Skip to content
2000
Volume 19, Issue 1
  • ISSN: 2772-4328
  • E-ISSN: 2772-4336

Abstract

Since their inception, preclinical experimental models have played an important role in investigating and characterizing disease pathogenesis. These , , and preclinical tests also aid in identifying targets, evaluating potential therapeutic drugs, and validating treatment protocols.

Diarrhea is a leading cause of mortality and morbidity, particularly among children in developing countries, and it represents a huge health-care challenge on a global scale. Due to its chronic manifestations, alternative anti-diarrheal medications must be tested and developed because of the undesirable side effects of currently existing anti-diarrheal drugs.

Several online databases, including Science Direct, PubMed, Web of Science, Google Scholar and Scopus, were used in the literature search. The datasets were searched for entries of studies up to May, 2022.

The exhaustive literature study provides a large number of , and models, which have been used for evaluating the mechanism of the anti-diarrheal effect of drugs in chemically-, pathogen-, disease-induced animal models of diarrhea. The advances and challenges of each model were also addressed in this review.

This review encompasses diverse strategies for screening drugs with anti-diarrheal effects and covers a wide range of pathophysiological and molecular mechanisms linked to diarrhea, with a particular emphasis on the challenges of evaluating and predictively validating these experimental models in preclinical studies. This could also help researchers find a new medicine to treat diabetes more effectively and with fewer adverse effects.

Loading

Article metrics loading...

/content/journals/crcep/10.2174/2772432818666221121113622
2022-12-08
2025-01-19
Loading full text...

Full text loading...

References

  1. KumarB. DivakarK. TiwariP. SalhanM. GoliD. Evaluation of anti-diarrhoeal effect of aqueous and ethanolic extracts of fruit pulp of Terminalia belerica in rats.Int J Drug Dev Res201024769779
    [Google Scholar]
  2. CamilleriM. SellinJ.H. BarrettK.E. Pathophysiology, evaluation, and management of chronic watery diarrhea.Gastroenterology2017152351553210.1053/j.gastro.2016.10.01427773805
    [Google Scholar]
  3. Shahed-Al-MahmudM. JahanT. Towhidul IslamM. Antidiarrheal activities of hydroalcoholic extract of Sida cordifolia roots in Wister albino rats.Orient. Pharm. Exp. Med.2018181515810.1007/s13596‑017‑0295‑5
    [Google Scholar]
  4. WhyteL.A. JenkinsH.R. Pathophysiology of diarrhoea.Paediatr. Child Health2012221044344710.1016/j.paed.2012.05.006
    [Google Scholar]
  5. LakshminarayanaM. ShivkumarH. RimabenP. BhargavaV. Antidiarrhoeal activity of leaf extract of Moringa oleifera in experimentally induced diarrhoea in rats.Int. J. Phytomed.20113168
    [Google Scholar]
  6. CalzadaF. JuárezT. García-HernándezN. Antiprotozoal, antibacterial and antidiarrheal properties from the flowers of Chiranthodendron pentadactylon and isolated flavonoids.Pharmacogn. Mag.2017135024024410.4103/0973‑1296.20456428539715
    [Google Scholar]
  7. MollaM. GemedaN. AbayS.M. Investigating potential modes of actions of Mimusops kummel fruit extract and solvent fractions for their antidiarrheal activities in mice.Evid. Based Complement. Alternat. Med.2017201711110.1155/2017/4103410
    [Google Scholar]
  8. KomalK.S. RanaA. Herbal approaches for diarrhoea: A review.Int Res J Pharm2013413138
    [Google Scholar]
  9. SuleimanM.M. OyelowoB.B. AbubakarA. MammanM. BelloK.T. A controlled study to investigate anti-diarrhoeal effect of the stem-bark fractions of Terminalia avicennioides in laboratory animal models.Int. J. Vet. Sci. Med.201751142210.1016/j.ijvsm.2017.04.00230255043
    [Google Scholar]
  10. ShakyaA. ChaudharyS.K. BhatH.R. GhoshS.K. Acute and sub-chronic toxicity studies of Benincasa hispida (Thunb.) cogniaux fruit extract in rodents.Regul. Toxicol. Pharmacol.202011810478510.1016/j.yrtph.2020.10478532976857
    [Google Scholar]
  11. ArendsM.J. WhiteE.S. WhitelawC.B.A. Animal and cellular models of human disease.J. Pathol.2016238213714010.1002/path.466226482929
    [Google Scholar]
  12. SisayM. EngidaworkE. ShibeshiW. Evaluation of the antidiarrheal activity of the leaf extracts of Myrtus communis Linn (Myrtaceae) in mice model.BMC Complement. Altern. Med.201717110310.1186/s12906‑017‑1625‑328183311
    [Google Scholar]
  13. EmudainohwoJ.O. MokeG.E. EjebeD.E. EarnestO. An investigation into the anti-diarrhoeal effects of aqueous and ethanol stem bark extracts of Alchornea cordifolia in Wistar rats.J. Pharmacogn. Phytochem.201541183187
    [Google Scholar]
  14. Shahed-Al-MahmudM. ShawonM.J.A. IslamT. RahmanM.M. RahmanM.R. In vivo anti-diarrheal activity of methanolic extract of Streblus asper leaves stimulating the Na+/K+-ATPase in Swiss albino rats.Indian J. Clin. Biochem.2020351727910.1007/s12291‑018‑0781‑732071498
    [Google Scholar]
  15. AleemA. JanbazK.H. Ethnopharmacological evaluation of Cenchrus ciliaris for multiple gastrointestinal disorders.Bangladesh J. Pharmacol.201712212513210.3329/bjp.v12i2.30205
    [Google Scholar]
  16. RudraS. TahaminaA. EmonN.U. Evaluation of various solvent extracts of Tetrastigma leucostaphylum (Dennst.) Alston leaves, a Bangladeshi traditional medicine used for the treatment of Diarrhea.Molecules20202521499410.3390/molecules2521499433126608
    [Google Scholar]
  17. OghenesuvweE.E. TedwinsE.J.O. ObioraI.S. Preclinical screening techniques for anti-diarrheal drugs: A comprehensive review.Am. J. Physiol. Cell Physiol.2018726174
    [Google Scholar]
  18. SadraeiH. AsghariG. JamaliH. Antidiarrheal action of Zataria multiflora hydroalcoholic and hexane extracts in mice.Journal of Herbmed Pharmacology201771222810.15171/jhp.2018.05
    [Google Scholar]
  19. AhmadS. NasrinM.S. RezaA.S.M.A. Curculigo recurvata W.T.Aiton exhibits anti‐nociceptive and anti‐diarrheal effects in Albino mice and an in silico model.Animal Model. Exp. Med.20203216918110.1002/ame2.1211932613176
    [Google Scholar]
  20. AfrozS. AlamgirM. KhanM.T.H. JabbarS. NaharN. ChoudhuriM.S.K. Antidiarrhoeal activity of the ethanol extract of Paederia foetida Linn. (Rubiaceae).J. Ethnopharmacol.20061051-212513010.1016/j.jep.2005.10.00416298094
    [Google Scholar]
  21. RamdasP. SangameswaranB. GauravB. PramodD. VinayakD. Antidiarrheal potential of Adenanthera pavonina Linn seed aqueous extract in experimental animals.Int. J. Clin. Med.201714116120
    [Google Scholar]
  22. PrashantB. ShamkuwarS. ShahiR. Evaluation of antidiarrhoeal activity of mebarid: An ayurvedic formulation.Int. J. Pharm. Pharm. Sci.201242714716
    [Google Scholar]
  23. AbrahamB. SellinJ.H. Drug-induced diarrhea.Curr. Gastroenterol. Rep.20079536537210.1007/s11894‑007‑0044‑x17991336
    [Google Scholar]
  24. RatnaikeR.N. JonesT.E. Mechanisms of drug-induced diarrhoea in the elderly.Drugs Aging199813324525310.2165/00002512‑199813030‑000079789728
    [Google Scholar]
  25. BimleshK. KalyaniD. PrashantT. ManojS. DiwakarG. Evaluation of antidiarrheal effect of aqueous and ethanolic extracts of fruit pulp of Terminalia belerica in rats.Int J Drug Dev Res201024769
    [Google Scholar]
  26. TuoB. IsenbergJ.I. Effect of 5-hydroxytryptamine on duodenal mucosal bicarbonate secretion in mice.Gastroenterology2003125380581410.1016/S0016‑5085(03)01045‑X12949726
    [Google Scholar]
  27. FurnessJ.B. Types of neurons in the enteric nervous system.J. Auton. Nerv. Syst.2000811-3879610.1016/S0165‑1838(00)00127‑210869706
    [Google Scholar]
  28. GershonMD Nerves, reflexes, and the enteric nervous system: pathogenesis of the irritable bowel syndrome.J Clin Gastroenterol2005395)(S3S1849310.1097/01.mcg.0000156403.37240.3015798484
    [Google Scholar]
  29. GershonM.D. RothmanT.P. Enteric glia.Glia19914219520410.1002/glia.4400402111827778
    [Google Scholar]
  30. KadowakiM. GershonM.D. KuwaharaA. Is nitric oxide involved in 5-HT-induced fluid secretion in the gut?Behav. Brain Res.1995731-229329610.1016/0166‑4328(96)00126‑X8788522
    [Google Scholar]
  31. BensonA.B.III AjaniJ.A. CatalanoR.B. Recommended guidelines for the treatment of cancer treatment-induced diarrhea.J. Clin. Oncol.200422142918292610.1200/JCO.2004.04.13215254061
    [Google Scholar]
  32. GibsonR.J. StringerA.M. Chemotherapy-induced diarrhoea.Curr. Opin. Support. Palliat. Care200931313510.1097/SPC.0b013e32832531bb19365159
    [Google Scholar]
  33. IkunoN. SodaH. WatanabeM. OkaM. Irinotecan (CPT-11) and characteristic mucosal changes in the mouse ileum and cecum.J. Natl. Cancer Inst.199587241876188310.1093/jnci/87.24.18767494232
    [Google Scholar]
  34. VincenziB. SchiavonG. PantanoF. SantiniD. ToniniG. Predictive factors for chemotherapy-related toxic effects in patients with colorectal cancer.Nat. Clin. Pract. Oncol.20085845546510.1038/ncponc113718542119
    [Google Scholar]
  35. StringerA.M. GibsonR.J. LoganR.M. BowenJ.M. YeohA.S.J. KeefeD.M.K. Faecal microflora and β-glucuronidase expression are altered in an irinotecan-induced diarrhea model in rats.Cancer Biol. Ther.20087121919192510.4161/cbt.7.12.694018927500
    [Google Scholar]
  36. MotzerR.J. EscudierB. OudardS. Efficacy of everolimus in advanced renal cell carcinoma: A double-blind, randomised, placebo-controlled phase III trial.Lancet2008372963744945610.1016/S0140‑6736(08)61039‑918653228
    [Google Scholar]
  37. GoreM.E. SzczylikC. PortaC. Safety and efficacy of sunitinib for metastatic renal-cell carcinoma: An expanded-access trial.Lancet Oncol.200910875776310.1016/S1470‑2045(09)70162‑719615940
    [Google Scholar]
  38. KleeW.A. SharmaS.K. NirenbergM. Opiate receptors as regulators of adenylate cyclase.Life Sci.197516121869187410.1016/0024‑3205(75)90293‑3168448
    [Google Scholar]
  39. GintzlerA.R. Serotonin participation in gut withdrawal from opiates.J. Pharmacol. Exp. Ther.19792111712573789
    [Google Scholar]
  40. BeublerE. BukhaveK. Rask-MadsenJ. Colonic secretion mediated by prostaglandin E2 and 5-hydroxytryptamine may contribute to diarrhea due to morphine withdrawal in the rat.Gastroenterology19848751042104810.1016/S0016‑5085(84)80063‑36090256
    [Google Scholar]
  41. NataroJ.P. KaperJ.B. Diarrheagenic Escherichia coli.Clin. Microbiol. Rev.199811114220110.1128/CMR.11.1.1429457432
    [Google Scholar]
  42. ZhaoR.S. YangH.S. HaoJ.S. MaoZ.Q. ZhaoY.E. coli O111 was used to induce mouse diarrhea model.J Animal Sci Vet Med20022855
    [Google Scholar]
  43. YuJ. ZhangY. SongX. Effect of modified pulsatilla powder on enterotoxigenic Escherichia coli O101-induced diarrhea in mice.Evid-Bas Compl Alt Med201720171110.1155/2017/3687486
    [Google Scholar]
  44. JayshreeD.P. DevangK.P. AnshuS. VipinK. Screening of plant extracts used in traditional antidiarrheal medicines against pathogenic Escherichia coli.Sci World J2008666367
    [Google Scholar]
  45. AbbasiE. MondanizadehM. van BelkumA. Ghaznavi-RadE. Multi-drug-resistant diarrheagenic Escherichia coli pathotypes in pediatric patients with gastroenteritis from central Iran.Infect. Drug Resist.2020131387139610.2147/IDR.S24773232523359
    [Google Scholar]
  46. Robins-BrowneR.M. HartlandE.L. Escherichia coli as a cause of diarrhea.J. Gastroenterol. Hepatol.200217446747510.1046/j.1440‑1746.2002.02769.x11982729
    [Google Scholar]
  47. GomesT.A.T. EliasW.P. ScaletskyI.C.A. Diarrheagenic Escherichia coli.Braz. J. Microbiol.201647S133010.1016/j.bjm.2016.10.01527866935
    [Google Scholar]
  48. DuPontH.L. FormalS.B. HornickR.B. Pathogenesis of Escherichia coli diarrhea.N. Engl. J. Med.197128511910.1056/NEJM1971070128501014996788
    [Google Scholar]
  49. GhaiO.P. MenonP.S.N. BhauM.K. Pathogenesis of diarrhea due to Escherichia coli.Indian J. Pediatr.198047431131610.1007/BF028313257014432
    [Google Scholar]
  50. WambeH NoubissiP A FokamTMA Anti-shigellosis activity of Cola anomala water/ethanol pods extract on Shigella flexneri-induced diarrhea in rats.BioMed Res Int20192019
    [Google Scholar]
  51. NoubissiP.A. FokamT.M.A. FankemG.O. NgakouM.J. WambeH. KamgangR. Effects of Crinum jagus water/ethanol extract on Shigella flexneri-induced diarrhea in rats.Evid. Based Complement. Alternat. Med.20192019110
    [Google Scholar]
  52. RamamurthyT. NandyR.K. MukhopadhyayA.K. Virulence regulation and innate host response in the pathogenicity of Vibrio cholerae.Front. Cell. Infect. Microbiol.20201057209610.3389/fcimb.2020.57209633102256
    [Google Scholar]
  53. OguraK. YahiroK. MossJ. Cell death signaling pathway induced by cholix toxin, a cytotoxin and eEF2 ADP-ribosyltransferase produced by Vibrio cholerae.Toxins20201311210.3390/toxins1301001233374361
    [Google Scholar]
  54. VezzulliL. Baker-AustinC. KirschnerA. PruzzoC. Martinez-UrtazaJ. Global emergence of environmental non‐O1/O139 Vibrio cholerae infections linked with climate change: A neglected research field?Environ. Microbiol.202022104342435510.1111/1462‑2920.1504032337781
    [Google Scholar]
  55. TroegerC. ForouzanfarM. RaoP.C. Estimates of global, regional, and national morbidity, mortality, and aetiologies of diarrhoeal diseases: A systematic analysis for the Global Burden of Disease Study 2015.Lancet Infect. Dis.201717990994810.1016/S1473‑3099(17)30276‑128579426
    [Google Scholar]
  56. CrumpJ.A. Sjölund-KarlssonM. GordonM.A. ParryC.M. Epidemiology, clinical presentation, laboratory diagnosis, antimicrobial resistance, and antimicrobial management of invasive Salmonella infections.Clin. Microbiol. Rev.201528490193710.1128/CMR.00002‑1526180063
    [Google Scholar]
  57. KnodlerL.A. ElfenbeinJ.R. Salmonella enterica.Trends Microbiol.2019271196496510.1016/j.tim.2019.05.00231160162
    [Google Scholar]
  58. PengZ. LingL. StrattonC.W. Advances in the diagnosis and treatment of Clostridium difficile infections.Emerg. Microbes Infect.20187111310.1038/s41426‑017‑0019‑429434201
    [Google Scholar]
  59. MiletoS.J. JardéT. ChildressK.O. Clostridioides difficile infection damages colonic stem cells via TcdB, impairing epithelial repair and recovery from disease.Proc. Natl. Acad. Sci.2020117148064807310.1073/pnas.191525511732198200
    [Google Scholar]
  60. AndrogaG.O. HartJ. FosterN.F. CharlesA. ForbesD. RileyT.V. Infection with toxin A-negative, toxin B-negative, binary toxin-positive Clostridium difficile in a young patient with ulcerative colitis.J. Clin. Microbiol.201553113702370410.1128/JCM.01810‑1526354812
    [Google Scholar]
  61. DarkohC. Plants-ParisK. BishoffD. DuPontH.L. Clostridium difficile modulates the gut microbiota by inducing the production of indole, an interkingdom signaling and antimicrobial molecule.mSystems201942e00346e1810.1128/mSystems.00346‑1830944877
    [Google Scholar]
  62. Quesada-GómezC. López-UreñaD. Acuña-AmadorL. Emergence of an outbreak-associated Clostridium difficile variant with increased virulence.J. Clin. Microbiol.20155341216122610.1128/JCM.03058‑1425653402
    [Google Scholar]
  63. AwoyeniA. OlaniranO. OdetoyinB. Isolation and evaluation of Candida species and their association with CD4+ T cells counts in HIV patients with diarrhoea.Afr. Health Sci.201717232232910.4314/ahs.v17i2.529062326
    [Google Scholar]
  64. NobileC.J. JohnsonA.D. Candida albicans biofilms and human disease.Annu. Rev. Microbiol.2015691719210.1146/annurev‑micro‑091014‑10433026488273
    [Google Scholar]
  65. PanpetchW. HiengrachP. NilgateS. Additional Candida albicans administration enhances the severity of dextran sulfate solution induced colitis mouse model through leaky gut-enhanced systemic inflammation and gut-dysbiosis but attenuated by Lactobacillus rhamnosus L34.Gut Microbes202011346548010.1080/19490976.2019.166271231530137
    [Google Scholar]
  66. GantnerB.N. SimmonsR.M. UnderhillD.M. Dectin-1 mediates macrophage recognition of Candida albicans yeast but not filaments.EMBO J.20052461277128610.1038/sj.emboj.760059415729357
    [Google Scholar]
  67. GoodgameR.W. Viral causes of diarrhea.Gastroenterol. Clin. North Am.200130377979510.1016/S0889‑8553(05)70210‑711586557
    [Google Scholar]
  68. TafazoliF. ZengC.Q. EstesM.K. MagnussonK.E. SvenssonL. NSP4 enterotoxin of rotavirus induces paracellular leakage in polarized epithelial cells.J. Virol.20017531540154610.1128/JVI.75.3.1540‑1546.200111152526
    [Google Scholar]
  69. MorrisA.P. ScottJ.K. BallJ.M. ZengC.Q-Y. O’NealW.K. EstesM.K. NSP4 elicits age-dependent diarrhea and Ca(2+)mediated I(-) influx into intestinal crypts of CF mice.Am. J. Physiol.19992772G431G44410444458
    [Google Scholar]
  70. CrawfordS.E. RamaniS. TateJ.E. Rotavirus infection.Nat. Rev. Dis. Primers2017311708310.1038/nrdp.2017.8329119972
    [Google Scholar]
  71. TangY. ForsythC.B. KeshavarzianA. New molecular insights into inflammatory bowel disease-induced diarrhea.Expert Rev. Gastroenterol. Hepatol.20115561562510.1586/egh.11.6421910579
    [Google Scholar]
  72. IvanovA.I. ParkosC.A. NusratA. Cytoskeletal regulation of epithelial barrier function during inflammation.Am. J. Pathol.2010177251252410.2353/ajpath.2010.10016820581053
    [Google Scholar]
  73. ZhangL. LiuF. XueJ. LeeS.A. LiuL. RiordanS.M. Bacterial species associated with human inflammatory bowel disease and their pathogenic mechanisms.Front. Microbiol.20221380189210.3389/fmicb.2022.80189235283816
    [Google Scholar]
  74. WuL.H. XuZ.L. DongD. HeS.A. YuH. Protective effect of anthocyanins extract from blueberry on TNBS-In duce d IBD model of mice.Evid. Based Complement. Alternat. Med.201120111810.1093/ecam/neq04021785630
    [Google Scholar]
  75. RothS. SpalingerM.R. MüllerI. LangS. RoglerG. ScharlM. Bilberry-derived anthocyanins prevent IFN-γ-induced pro-inflammatory signalling and cytokine secretion in human THP-1 monocytic cells.Digestion201490317918910.1159/00036605525401758
    [Google Scholar]
  76. BarrettK.E. KeelyS.J. Chloride secretion by the intestinal epithelium: molecular basis and regulatory aspects.Annu. Rev. Physiol.200062153557210.1146/annurev.physiol.62.1.53510845102
    [Google Scholar]
  77. FlorentinD. SassiA. RoquesB.P. A highly sensitive fluorometric assay for “enkephalinase”, a neutral metalloendopeptidase that releases tyrosine-glycine-glycine from enkephalins.Anal. Biochem.19841411626910.1016/0003‑2697(84)90425‑16388410
    [Google Scholar]
  78. SchwartzJ.C. MalfroyB. De La BaumeS. Biological inactivation of enkephalins and the role of enkephalin-dipeptidyl-carboxypeptidase (“enkephalinase”) as neuropeptidase.Life Sci.198129171715174010.1016/0024‑3205(81)90182‑X6272046
    [Google Scholar]
  79. ThiagarajahJ.R. KoE.A. TradtrantipL. DonowitzM. VerkmanA.S. Discovery and development of antisecretory drugs for treating diarrheal diseases.Clin. Gastroenterol. Hepatol.201412220420910.1016/j.cgh.2013.12.00124316107
    [Google Scholar]
  80. SchulzkeJ.D. AndresS. AmashehM. FrommA. GünzelD. Anti-diarrheal mechanism of the traditional remedy Uzara via reduction of active chloride secretion.PLoS One201163e1810710.1371/journal.pone.001810721479205
    [Google Scholar]
  81. TradtrantipL. NamkungW. VerkmanA.S. Crofelemer, an antisecretory antidiarrheal proanthocyanidin oligomer extracted from Croton lechleri, targets two distinct intestinal chloride channels.Mol. Pharmacol.2010771697810.1124/mol.109.06105119808995
    [Google Scholar]
  82. KellyO.B. MrozM.S. WardJ.B.J. Ursodeoxycholic acid attenuates colonic epithelial secretory function.J. Physiol.201359192307231810.1113/jphysiol.2013.25254423507881
    [Google Scholar]
  83. KeelyS.J. WaltersJ.R.F. The farnesoid X receptor: Good for BAD.Cell. Mol. Gastroenterol. Hepatol.20162672573210.1016/j.jcmgh.2016.08.00428174746
    [Google Scholar]
  84. GreigE.R. Boot-HandfordR.P. ManiV. SandleG.I. Decreased expression of apical Na+ channels and basolateral Na+, K+-ATPase in ulcerative colitis.J. Pathol.20042041849210.1002/path.161315307141
    [Google Scholar]
  85. KielaP.R. XuH. GhishanF.K. Apical NA+/H+ exchangers in the mammalian gastrointestinal tract.J. Physiol. Pharmacol.200657Suppl. 7517917228096
    [Google Scholar]
  86. KielaP. GhishanF. Na+-H+ exchange in mammalian digestive tract. Physiology of the Gastrointestinal Tract.Elsevier Press: Amsterdam, Netherlands200610.1016/B978‑012088394‑3/50076‑3
    [Google Scholar]
  87. KhanI. al-AwadiF.M. AbulH. Colitis-induced changes in the expression of the Na+/H+ exchanger isoform NHE-1.J. Pharmacol. Exp. Ther.199828528698759580638
    [Google Scholar]
  88. FirsovD. GautschiI. MerillatA-M. RossierB.C. SchildL. The heterotetrameric architecture of the epithelial sodium channel (ENaC).EMBO J.199817234435210.1093/emboj/17.2.3449430626
    [Google Scholar]
  89. GreigE. SandleG. Diarrhea in ulcerative colitis. The role of altered colonic sodium transport.Ann. N. Y. Acad. Sci.2000915132733210.1111/j.1749‑6632.2000.tb05260.x11193595
    [Google Scholar]
  90. ZeissigS. BergannT. FrommA. Altered ENaC expression leads to impaired sodium absorption in the noninflamed intestine in Crohn’s disease.Gastroenterology200813451436144710.1053/j.gastro.2008.02.03018355814
    [Google Scholar]
  91. VickersN.J. Animal communication: When i’m calling you, will you answer too?Curr. Biol.20172714R713R71510.1016/j.cub.2017.05.06428743020
    [Google Scholar]
  92. KhanI. SiddiqueI. Al-AwadiF.M. MohanK. Role of Na+/H+ exchanger isoform-1 in human inflammatory bowel disease.Can. J. Gastroenterol.2003171313610.1155/2003/67381912560852
    [Google Scholar]
  93. TaylorA.F. SaundersM.M. ShingleD.L. CimbalaJ.M. ZhouZ. DonahueH.J. Mechanically stimulated osteocytes regulate osteoblastic activity via gap junctions.Am. J. Physiol. Cell Physiol.20072921C545C55210.1152/ajpcell.00611.200516885390
    [Google Scholar]
  94. GilaniA.H. KhanA. RaoofM. Gastrointestinal, selective airways and urinary bladder relaxant effects of Hyoscyamus niger are mediated through dual blockade of muscarinic receptors and Ca2+ channels.Fundam. Clin. Pharmacol.2008221879910.1111/j.1472‑8206.2007.00561.x18251725
    [Google Scholar]
  95. SaikiaB. BaruaC.C. HaloiP. PatowaryP. Anticholinergic, antihistaminic, and antiserotonergic activity of n-hexane extract of Zanthoxylum alatum seeds on isolated tissue preparations: An ex vivo study.Indian J. Pharmacol.2017491424828458421
    [Google Scholar]
  96. KhosroukhavarR. AhmadianiA. ShamsaF. Antihistaminic and anticholinergic activity of methanolic extract of barberry fruit (Berberis vulgaris) in the guinea-pig ileum.Faslnamah-i Giyahan-i Daruyi201093599105
    [Google Scholar]
  97. KhanH. SaeedM. GilaniA.H. Antispasmodic and antidiarrheal activities of rhizomes of Polygonatum verticillatum maneuvered predominately through activation of K+ channels.Toxicol. Ind. Health201632467768510.1177/074823371350695624215061
    [Google Scholar]
  98. MahmoodH. ChaudhryM.A. MasoodZ. SaeedM.A. AdnanS. A mechanistic evaluation of the traditional uses of Nepeta ruderalis in gastrointestinal and airway disorders.Pharm. Biol.20175511017102110.1080/13880209.2017.128532528183233
    [Google Scholar]
/content/journals/crcep/10.2174/2772432818666221121113622
Loading
/content/journals/crcep/10.2174/2772432818666221121113622
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Animal model; anti-diarrheal drugs; diarrhea; ex vivo; in vitro; in vivo
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test