellS. MarrodanM. AcostaJ.N. BonamicoL. GoicocheaM.T. Trigeminal neuralgia crisis – Intravenous phenytoin as acute rescue treatment.Headache202060102247225310.1111/head.1396332981076
    [Google Scholar]
  84. PatockaJ. WuQ. NepovimovaE. KucaK. Phenytoin - An anti-seizure drug: Overview of its chemistry, pharmacology and toxicology.Food and chemical toxicology : An international journal published for the British Industrial Biological Research Association202014211139310.1016/j.fct.2020.111393
    [Google Scholar]
  85. ImamS.H. LandryK. KaulV. GambhirH. JohnD. KlossB. Free phenytoin toxicity.Am. J. Emerg. Med.201432101301.e31301.e410.1016/j.ajem.2014.03.03624768668
    [Google Scholar]
  86. YermakovV.M. HittiI.F. SuttonA.L. Necrotizing vasculitis associated with diphenylhydantoin: Two fatal cases.Hum. Pathol.198314218218410.1016/S0046‑8177(83)80248‑26131861
    [Google Scholar]
  87. ChamberlainD.W. HylandR.H. RossD.J. Diphenylhydantoin-induced lymphocytic interstitial pneumonia.Chest198690345846010.1378/chest.90.3.4583743167
    [Google Scholar]
  88. MahatmaM. HaponikE.F. NelsonS. LopezA. SummerW.R. Phenytoin-induced acute respiratory failure with pulmonary eosinophilia.Am. J. Med.1989871939410.1016/S0002‑9343(89)80490‑52741988
    [Google Scholar]
  89. DixitR. DixitK. NuwalP. BanerjeeA. SharmaS. DaveL. Diphenylhydantoin (phenytoin)-induced chronic pulmonary disease.Lung India200926415515810.4103/0970‑2113.5635620532004
    [Google Scholar]
  90. TalwarD. PeriwalP. JoshiS. GothiR. Phenytoin-induced acute hypersensitivity pneumonitis.Lung India201532663163410.4103/0970‑2113.16812626664176
    [Google Scholar]
  91. KheirF. DarocaP. LaskyJ. Phenytoin-associated granulomatous pulmonary vasculitis.Am. J. Ther.2016231e311e31410.1097/MJT.000000000000000624247101
    [Google Scholar]
  92. Annoh GordonR. SilhanL. A case report of phenytoin-induced eosinophilic pneumonia.Respir. Med. Case Rep.20192810092210.1016/j.rmcr.2019.10092231463188
    [Google Scholar]
  93. WalkerA. RupalA. JaniC. Al OmariO. SinghH. PatelD. PerrinoC. McCannonJ. Longstanding phenytoin use as a cause of progressive dyspnea.Chest20221612e91e9610.1016/j.chest.2021.08.07935131079
    [Google Scholar]
  94. TidwellA. SwimsM. Review of the newer antiepileptic drugs.Am. J. Manag. Care20039325327612643343
    [Google Scholar]
  95. HancockE.C. CrossJ.H. Treatment of lennox-gastaut syndrome.Cochrane Libr.201320132CD00327710.1002/14651858.CD003277.pub323450537
    [Google Scholar]
  96. ZouL.P. LinQ. QinJ. CaiF.C. LiuZ.S. MixE. Topiramate Study Group Evaluation of open-label topiramate as primary or adjunctive therapy in infantile spasms.Clin. Neuropharmacol.2008312869210.1097/WNF.0b013e3180986d4318382180
    [Google Scholar]
  97. BitonV. BourgeoisB.F. YTC/YTCE Study Investigators Topiramate in patients with juvenile myoclonic epilepsy.Arch. Neurol.200562111705170810.1001/archneur.62.11.170516286543
    [Google Scholar]
  98. KhalilN.Y. AlRabiahH.K. AL RashoudS.S. BariA. WaniT.A. Topiramate.Profiles Drug Subst. Excip. Relat. Methodol.20194433337810.1016/bs.podrm.2018.11.00531029222
    [Google Scholar]
  99. LatiniG. VerrottiA. MancoR. ScardapaneA. VecchioA. ChiarelliF. Topiramate: its pharmacological properties and therapeutic efficacy in epilepsy.Mini Rev. Med. Chem.200881102310.2174/13895570878333156818220981
    [Google Scholar]
  100. ShankR.P. GardockiJ.F. StreeterA.J. MaryanoffB.E. An overview of the preclinical aspects of topiramate: Pharmacology, pharmacokinetics, and mechanism of action.Epilepsia200041s13910.1111/j.1528‑1157.2000.tb02163.x10768292
    [Google Scholar]
  101. BaiY.F. ZengC. JiaM. XiaoB. Molecular mechanisms of topiramate and its clinical value in epilepsy.Seizure202298515610.1016/j.seizure.2022.03.02435421622
    [Google Scholar]
  102. KoC. KongC. Topiramate-induced metabolic acidosis: Report of two cases.Dev. Med. Child Neurol.2001431070170410.1017/S001216220100126811665828
    [Google Scholar]
  103. LaskeyA.L. KornD.E. MoorjaniB.I. PatelN.C. TobiasJ.D. Central hyperventilation related to administration of topiramate.Pediatr. Neurol.200022430530810.1016/S0887‑8994(99)00143‑510788749
    [Google Scholar]
  104. GuptaS. GaoJ. J. EmmettM. FenvesA. Z. Topiramate and metabolic acidosis: An evolving story.Hospital practice 201745519219510.1080/21548331.2017.1370969
    [Google Scholar]
  105. KadianR. KumarA. ZonisamideStatPearlsStatPearls Publishing2022
    [Google Scholar]
  106. BrodieM.J. Ben-MenachemE. ChouetteI. GiorgiL. Zonisamide: its pharmacology, efficacy and safety in clinical trials.Acta Neurol. Scand.2012126194192810.1111/ane.1201623106522
    [Google Scholar]
  107. KothareS. V. ValenciaI. KhuranaD. S. HardisonH. MelvinJ. J. LegidoA. Efficacy and tolerability of zonisamide in juvenile myoclonic epilepsy.Epileptic Disord.200464267270
    [Google Scholar]
  108. LotzeT.E. WilfongA.A. Zonisamide treatment for symptomatic infantile spasms.Neurology200462229629810.1212/01.WNL.0000103284.73495.3514745073
    [Google Scholar]
  109. KothareS.V. KaleyiasJ. Zonisamide: Review of pharmacology, clinical efficacy, tolerability, and safety.Expert Opin. Drug Metab. Toxicol.20084449350610.1517/17425255.4.4.49318433351
    [Google Scholar]
  110. BitonV. Zonisamide: Newer antiepileptic agent with multiple mechanisms of action.Expert Rev. Neurother.20044693594310.1586/14737175.4.6.93515853520
    [Google Scholar]
  111. SillsG.J. BrodieM.J. Pharmacokinetics and drug interactions with zonisamide.Epilepsia200748343544110.1111/j.1528‑1167.2007.00983.x17319920
    [Google Scholar]
  112. CrossJ. H. AuvinS. PattenA. GiorgiL. Safety and tolerability of zonisamide in paediatric patients with epilepsy. Eur. J. Paediatr. Neurol.201418674775810.1016/j.ejpn.2014.07.005
    [Google Scholar]
  113. European medicines agency (EMA). Zonegran (Zonisamide). Summary of product characteristics.2023Available from: https://www.ema.europa.eu/en/documents/product-information/zonegran-epar-product-information_en.pdf
  114. ShibuyaR. TanizakiH. NakajimaS. KoyanagiI. KataokaT. MiyachiY. KabashimaK. DIHS/DRESS with remarkable eosinophilic pneumonia caused by zonisamide.Acta Derm. Venereol.201595222923010.2340/00015555‑186324696158
    [Google Scholar]
  115. LattanziS. TrinkaE. StrianoP. RocchiC. SalveminiS. SilvestriniM. BrigoF. Highly purified cannabidiol for epilepsy treatment: A systematic review of epileptic conditions beyond dravet syndrome and lennox–gastaut syndrome.CNS Drugs202135326528110.1007/s40263‑021‑00807‑y33754312
    [Google Scholar]
  116. NicoteraA.G. SpanòM. DecioA. ValentiniG. SaiaM. Di RosaG. Epileptic phenotype and cannabidiol efficacy in a williams–beuren syndrome patient with atypical deletion: A case report.Front. Neurol.20211265954310.3389/fneur.2021.65954334168609
    [Google Scholar]
  117. PacherP. KoganN.M. MechoulamR. Beyond THC and endocannabinoids.Annu. Rev. Pharmacol. Toxicol.202060163765910.1146/annurev‑pharmtox‑010818‑02144131580774
    [Google Scholar]
  118. TambeS.M. MaliS. AminP.D. OliveiraM. Neuroprotective potential of cannabidiol: Molecular mechanisms and clinical implications.J. Integr. Med.202321323624410.1016/j.joim.2023.03.00436973157
    [Google Scholar]
  119. CannavòL. PerroneS. ViolaV. MarsegliaL. Di RosaG. GittoE. Oxidative stress and respiratory diseases in preterm newborns.Int. J. Mol. Sci.202122221250410.3390/ijms22221250434830385
    [Google Scholar]
  120. GeorgievaD. LangleyJ. HartkopfK. HawkL. MargolisA. StruckA. FeltonE. HsuD. GidalB. E. Real-world, long-term evaluation of the tolerability and therapy retention of Epidiolex® (cannabidiol) in patients with refractory epilepsy. Epilepsy & behavior : E&B202314110915910.1016/j.yebeh.2023.109159
    [Google Scholar]
  121. BrodieM.J. Ben-MenachemE. Cannabinoids for epilepsy: What do we know and where do we go?Epilepsia201859229129610.1111/epi.1397329214639
    [Google Scholar]
  122. KhodadadiH. SallesÉ.L. JarrahiA. ChibaneF. CostigliolaV. YuJ.C. VaibhavK. HessD.C. DhandapaniK.M. BabanB. Cannabidiol modulates cytokine storm in acute respiratory distress syndrome induced by simulated viral infection using synthetic RNA.Cannabis Cannabinoid Res.20205319720110.1089/can.2020.004332923657
    [Google Scholar]
  123. MuthumalageT. RahmanI. Cannabidiol differentially regulates basal and LPS-induced inflammatory responses in macrophages, lung epithelial cells, and fibroblasts.Toxicol. Appl. Pharmacol.201938211471310.1016/j.taap.2019.11471331437494
    [Google Scholar]
  124. SperlingM.R. Abou-KhalilB. AboumatarS. BhatiaP. BitonV. KleinP. KraussG.L. VosslerD.G. WechslerR. FerrariL. GrallM. RosenfeldW.E. Efficacy of cenobamate for uncontrolled focal seizures: Post hoc analysis of a Phase 3, multicenter, open-label study.Epilepsia202162123005301510.1111/epi.1709134633084
    [Google Scholar]
  125. MakridisK.L. BastT. PragerC. Kovacevic-PreradovicT. BittigauP. MayerT. BreuerE. KaindlA.M. Real-world experience treating pediatric epilepsy patients with cenobamate.Front. Neurol.20221395017110.3389/fneur.2022.95017135937072
    [Google Scholar]
  126. NakamuraM. ChoJ.H. ShinH. JangI.S. Effects of cenobamate (YKP3089), a newly developed anti-epileptic drug, on voltage-gated sodium channels in rat hippocampal CA3 neurons.Eur. J. Pharmacol.201985517518210.1016/j.ejphar.2019.05.00731063770
    [Google Scholar]
  127. SharmaR. NakamuraM. NeupaneC. JeonB.H. ShinH. MelnickS.M. GlennK.J. JangI.S. ParkJ.B. Positive allosteric modulation of GABAA receptors by a novel antiepileptic drug cenobamate.Eur. J. Pharmacol.202087917311710.1016/j.ejphar.2020.17311732325146
    [Google Scholar]
  128. KraussG.L. KleinP. BrandtC. LeeS.K. MilanovI. MilovanovicM. SteinhoffB.J. KaminM. Safety and efficacy of adjunctive cenobamate (YKP3089) in patients with uncontrolled focal seizures: A multicentre, double-blind, randomised, placebo-controlled, dose-response trial.Lancet Neurol.2020191384810.1016/S1474‑4422(19)30399‑031734103
    [Google Scholar]
  129. RobertiR. De CaroC. IannoneL.F. ZaccaraG. LattanziS. RussoE. Pharmacology of cenobamate: Mechanism of action, pharmacokinetics, drug–drug interactions and tolerability.CNS Drugs202135660961810.1007/s40263‑021‑00819‑833993416
    [Google Scholar]
  130. SperlingM.R. KleinP. AboumatarS. GelfandM. HalfordJ.J. KraussG.L. RosenfeldW.E. VosslerD.G. WechslerR. BorchertL. KaminM. Cenobamate (YKP3089) as adjunctive treatment for uncontrolled focal seizures in a large, phase 3, multicenter, open-label safety study.Epilepsia20206161099110810.1111/epi.1652532396252
    [Google Scholar]
  131. BrownW.M. AikenS.P. Felbamate: Clinical and molecular aspects of a unique antiepileptic drug.Crit. Rev. Neurobiol.199812320522210.1615/CritRevNeurobiol.v12.i3.309847055
    [Google Scholar]
  132. PellockJ.M. Felbamate.Epilepsia199940s5Suppl. 5S57S6210.1111/j.1528‑1157.1999.tb00920.x10530695
    [Google Scholar]
  133. TALOXA® Italian Medicines Agency (AIFA).Summary of product characteristics.2020Available from: https://farmaci.agenziafarmaco.gov.it/aifa/servlet/PdfDownloadServlet?pdfFileName=footer_001117_030822_RCP.pdf&sys=m0b1l3
  134. FELBATOL® Food and Drugs Administration (FDA) Summary of product characteristics.2012Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/020189s027lbl.pdf
  135. ShiL.L. BresnahanR. Martin-McGillK.J. DongJ. NiH. GengJ. Felbamate add-on therapy for drug-resistant focal epilepsy.Cochrane Libr.201988CD00829510.1002/14651858.CD008295.pub531425617
    [Google Scholar]
  136. SamantaD. Fenfluramine: A review of pharmacology, clinical efficacy, and safety in epilepsy.Children202298115910.3390/children908115936010049
    [Google Scholar]
  137. Tabaee DamavandiP. FabinN. GiossiR. MatricardiS. Del GiovaneC. StrianoP. MelettiS. BrigoF. TrinkaE. LattanziS. Efficacy and safety of fenfluramine in epilepsy: A systematic review and meta-analysis.Neurol. Ther.202312266968610.1007/s40120‑023‑00452‑136853503
    [Google Scholar]
  138. SpecchioN. PietrafusaN. FerrettiA. TrivisanoM. VigevanoF. Successful use of fenfluramine in nonconvulsive status epilepticus of Dravet syndrome.Epilepsia202061483183310.1111/epi.1647432167579
    [Google Scholar]
  139. MillettD. PachS. Fenfluramine in the successful treatment of super-refractory status epilepticus in a patient with Dravet syndrome.Epilepsy Behav. Rep.20211610046110.1016/j.ebr.2021.10046134179745
    [Google Scholar]
  140. European Medicines Agency (EMA). Fintempla (Fenfluramine). Summary of product characteristics.2023Available from: https://www.ema.europa.eu/en/documents/product-information/fintepla-epar-product-information_en.pdf
  141. European Medicines Agency (EMA) - Committee for medicinal products for human use.2017Available from: http://www. ema.europa.eu/docs/en_GB/document_library/Summary_of_opinion/human/000863/WC500231716.pdf
  142. European Medicines Agency (EMA)(2022). Vimpat (lacosamide). An overview of Vimpat and why it is authorised in the EU.2022Available from: https://www.ema.europa.eu/en/documents/ overview/vimpat-epar-medicine-overview_en.pdf
  143. BeyreutherB.K. FreitagJ. HeersC. KrebsfängerN. ScharfeneckerU. StöhrT. Lacosamide: A review of preclinical properties.CNS Drug Rev.2007131214210.1111/j.1527‑3458.2007.00001.x17461888
    [Google Scholar]
  144. LabauJ.I.R. EstacionM. TanakaB.S. de GreefB.T.A. HoeijmakersJ.G.J. GeertsM. GerritsM.M. SmeetsH.J.M. FaberC.G. MerkiesI.S.J. LauriaG. Dib-HajjS.D. WaxmanS.G. Differential effect of lacosamide on Nav1.7 variants from responsive and non-responsive patients with small fibre neuropathy.Brain2020143377178210.1093/brain/awaa01632011655
    [Google Scholar]
  145. ZhaoT. LiH. ZhangH. YuJ. FengJ. WangT. SunY. YuL. Twelve-month efficacy of lacosamide monotherapy at maximal dose and tolerability for epilepsy treatment in pediatric patients: Real-world clinical experience.Pediatr. Neurol.2023142233010.1016/j.pediatrneurol.2023.01.01836868054
    [Google Scholar]
  146. BamgboseO. BoyleF. KeanA.C. StefanescuB.M. WingS. Tolerability and safety of lacosamide in neonatal population.J. Child Neurol.2023383-413714110.1177/0883073823116483536972493
    [Google Scholar]
  147. RosenfeldW. FountainN. B. KaubrysG. Ben-MenachemE. McSheaC. IsojarviJ. DotyP. Safety and efficacy of adjunctive lacosamide among patients with partial-onset seizures in a long-term open-label extension trial of up to 8 years. Epilepsy & behavior : E&B20144116417010.1016/j.yebeh.2014.09.074
    [Google Scholar]
  148. RamirezG.A. RipaM. BurasteroS. BenantiG. BagnascoD. NannipieriS. MonardoR. PontaG. AspertiC. CilonaM.B. CastagnaA. DagnaL. YacoubM.R. Drug reaction with eosinophilia and systemic symptoms (DRESS): Focus on the pathophysiological and diagnostic role of viruses.Microorganisms202311234610.3390/microorganisms1102034636838310
    [Google Scholar]
  149. LaiM.C. WuS.N. HuangC.W. Rufinamide, a triazole-derived antiepileptic drug, stimulates Ca2+-activated K+ currents while inhibiting voltage-gated Na+ currents.Int. J. Mol. Sci.202223221367710.3390/ijms23221367736430153
    [Google Scholar]
  150. European medicines agency (EMA), Inovelon® (Rufinamide). Summary of product characteristics.2023Available from: https://www.ema.europa.eu/en/documents/product-information/inovelon-epar-product-information_en.pdf
  151. BalaguraG. RivaA. MarcheseF. VerrottiA. StrianoP. Adjunctive rufinamide in children with lennox-gastaut syndrome: A literature review.Neuropsychiatr. Dis. Treat.20201636937910.2147/NDT.S18577432103957
    [Google Scholar]
  152. ArzimanoglouA. PringsheimM. KlugerG. J. GentonP. PerdomoC. MalhotraM. Safety and efficacy of Rufinamide in children and adults with Lennox-Gastaut syndrome: A post hoc analysis from Study 022.Epilepsy & behavior : E&B202112410827510.1016/j.yebeh.2021.108275
    [Google Scholar]
  153. GriffinC.E.III KayeA.M. BuenoF.R. KayeA.D. Benzodiazepine pharmacology and central nervous system-mediated effects.Ochsner J.201313221422323789008
    [Google Scholar]
  154. RissJ. CloydJ. GatesJ. CollinsS. Benzodiazepines in epilepsy: Pharmacology and pharmacokinetics.Acta Neurol. Scand.20081182698610.1111/j.1600‑0404.2008.01004.x18384456
    [Google Scholar]
  155. GreenblattD.J. MillerL.G. ShaderR.I. Neurochemical and pharmacokinetic correlates of the clinical action of benzodiazepine hypnotic drugs.Am. J. Med.1990883S18S2410.1016/0002‑9343(90)90281‑H1968714
    [Google Scholar]
  156. SieghartW. GABA(A) benzodiazepine receptors and epilepsy.Wien KlinWochenschr19901027197201
    [Google Scholar]
  157. EdinoffA.N. NixC.A. HollierJ. SagreraC.E. DelacroixB.M. AbubakarT. CornettE.M. KayeA.M. KayeA.D. Benzodiazepines: Uses, dangers, and clinical considerations.Neurol. Int.202113459460710.3390/neurolint1304005934842811
    [Google Scholar]
  158. HuangK.H. TaiC.J. KuanY.H. ChangY.C. TsaiT.H. LeeC.Y. Pneumonia risk associated with the use of individual benzodiazepines and benzodiazepine related drugs among the elderly with parkinson’s disease.Int. J. Environ. Res. Public Health20211817941010.3390/ijerph1817941034501996
    [Google Scholar]
  159. TaipaleH. TolppanenA. M. KoponenM. TanskanenA. LavikainenP. SundR. TiihonenJ. HartikainenS. Risk of pneumonia associated with incident benzodiazepine use among community-dwelling adults with Alzheimer disease.Can. Med. Assoc. J.201718914E519E52910.1503/cmaj.160126
    [Google Scholar]
  160. BerryR.B. MccaslandC.R. LightR.W. The effect of triazolam on the arousal response to airway occlusion during sleep in normal subjects.Am. Rev. Respir. Dis.19921465_pt_11256126010.1164/ajrccm/146.5_Pt_1.12561443881
    [Google Scholar]
  161. SandersR.D. GodleeA. FujimoriT. GouldingJ. XinG. Salek-ArdakaniS. SnelgroveR.J. MaD. MazeM. HussellT. Benzodiazepine augmented γ-amino-butyric acid signaling increases mortality from pneumonia in mice.Crit. Care Med.20134171627163610.1097/CCM.0b013e31827c0c8d23478657
    [Google Scholar]
  162. ChungW.S. LaiC.Y. LinC.L. KaoC.H. Adverse respiratory events associated with hypnotics use in patients of chronic obstructive pulmonary disease.Medicine20159427e111010.1097/MD.000000000000111026166105
    [Google Scholar]
  163. WangS.H. ChenW.S. TangS.E. LinH.C. PengC.K. ChuH.T. KaoC.H. Benzodiazepines associated with acute respiratory failure in patients with obstructive sleep apnea.Front. Pharmacol.20199151310.3389/fphar.2018.0151330666205
    [Google Scholar]
  164. VozorisN.T. FischerH.D. WangX. StephensonA.L. GershonA.S. GruneirA. AustinP.C. AndersonG.M. BellC.M. GillS.S. RochonP.A. Benzodiazepine drug use and adverse respiratory outcomes among older adults with COPD.Eur. Respir. J.201444233234010.1183/09031936.0000801424743966
    [Google Scholar]
  165. KangM. GaluskaM.A. GhassemzadehS. Benzodiazepine toxicity.StatPearlsStatPearls Publishing2023
    [Google Scholar]
  166. DublinS. WalkerR.L. JacksonM.L. NelsonJ.C. WeissN.S. Von KorffM. JacksonL.A. Use of opioids or benzodiazepines and risk of pneumonia in older adults: A population-based case-control study.J. Am. Geriatr. Soc.201159101899190710.1111/j.1532‑5415.2011.03586.x22091503
    [Google Scholar]
  167. AlmirallJ. BolíbarI. BalanzóX. GonzálezC.A. Risk factors for community-acquired pneumonia in adults: A population-based case-control study.Eur. Respir. J.199913234935510.1183/09031936.99.1323499910065680
    [Google Scholar]
  168. ChatterjeeA. MundlamuriR.C. KenchaiahR. AsrannaA. NagappaM. BinduP.S. SeshagiriD.V. ViswanathanL.G. ShreedharA.S. DubleS. RangarajanA. KhilariM. BharathR.D. SainiJ. ThennarasuK. TalyA.B. SinhaS. Role of pulse methylprednisolone in epileptic encephalopathy: A retrospective observational analysis.Epilepsy Res.202117310661110.1016/j.eplepsyres.2021.10661133740698
    [Google Scholar]
  169. Di RosaG. DicanioD. NicoteraA.G. MondelloP. CannavòL. GittoE. Efficacy of intravenous hydrocortisone treatment in refractory neonatal seizures: A report on three cases.Brain Sci.2020101188510.3390/brainsci1011088533233684
    [Google Scholar]
  170. DeNicolaL.K. GayleM.O. BlakeK.V. Drug therapy approaches in the treatment of acute severe asthma in hospitalised children.Paediatr. Drugs20013750953710.2165/00128072‑200103070‑0000311513282
    [Google Scholar]
  171. MantiS. CuppariC. MarsegliaL. D’AngeloG. ArrigoT. GittoE. LeonardiS. SalpietroC. Association between allergies and hypercholesterolemia: A systematic review.Int. Arch. Allergy Immunol.20171742677610.1159/00048008129035883
    [Google Scholar]
  172. MantiS. LeonardiS. PanasitiI. ArrigoT. SalpietroC. CuppariC. Serum IL-10, IL-17 and IL-23 levels as “bioumoral bridges” between dyslipidemia and atopy.Cytokine201799434910.1016/j.cyto.2017.07.00228692864
    [Google Scholar]
  173. WangJ. LinJ. WangM. MengZ. ZhouD. LiJ. High dose steroids as first-line treatment increased the risk of in-hospital infections in patients with anti-NMDAR encephalitis.Front. Immunol.20211277466410.3389/fimmu.2021.77466434975861
    [Google Scholar]
  174. Di RosaG. CavallaroT. AlibrandiA. MarsegliaL. LambertiM. GiaimoE. NicoteraA. BonsignoreM. GaglianoA. Predictive role of early milestones-related psychomotor profiles and long-term neurodevelopmental pitfalls in preterm infants.Early Hum. Dev.2016101495510.1016/j.earlhumdev.2016.04.01227405056
    [Google Scholar]
  175. YoussefJ. NovosadS.A. WinthropK.L. Infection risk and safety of corticosteroid use.Rheum. Dis. Clin. North Am.2016421157176, ix-x10.1016/j.rdc.2015.08.00426611557
    [Google Scholar]
  176. Özer BekmezB. TaymanC. ÇakırU. Koyuncuİ. BüyüktiryakiM. TürkmenoğluT.T. ÇakırE. Glucocorticoids in a neonatal hyperoxic lung injury model: Pulmonary and neurotoxic effects.Pediatr. Res.202292243644410.1038/s41390‑021‑01777‑z34725500
    [Google Scholar]
  177. CacoubP. MusetteP. DescampsV. MeyerO. SpeirsC. FinziL. RoujeauJ.C. The DRESS syndrome: A literature review.Am. J. Med.2011124758859710.1016/j.amjmed.2011.01.01721592453
    [Google Scholar]
  178. TaweesedtP.T. NordstromC.W. StoeckelJ. DumicI. Pulmonary manifestations of drug reaction with eosinophilia and systemic symptoms (DRESS) syndrome: A systematic review.BioMed Res. Int.2019201911010.1155/2019/786381531662996
    [Google Scholar]
  179. CrossJ.H. GalerB.S. Gil-NagelA. DevinskyO. CeulemansB. LagaeL. SchoonjansA.S. DonnerE. WirrellE. KothareS. AgarwalA. LockM. GammaitoniA.R. Impact of fenfluramine on the expected SUDEP mortality rates in patients with Dravet syndrome.Seizure20219315415910.1016/j.seizure.2021.10.02434768178
    [Google Scholar]
  180. LicariA. MantiS. CastagnoliR. MarsegliaA. FoiadelliT. BrambillaI. MarsegliaG.L. Immunomodulation in pediatric asthma.Front Pediatr.2019728910.3389/fped.2019.0028931355170
    [Google Scholar]
  181. MantiS. LeonardiS. ParisiG.F. De VivoD. SalpietroA. SpinuzzaA. ArrigoT. SalpietroC. CuppariC. High mobility group box 1: Biomarker of inhaled corticosteroid treatment response in children with moderate-severe asthma.Allergy Asthma Proc.201738319720310.2500/aap.2017.38.404728441990
    [Google Scholar]
  182. ColeT.J. ShortK.L. HooperS.B. The science of steroids.Semin. Fetal Neonatal Med.201924317017510.1016/j.siny.2019.05.00531147162
    [Google Scholar]
  183. MantiS. SalpietroC. CuppariC. Antihistamines: Recommended dosage – Divergence between clinical practice and guideline recommendations.Int. Arch. Allergy Immunol.20191781939610.1159/00049263630253383
    [Google Scholar]
/content/journals/crmr/10.2174/011573398X279958240131101144
Loading
/content/journals/crmr/10.2174/011573398X279958240131101144
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test