Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-398X
  • E-ISSN: 1875-6387

Abstract

Apnea of prematurity is a common developmental defect affecting newborns, linked to the immaturity of systems involved in controlling breathing, particularly, central and peripheral chemoreceptors. Its severity, as well as its clinical manifestations, is inversely associated with gestational age. Symptoms of immature control of breathing progressively improve with age, with a resolution around 34-36 weeks of gestational age or 40-44 weeks in infants born at younger gestations. Prevalence seems to be higher in females and same-gender twins. The role of genetics was investigated: polymorphisms in genes encoding for adenosine receptors were associated with a higher risk of developing apnea of prematurity and bronchopulmonary dysplasia. Continuous monitoring of breathing patterns and vital signs is essential for the early detection of apnea episodes, while respiratory polygraphy shows limited utility. It is essential to treat newborns with apnea or other clinical manifestations of immature control of breathing to prevent the risk for long-term morbidities, such as bronchopulmonary dysplasia or neurodevelopmental impairment. There is no international consensus on the management of these premature infants. Nowadays, caffeine represents the first line of pharmacological treatment in association with noninvasive ventilatory support techniques. Furthermore, in the USA, doxapram is used in the case of refractory therapy with caffeine. Among nonpharmacological strategies, transfusion, prone positioning, tactile and olfactory stimulation, and kangaroo care were widely studied, but their efficacy is still unclear.

Loading

Article metrics loading...

/content/journals/crmr/10.2174/011573398X285318240408034132
2024-04-16
2025-02-17
Loading full text...

Full text loading...

References

  1. EricksonG. DobsonN.R. HuntC.E. Immature control of breathing and apnea of prematurity: The known and unknown.J. Perinatol.20214192111212310.1038/s41372‑021‑01010‑z33712716
    [Google Scholar]
  2. MantiS. GaldoF. ParisiG.F. NapolitanoM. DecimoF. LeonardiS. Miraglia Del GiudiceM. Long-term effects of bronchopulmonary dysplasia on lung function: A pilot study in preschool children’s cohort.J. Asthma20215891186119310.1080/02770903.2020.177928932508174
    [Google Scholar]
  3. WilliamsonM. PoorunR. HartleyC. Apnoea of prematurity and neurodevelopmental outcomes: Current understanding and future prospects for research.Front Pediatr.2021975567710.3389/fped.2021.75567734760852
    [Google Scholar]
  4. MantiS. XerraF. SpotoG. ButeraA. GittoE. Di RosaG. NicoteraA.G. Neurotrophins: Expression of brain–lung axis development.Int. J. Mol. Sci.2023248708910.3390/ijms2408708937108250
    [Google Scholar]
  5. Di RosaG. NicoteraA.G. LenzoP. SpanòM. TortorellaG. Long-term neuropsychiatric follow-up in hyperprolinemia type I.Psychiatr. Genet.201424417217510.1097/YPG.000000000000003724842239
    [Google Scholar]
  6. Di RosaG. CavallaroT. AlibrandiA. MarsegliaL. LambertiM. GiaimoE. NicoteraA. BonsignoreM. GaglianoA. Predictive role of early milestones-related psychomotor profiles and long-term neurodevelopmental pitfalls in preterm infants.Early Hum. Dev.2016101495510.1016/j.earlhumdev.2016.04.01227405056
    [Google Scholar]
  7. SpotoG. SaiaM.C. AmoreG. GittoE. LoddoG. MainieriG. NicoteraA.G. Di RosaG. Neonatal seizures: An overview of genetic causes and treatment options.Brain Sci.20211110129510.3390/brainsci1110129534679360
    [Google Scholar]
  8. Di RosaG. DicanioD. NicoteraA.G. MondelloP. CannavòL. GittoE. Efficacy of intravenous hydrocortisone treatment in refractory neonatal seizures: A report on three cases.Brain Sci.2020101188510.3390/brainsci1011088533233684
    [Google Scholar]
  9. PoetsC.F. Apnea of prematurity: What can observational studies tell us about pathophysiology?Sleep Med.201011770170710.1016/j.sleep.2009.11.01620621558
    [Google Scholar]
  10. Di FioreJ.M. MartinR.J. GaudaE.B. Apnea of prematurity – Perfect storm.Respir. Physiol. Neurobiol.2013189221322210.1016/j.resp.2013.05.02623727228
    [Google Scholar]
  11. BarringtonK. FinerN. The natural history of the appearance of apnea of prematurity.Pediatr. Res.199129437237510.1038/pr.1991.725001852531
    [Google Scholar]
  12. LorchS.A. SrinivasanL. EscobarG.J. Epidemiology of apnea and bradycardia resolution in premature infants.Pediatrics20111282e366e37310.1542/peds.2010‑156721746726
    [Google Scholar]
  13. Di FioreJ.M. PoetsC.F. GaudaE. MartinR.J. MacFarlaneP. Cardiorespiratory events in preterm infants:Etiology and monitoring technologies.J. Perinatol.201636316517110.1038/jp.2015.16426583939
    [Google Scholar]
  14. AmoreG. SpotoG. IeniA. VetriL. QuatrosiG. Di RosaG. NicoteraA.G. A focus on the cerebellum: From embryogenesis to an age-related clinical perspective.Front. Syst. Neurosci.20211564605210.3389/fnsys.2021.64605233897383
    [Google Scholar]
  15. SpotoG. AmoreG. VetriL. QuatrosiG. CafeoA. GittoE. NicoteraA.G. Di RosaG. Cerebellum and prematurity: A Complex interplay between disruptive and dysmaturational events.Front. Syst. Neurosci.20211565516410.3389/fnsys.2021.65516434177475
    [Google Scholar]
  16. Di RosaG. LenzoP. ParisiE. NeriM. GuerreraS. NicoteraA. AlibrandiA. GermanòE. CaccamoD. SpanòM. TortorellaG. Role of plasma homocysteine levels and MTHFR polymorphisms on IQ scores in children and young adults with epilepsy treated with antiepileptic drugs.Epilepsy Behav.201329354855110.1016/j.yebeh.2013.09.03424183735
    [Google Scholar]
  17. MarsegliaL.M. NicoteraA. SalpietroV. GiaimoE. CardileG. BonsignoreM. AlibrandiA. CaccamoD. MantiS. D’AngeloG. MamìC. Di RosaG. Hyperhomocysteinemia and MTHFR polymorphisms as antenatal risk factors of white matter abnormalities in two cohorts of late preterm and full term newborns.Oxid. Med. Cell. Longev.201520151810.1155/2015/54313425829992
    [Google Scholar]
  18. YangY HeX ZhangX ChenP Clinical characteristics of bronchopulmonary dysplasia in very preterm infants.Zhong Nan Da Xue Xue Bao Yi Xue Ban202348101592160110.11817/j.issn.1672‑7347.2023.230192
    [Google Scholar]
  19. FinerN.N. HigginsR. KattwinkelJ. MartinR.J. Summary proceedings from the apnea-of-prematurity group.Pediatrics20061173 Pt 2Suppl. 1S47S5110.1542/peds.2005‑0620H16777822
    [Google Scholar]
  20. PergolizziJ.V.Jr FortP. MillerT.L. LeQuangJ.A. RaffaR.B. The epidemiology of apnoea of prematurity.J. Clin. Pharm. Ther.202247568569310.1111/jcpt.1358735018653
    [Google Scholar]
  21. BairamA. LaflammeN. DroletC. PiedboeufB. ShahP.S. KinkeadR. Sex-based differences in apnoea of prematurity: A retrospective cohort study.Exp. Physiol.2018103101403141110.1113/EP08699629974527
    [Google Scholar]
  22. NagrajV.P. LakeD.E. KuhnL. MoormanJ.R. FairchildK.D. Central Apnea of Prematurity: Does sex matter?Am. J. Perinatol.202138131428143410.1055/s‑0040‑171340532578186
    [Google Scholar]
  23. Bloch-SalisburyE. HallM.H. SharmaP. BoydT. BednarekF. PaydarfarD. Heritability of apnea of prematurity: A retrospective twin study.Pediatrics20101264e779e78710.1542/peds.2010‑008420837586
    [Google Scholar]
  24. GuoH.L. LongJ.Y. HuY.H. LiuY. HeX. LiL. XiaY. DingX.S. ChenF. XuJ. ChengR. Caffeine therapy for apnea of prematurity: Role of the circadian CLOCK Gene Polymorphism.Front. Pharmacol.20221272414510.3389/fphar.2021.72414535145399
    [Google Scholar]
  25. PoetsC.F. RauG.A. NeuberK. GappaM. SeidenbergJ. Determinants of lung volume in spontaneously breathing preterm infants.Am. J. Respir. Crit. Care Med.1997155264965310.1164/ajrccm.155.2.90322089032208
    [Google Scholar]
  26. Al-MataryA. KutbiI. QurashiM. KhalilM. AlvaroR. KwiatkowskiK. CatesD. RigattoH. Increased peripheral chemoreceptor activity may be critical in destabilizing breathing in neonates.Semin. Perinatol.200428426427210.1053/j.semperi.2004.08.00315565786
    [Google Scholar]
  27. BancalariE.H. JobeA.H. The respiratory course of extremely preterm infants: A dilemma for diagnosis and terminology.J. Pediatr.2012161458558810.1016/j.jpeds.2012.05.05422785261
    [Google Scholar]
  28. CarrollJL Developmental plasticity in respiratory control.J Appl Physiol (1985)200394113758910.1152/japplphysiol.00809.2002
    [Google Scholar]
  29. HertzbergT. LagercrantzH. Postnatal sensitivity of the peripheral chemoreceptors in newborn infants.Arch. Dis. Child.198762121238124110.1136/adc.62.12.12383435157
    [Google Scholar]
  30. FlemingP.J. GoncalvesA.L. LevineM.R. WoollardS. The development of stability of respiration in human infants: Changes in ventilatory responses to spontaneous sighs.J. Physiol.1984347111610.1113/jphysiol.1984.sp0150496707950
    [Google Scholar]
  31. BurggrenW.W. ReynaK.S. Developmental trajectories, critical windows and phenotypic alteration during cardio-respiratory development.Respir. Physiol. Neurobiol.20111781132110.1016/j.resp.2011.05.00121596160
    [Google Scholar]
  32. EdwardsBA SandsSA SkuzaEM BrodeckyV StockxEM WilkinsonMH Maturation of respiratory control and the propensity for breathing instability in a sheep model.J Appl Physiol (1985)2009107514637110.1152/japplphysiol.00587.2009
    [Google Scholar]
  33. DelacourtC CanetE BureauMA Predominant role of peripheral chemoreceptors in the termination of apnea in maturing newborn lambs.J Appl Physiol.199680389289810.1152/jappl.1996.80.3.892
    [Google Scholar]
  34. FairchildK. MohrM. Paget-BrownA. TabacaruC. LakeD. DelosJ. MoormanJ.R. KattwinkelJ. Clinical associations of immature breathing in preterm infants: Part 1—central apnea.Pediatr. Res.2016801212710.1038/pr.2016.4326959485
    [Google Scholar]
  35. CarrollJ.L. KimI. Carotid chemoreceptor “resetting” revisited.Respir. Physiol. Neurobiol.20131851304310.1016/j.resp.2012.09.00222982216
    [Google Scholar]
  36. Katz-SalamonM. JonssonB. LagercrantzH. Blunted peripheral chemoreceptor response to hyperoxia in a group of infants with bronchopulmonary dysplasia.Pediatr. Pulmonol.199520210110610.1002/ppul.19502002098570299
    [Google Scholar]
  37. SøvikS. LossiusK. Development of ventilatory response to transient hypercapnia and hypercapnic hypoxia in term infants.Pediatr. Res.200455230230910.1203/01.PDR.0000106316.40213.DB14630982
    [Google Scholar]
  38. BlancoC.E. DawesG.S. HansonM.A. McCookeH.B. The response to hypoxia of arterial chemoreceptors in fetal sheep and new-born lambs.J. Physiol.19843511253710.1113/jphysiol.1984.sp0152296747866
    [Google Scholar]
  39. AveryM.E. ChernickV. DuttonR.E. PermuttS. Ventilatory response to inspired carbon dioxide in infants and adults.J. Appl. Physiol.196318589590310.1152/jappl.1963.18.5.89514063257
    [Google Scholar]
  40. BerssenbruggeA. DempseyJ. IberC. SkatrudJ. WilsonP. Mechanisms of hypoxia-induced periodic breathing during sleep in humans.J. Physiol.1983343150752610.1113/jphysiol.1983.sp0149066417326
    [Google Scholar]
  41. DecimaP.F.F. FyfeK.L. OdoiA. WongF.Y. HorneR.S.C. The longitudinal effects of persistent periodic breathing on cerebral oxygenation in preterm infants.Sleep Med.201516672973510.1016/j.sleep.2015.02.53725959095
    [Google Scholar]
  42. ShannonD.C. Carley PhdD.W. KellyD.H. Periodic breathing: Quantitative analysis and clinical description.Pediatr. Pulmonol.1988429810210.1002/ppul.19500402073288944
    [Google Scholar]
  43. PrabhakarN.R. PengY.J. KumarG.K. PawarA. Altered carotid body function by intermittent hypoxia in neonates and adults: Relevance to recurrent apneas.Respir. Physiol. Neurobiol.2007157114815310.1016/j.resp.2006.12.00917317339
    [Google Scholar]
  44. GozalD GozalE ReevesSR LiptonAJ Gasping and autoresuscitation in the developing rat: Effect of antecedent intermittent hypoxia.J Appl Physiol(1985)20029231141410.1152/japplphysiol.00972.2001
    [Google Scholar]
  45. Al-KindyHA GélinasJF HatzakisG CôtéA Risk factors for extreme events in infants hospitalized for apparent life-threatening events.J Pediatr.20091543332710.1016/j.jpeds.2008.08.051
    [Google Scholar]
  46. MacFarlaneP.M. RibeiroA.P. MartinR.J. Carotid chemoreceptor development and neonatal apnea.Respir. Physiol. Neurobiol.2013185117017610.1016/j.resp.2012.07.01722842008
    [Google Scholar]
  47. CannavòL. PerroneS. ViolaV. MarsegliaL. Di RosaG. GittoE. Oxidative stress and respiratory diseases in preterm newborns.Int. J. Mol. Sci.202122221250410.3390/ijms22221250434830385
    [Google Scholar]
  48. McEvoyC.T. JainL. SchmidtB. AbmanS. BancalariE. AschnerJ.L. Bronchopulmonary dysplasia: NHLBI workshop on.Ann Am Thorac Soc.201411Suppl 3S1465310.1513/AnnalsATS.201312‑424LD
    [Google Scholar]
  49. DobsonN.R. ThompsonM.W. HuntC.E. Control of breathing: Maturation and associated clinical disorders.2016Available From: https://obgynkey.com/control-of-breathing-maturation-and-associated-clinical-disorders/
  50. MathewO.P. Apnea of prematurity: Pathogenesis and management strategies.J. Perinatol.201131530231010.1038/jp.2010.12621127467
    [Google Scholar]
  51. VariscoG. PengZ. KommersD. ZhanZ. CottaarW. AndriessenP. LongX. van PulC. Central apnea detection in premature infants using machine learning.Comput. Methods Programs Biomed.202222610715510.1016/j.cmpb.2022.10715536215858
    [Google Scholar]
  52. FinerN.N. BarringtonK.J. HayesB.J. HughA. Obstructive, mixed, and central apnea in the neonate: Physiologic correlates.J. Pediatr.1992121694395010.1016/S0022‑3476(05)80349‑X1447664
    [Google Scholar]
  53. EdwardsB.A. SandsS.A. BergerP.J. Postnatal maturation of breathing stability and loop gain: The role of carotid chemoreceptor development.Respir. Physiol. Neurobiol.2013185114415510.1016/j.resp.2012.06.00322705011
    [Google Scholar]
  54. Deacon-DiazN. MalhotraA. Inherent vs. induced loop gain abnormalities in obstructive sleep apnea.Front. Neurol.2018989610.3389/fneur.2018.0089630450076
    [Google Scholar]
  55. Armoni DomanyK. HossainM.M. Nava-GuerraL. KhooM.C. McConnellK. CarrollJ.L. XuY. DiFrancescoM. AminR.S. Cardioventilatory Control in preterm-born children and the risk of obstructive sleep apnea.Am. J. Respir. Crit. Care Med.2018197121596160310.1164/rccm.201708‑1700OC29323933
    [Google Scholar]
  56. MainieriG. MontiniA. NicoteraA. Di RosaG. ProviniF. LoddoG. The genetics of sleep disorders in children: A narrative review.Brain Sci.20211110125910.3390/brainsci1110125934679324
    [Google Scholar]
  57. RosenC.L. LarkinE.K. KirchnerH.L. EmancipatorJ.L. BivinsS.F. SurovecS.A. MartinR.J. RedlineS. Prevalence and risk factors for sleep-disordered breathing in 8- to 11-year-old children: Association with race and prematurity.J. Pediatr.2003142438338910.1067/mpd.2003.2812712055
    [Google Scholar]
  58. HibbsA.M. JohnsonN.L. RosenC.L. KirchnerH.L. MartinR. Storfer-IsserA. RedlineS. Prenatal and neonatal risk factors for sleep disordered breathing in school-aged children born preterm.J. Pediatr.2008153217618210.1016/j.jpeds.2008.01.04018534222
    [Google Scholar]
  59. RamanathanR. CorwinM.J. HuntC.E. ListerG. TinsleyL.R. BairdT. SilvestriJ.M. CrowellD.H. HuffordD. MartinR.J. NeumanM.R. Weese-MayerD.E. CupplesL.A. PeuckerM. WillingerM. KeensT.G. Cardiorespiratory events recorded on home monitors: Comparison of healthy infants with those at increased risk for SIDS.JAMA2001285172199220710.1001/jama.285.17.219911325321
    [Google Scholar]
  60. MammelD. KempJ. Prematurity, the diagnosis of bronchopulmonary dysplasia, and maturation of ventilatory control.Pediatr. Pulmonol.202156113533354510.1002/ppul.2551934042316
    [Google Scholar]
  61. TrachtenbergF.L. HaasE.A. KinneyH.C. StanleyC. KrousH.F. Risk factor changes for sudden infant death syndrome after initiation of Back-to-Sleep campaign.Pediatrics2012129463063810.1542/peds.2011‑141922451703
    [Google Scholar]
  62. LavangaM. HeremansE. MoeyersonsJ. BollenB. JansenK. OrtibusE. NaulaersG. Van HuffelS. CaicedoA. Maturation of the autonomic nervous system in premature infants: Estimating development based on heart-rate variability analysis.Front. Physiol.20211158125010.3389/fphys.2020.58125033584326
    [Google Scholar]
  63. WheelerM. CoteC.J. TodresI.D. A Practice of Anaesthesia for Infants and Children.4th edPhiladelphiaElsevier20092377310.1016/B978‑141603134‑5.50016‑0
    [Google Scholar]
  64. StocksJ. GodfreyS. Specific airway conductance in relation to postconceptional age during infancy.J. Appl. Physiol.197743114415410.1152/jappl.1977.43.1.144893257
    [Google Scholar]
  65. NumaAH NewthCJ Anatomic dead space in infants and children.J. Appl. Physiol.19968051485910.1152/jappl.1996.80.5.1485
    [Google Scholar]
  66. LangstonC. KidaK. ReedM. ThurlbeckW.M. Human lung growth in late gestation and in the neonate.Am. Rev. Respir. Dis.198412946076136538770
    [Google Scholar]
  67. TrabalonM. SchaalB. It takes a mouth to eat and a nose to breathe: Abnormal oral respiration affects neonates’ oral competence and systemic adaptation.Int. J. Pediatr.2012201211010.1155/2012/20760522811731
    [Google Scholar]
  68. KnudsenL. OchsM. The micromechanics of lung alveoli: Structure and function of surfactant and tissue components.Histochem. Cell Biol.2018150666167610.1007/s00418‑018‑1747‑930390118
    [Google Scholar]
  69. PillowJ.J. Bartolák-SukiE. NobleP.B. BerryC.A. SukiB. Surfactant Protein Production during Maturation Is Enhanced by Natural Variability in Breathing.Am. J. Respir. Cell Mol. Biol.202369111511810.1165/rcmb.2022‑0411LE37387612
    [Google Scholar]
  70. BuonocoreG. PerroneS. LonginiM. VezzosiP. MarzocchiB. PaffettiP. BracciR. Oxidative stress in preterm neonates at birth and on the seventh day of life.Pediatr. Res.2002521464910.1203/00006450‑200207000‑0001012084846
    [Google Scholar]
  71. CadenasE. DaviesK.J.A. Mitochondrial free radical generation, oxidative stress, and aging11This article is dedicated to the memory of our dear friend, colleague, and mentor Lars Ernster (1920–1998), in gratitude for all he gave to us.Free Radic. Biol. Med.2000293-422223010.1016/S0891‑5849(00)00317‑811035250
    [Google Scholar]
  72. BuonocoreG. PerroneS. LonginiM. TerzuoliL. BracciR. Total hydroperoxide and advanced oxidation protein products in preterm hypoxic babies.Pediatr. Res.200047222122410.1203/00006450‑200002000‑0001210674350
    [Google Scholar]
  73. DavisJ.M. AutenR.L. Maturation of the antioxidant system and the effects on preterm birth.Semin. Fetal Neonatal Med.201015419119510.1016/j.siny.2010.04.00120452845
    [Google Scholar]
  74. FrankL. Ilene SosenkoR.S. Development of lung antioxidant enzyme system in late gestation: Possible implications for the prematurely born infant.J. Pediatr.1987110191410.1016/S0022‑3476(87)80279‑23540251
    [Google Scholar]
  75. FrosaliS. Di SimplicioP. PerroneS. Di GiuseppeD. LonginiM. TanganelliD. BuonocoreG. Glutathione recycling and antioxidant enzyme activities in erythrocytes of term and preterm newborns at birth.Neonatology200485318819410.1159/00007581414707431
    [Google Scholar]
  76. EldredgeL.C. LevinJ.C. TracyM.C. CristeaA.I. BakerC.D. RuminjoJ.K. ThomsonC.C. Summary for clinicians: Clinical practice guidelines for outpatient respiratory management of infants, children, and adolescents with post-prematurity respiratory disease.Ann. Am. Thorac. Soc.202219687387910.1513/AnnalsATS.202201‑007CME35239469
    [Google Scholar]
  77. RodgersA. SinghC. Specialist neonatal respiratory care for babies born preterm (NICE guideline 124): A review.Arch. Dis. Child. Educ. Pract. Ed.2020105635535710.1136/archdischild‑2019‑31746132345634
    [Google Scholar]
  78. SweetD.G. CarnielliV. GreisenG. HallmanM. OzekE. te PasA. PlavkaR. RoehrC.C. SaugstadO.D. SimeoniU. SpeerC.P. VentoM. VisserG.H.A. HallidayH.L. European consensus guidelines on the management of respiratory distress syndrome – 2019 update.Neonatology2019115443245010.1159/00049936130974433
    [Google Scholar]
  79. EichenwaldE.C. WatterbergK.L. AucottS. BenitzW.E. CummingsJ.J. GoldsmithJ. PoindexterB.B. PuopoloK. StewartD.L. WangK.S. Apnea of prematurity.Pediatrics20161371e2015375710.1542/peds.2015‑375726628729
    [Google Scholar]
  80. ZhaoJ. GonzalezF. MuD. Apnea of prematurity: From cause to treatment.Eur. J. Pediatr.201117091097110510.1007/s00431‑011‑1409‑621301866
    [Google Scholar]
  81. DaiH.R. GuoH.L. HuY.H. XuJ. DingX.S. ChengR. ChenF. Precision caffeine therapy for apnea of prematurity and circadian rhythms: New possibilities open up.Front. Pharmacol.202213105321010.3389/fphar.2022.105321036532766
    [Google Scholar]
  82. DobsonN.R. HuntC.E. Caffeine: An evidence-based success story in VLBW pharmacotherapy.Pediatr. Res.201884333334010.1038/s41390‑018‑0089‑629983414
    [Google Scholar]
  83. YangL. YuX. ZhangY. LiuN. XueX. FuJ. Encephalopathy in preterm infants: Advances in neuroprotection with caffeine.Front Pediatr.2021972416110.3389/fped.2021.72416134660486
    [Google Scholar]
  84. EichenwaldE.C. National and International Guidelines for Neonatal Caffeine Use: Are they evidenced-based?Semin. Fetal Neonatal Med.202025610117710.1016/j.siny.2020.10117733214064
    [Google Scholar]
  85. DaniC. FuscoM. MantiS. MarsegliaL. CiarciàM. LeonardiV. CorsiniI. GittoE. Effects of caffeine on diaphragmatic activity in preterm infants.Pediatr. Pulmonol.20235872104211010.1002/ppul.2643937144862
    [Google Scholar]
  86. SchmidtB. RobertsR.S. DavisP. DoyleL.W. BarringtonK.J. OhlssonA. SolimanoA. TinW. Caffeine therapy for apnea of prematurity.N. Engl. J. Med.2006354202112212110.1056/NEJMoa05406516707748
    [Google Scholar]
  87. CharlesB.G. TownsendS.R. SteerP.A. FlenadyV.J. GrayP.H. ShearmanA. Caffeine citrate treatment for extremely premature infants with apnea: Population pharmacokinetics, absolute bioavailability, and implications for therapeutic drug monitoring.Ther. Drug Monit.200830670971610.1097/FTD.0b013e3181898b6f19057373
    [Google Scholar]
  88. MorescoL. SjögrenA. MarquesK.A. SollR. BruschettiniM. Caffeine versus other methylxanthines for the prevention and treatment of apnea in preterm infants.Cochrane Libr.2023202310CD01546210.1002/14651858.CD015462.pub237791592
    [Google Scholar]
  89. MarquesK.A. BruschettiniM. RoehrC.C. DavisP.G. FianderM. SollR. Methylxanthine for the prevention and treatment of apnea in preterm infants.Cochrane Libr.2023202310CD01383010.1002/14651858.CD013830.pub237905735
    [Google Scholar]
  90. McPhersonC. NeilJ.J. TjoengT.H. PinedaR. InderT.E. A pilot randomized trial of high-dose caffeine therapy in preterm infants.Pediatr. Res.201578219820410.1038/pr.2015.7225856169
    [Google Scholar]
  91. Puia-DumitrescuM. SmithP.B. ZhaoJ. SorianoA. PayneE.H. HarperB. Bendel-StenzelE. MoyaF. ChhabraR. KuL. LaughonM. WadeK.C. FurdaG. BenjaminD. CapparelliE. KearnsG.L. PaulI.M. HornikC. Dosing and safety of off-label use of caffeine citrate in premature infants.J. Pediatr.20192112732.e110.1016/j.jpeds.2019.04.02831101409
    [Google Scholar]
  92. BrattströmP. RussoC. LeyD. BruschettiniM. High- versus low- dose caffeine in preterm infants: A systematic review and meta-analysis.Acta Paediatr.2019108340141010.1111/apa.1458630242903
    [Google Scholar]
  93. RavichandranS. ChouthaiN.S. PatelB. SharmaA. GupteA. MaM.M. MamillaD. Lulic-BoticaM. ThomasR. KamatD. Higher daily doses of caffeine lowered the incidence of moderate to severe neurodevelopmental disabilities in very low birth weight infants.Acta Paediatr.2019108343043510.1111/apa.1446529920770
    [Google Scholar]
  94. SchmidtB. AndersonP.J. DoyleL.W. DeweyD. GrunauR.E. AsztalosE.V. DavisP.G. TinW. ModdemannD. SolimanoA. OhlssonA. BarringtonK.J. RobertsR.S. Survival without disability to age 5 years after neonatal caffeine therapy for apnea of prematurity.JAMA2012307327528210.1001/jama.2011.202422253394
    [Google Scholar]
  95. NakaokaS. KawasakiY. InomataS. MakimotoM. YoshidaT. Caffeine Toxicity in a Preterm Neonate.Pediatr. Neonatol.201758438038110.1016/j.pedneo.2016.08.00127742225
    [Google Scholar]
  96. ErgenekonE DalgiçN AksoyE KoçE AtalayY Caffeine intoxication in a premature neonate.Paediatr Anaesth.2001116737910.1046/j.1460‑9592.2001.00753.x
    [Google Scholar]
  97. AversaS. MarsegliaL. MantiS. D’AngeloG. CuppariC. DavidA. ChiricoG. GittoE. Ventilation strategies for preventing oxidative stress-induced injury in preterm infants with respiratory disease: An update.Paediatr. Respir. Rev.201617717910.1016/j.prrv.2015.08.01526572937
    [Google Scholar]
  98. SchmölzerG.M. KumarM. PichlerG. AzizK. O’ReillyM. CheungP.Y. Non-invasive versus invasive respiratory support in preterm infants at birth: Systematic review and meta-analysis.BMJ2013347oct17 3f598010.1136/bmj.f598024136633
    [Google Scholar]
  99. NolascoS. MantiS. LeonardiS. VancheriC. SpicuzzaL. High-flow nasal cannula oxygen therapy: Physiological mechanisms and clinical applications in children.Front. Med. (Lausanne)2022992054910.3389/fmed.2022.92054935721052
    [Google Scholar]
  100. ThomasC.W. Meinzen-DerrJ. HoathS.B. NarendranV. Neurodevelopmental outcomes of extremely low birth weight infants ventilated with continuous positive airway pressure vs. mechanical ventilation.Indian J. Pediatr.201279221822310.1007/s12098‑011‑0535‑521853318
    [Google Scholar]
  101. PerroneS. MantiS. PetroliniC. Dell’OrtoV.G. BoscarinoG. CeccottiC. BertiniM. BuonocoreG. EspositoS.M.R. GittoE. Oxygen for the newborn: Friend or foe?Children (Basel)202310357910.3390/children1003057936980137
    [Google Scholar]
  102. RoehrC.C. ProquittéH. HammerH. WauerR.R. MorleyC.J. SchmalischG. Positive effects of early continuous positive airway pressure on pulmonary function in extremely premature infants: Results of a subgroup analysis of the COIN trial.Arch. Dis. Child. Fetal Neonatal Ed.2011965F371F37310.1136/adc.2009.18100820584798
    [Google Scholar]
  103. MorleyC.J. DavisP.G. DoyleL.W. BrionL.P. HascoetJ.M. CarlinJ.B. Nasal CPAP or intubation at birth for very preterm infants.N. Engl. J. Med.2008358770070810.1056/NEJMoa07278818272893
    [Google Scholar]
  104. HyndmanT.H. FretwellS. BowdenR.S. CoaicettoF. IronsP.C. AleriJ.W. KordzakhiaN. PageS.W. MuskG.C. TukeS.J. MosingM. MetcalfeS.S. The effect of doxapram on survival and APGAR score in newborn puppies delivered by elective caesarean: A randomized controlled trial.J. Vet. Pharmacol. Ther.202346635336410.1111/jvp.1338837211671
    [Google Scholar]
  105. VliegenthartR.J.S. ten HoveC.H. OnlandW. van KaamA.H.L.C. Doxapram treatment for Apnea of Prematurity: A systematic review.Neonatology2017111216217110.1159/00044894127760427
    [Google Scholar]
  106. QuitadamoP. GiorgioV. ZenzeriL. BaldassarreM. CresiF. BorrelliO. SalvatoreS. Apnea in preterm neonates: What’s the role of gastroesophageal reflux? A systematic review.Dig. Liver Dis.202052772372910.1016/j.dld.2020.03.03232423847
    [Google Scholar]
  107. BairamA. BoukariR. JosephV. Targeting progesterone receptors in newborn males and females: From the animal model to a new perspective for the treatment of apnea of prematurity?Respir. Physiol. Neurobiol.2019263556110.1016/j.resp.2019.03.00430880277
    [Google Scholar]
  108. RenJ. DingX. GreerJ.J. Ampakines enhance weak endogenous respiratory drive and alleviate apnea in perinatal rats.Am. J. Respir. Crit. Care Med.2015191670471010.1164/rccm.201410‑1898OC25594679
    [Google Scholar]
  109. ZagolK. LakeD.E. VergalesB. MoormanM.E. Paget-BrownA. LeeH. RusinC.G. DelosJ.B. ClarkM.T. MoormanJ.R. KattwinkelJ. Anemia, apnea of prematurity, and blood transfusions.J. Pediatr.20121613417421.e110.1016/j.jpeds.2012.02.04422494873
    [Google Scholar]
  110. Abu Jawdehe.g. MartinR.J. DickT.E. WalshM.C. Di FioreJ.M. The effect of red blood cell transfusion on intermittent hypoxemia in ELBW infants.J. Perinatol.2014341292192510.1038/jp.2014.11524921411
    [Google Scholar]
  111. KovatisK.Z. Di FioreJ.M. MartinR.J. AbbasiS. ChaundharyA.S. HooverS. ZhangZ. KirpalaniH. Effect of blood transfusions on intermittent hypoxic episodes in a prospective study of very low birth weight infants.J. Pediatr.2020222657010.1016/j.jpeds.2020.03.01532423683
    [Google Scholar]
  112. BalloutR.A. FosterJ.P. KahaleL.A. BadrL. Body positioning for spontaneously breathing preterm infants with apnoea.Cochrane Libr.201720172CD00495110.1002/14651858.CD004951.pub328067942
    [Google Scholar]
  113. Baik-SchneditzN. UrlesbergerB. SchwabergerB. MilederL. SchmölzerG. AvianA. PichlerG. Tactile stimulation during neonatal transition and its effect on vital parameters in neonates during neonatal transition.Acta Paediatr.2018107695295710.1111/apa.1423929364540
    [Google Scholar]
  114. van HentenT.M.A. DekkerJ. te PasA.B. ZivanovicS. HooperS.B. RoehrC.C. Tactile stimulation in the delivery room: Do we practice what we preach?Arch. Dis. Child. Fetal Neonatal Ed.20191046F661F66210.1136/archdischild‑2018‑31634430824474
    [Google Scholar]
  115. KostandyR.R. Ludington-HoeS.M. The evolution of the science of kangaroo (mother) care (skin-to-skin contact).Birth Defects Res.2019111151032104310.1002/bdr2.156531419082
    [Google Scholar]
/content/journals/crmr/10.2174/011573398X285318240408034132
Loading
/content/journals/crmr/10.2174/011573398X285318240408034132
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test