Skip to content
2000
Volume 20, Issue 1
  • ISSN: 2772-4328
  • E-ISSN: 2772-4336

Abstract

Background

The use of appropriate animal models for cancer studies is a major challenge, particularly for investigators who lack the resources to maintain and use xenograft animals or genetically engineered mouse models (GEMM). In addition, several countries intending to incorporate these models must conduct importation procedures, posing an additional challenge.

Objective

This review aimed to explore the use of cell-derived allograft or syngeneic models under limited resources. The results can be used by investigators, specifically from low-middle-income countries, to contribute to lung cancer eradication.

Methods

A literature search was carried out on various databases, including PubMed, Web of Science, and Scopus. In addition, the publication year of the selected articles was set between 2013 and 2023 with different search components (SC), namely lung cancer (SC1), animal models (SC2), and preclinical studies (SC3).

Results

This systematic review focused on selecting animals, cells, and methods that could be applied to generating allograft-type lung cancer animal models from 101 included articles.

Conclusion

Based on the results, the use of cell-derived allograft models in cancer studies is feasible and relevant, and it provides valuable insights regarding the conditions with limited resources.

Loading

Article metrics loading...

/content/journals/crcep/10.2174/0127724328295592240419064719
2024-04-24
2025-01-08
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  2. LeenaarsC.H.C. KouwenaarC. StafleuF.R. Animal to human translation: A systematic scoping review of reported concordance rates.J. Transl. Med.201917122310.1186/s12967‑019‑1976‑2 31307492
    [Google Scholar]
  3. PoundP. Ritskes-HoitingaM. Is it possible to overcome issues of external validity in preclinical animal research? Why most animal models are bound to fail.J. Transl. Med.201816130410.1186/s12967‑018‑1678‑1 30404629
    [Google Scholar]
  4. WaterstonR.H. Lindblad-TohK. BirneyE. Initial sequencing and comparative analysis of the mouse genome.Nature2002420691552056210.1038/nature01262 12466850
    [Google Scholar]
  5. HouX. DuC. LuL. Opportunities and challenges of patient-derived models in cancer research: Patient-derived xenografts, patient-derived organoid and patient-derived cells.World J. Surg. Oncol.20222013710.1186/s12957‑022‑02510‑8 35177071
    [Google Scholar]
  6. IdrisovaK.F. SimonH.U. GomzikovaM.O. Role of patient-derived models of cancer in translational oncology.Cancers (Basel)202215113910.3390/cancers15010139 36612135
    [Google Scholar]
  7. XuC. LiX. LiuP. LiM. LuoF. Patient derived xenograft mouse models: A high fidelity tool for individualized medicine (Review)..Oncol. Lett.201917110.3892/ol.2018.9583 30655732
    [Google Scholar]
  8. OkadaS. VaeteewoottacharnK. KariyaR. Application of highly immunocompromised mice for the establishment of patient-derived xenograft (PDX) models.Cells20198888910.3390/cells8080889 31412684
    [Google Scholar]
  9. KerstenK. de VisserK.E. van MiltenburgM.H. JonkersJ. Genetically engineered mouse models in oncology research and cancer medicine.EMBO Mol. Med.20179213715310.15252/emmm.201606857 28028012
    [Google Scholar]
  10. DarroF. DecaesteckerC. GaussinJ.F. MortierS. Van GinckelR. KissR. Are syngeneic mouse tumor models still valuable experimental models in the field of anti-cancer drug discovery?Int. J. Oncol.2005273607616 16077908
    [Google Scholar]
  11. LeenaarsM. HooijmansC.R. van VeggelN. A step-by-step guide to systematically identify all relevant animal studies.Lab. Anim.2012461243110.1258/la.2011.011087 22037056
    [Google Scholar]
  12. ShamseerL. MoherD. ClarkeM. GhersiD. LiberatiA. PetticrewM. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: Elaboration and explanation.BMJ2015350g7647
    [Google Scholar]
  13. OlsonB. LiY. LinY. LiuE.T. PatnaikA. Mouse models for cancer immunotherapy research.Cancer Discov.20188111358136510.1158/2159‑8290.CD‑18‑0044 30309862
    [Google Scholar]
  14. JankerF. WederW. JangJ.H. JungraithmayrW. Preclinical, non-genetic models of lung adenocarcinoma: A comparative survey.Oncotarget2018955305273053810.18632/oncotarget.25668 30093966
    [Google Scholar]
  15. ZhongW. MyersJ.S. WangF. Comparison of the molecular and cellular phenotypes of common mouse syngeneic models with human tumors.BMC Genomics2020211210.1186/s12864‑019‑6344‑3 31898484
    [Google Scholar]
  16. VirtanenC. IshikawaY. HonjohD. Integrated classification of lung tumors and cell lines by expression profiling.Proc. Natl. Acad. Sci. USA20029919123571236210.1073/pnas.192240599 12218176
    [Google Scholar]
  17. YangY. YangH.H. HuY. Immunocompetent mouse allograft models for development of therapies to target breast cancer metastasis.Oncotarget2017819306213064310.18632/oncotarget.15695 28430642
    [Google Scholar]
  18. WeissI.D. EllaE. DominskyO. In the hunt for therapeutic targets: Mimicking the growth, metastasis, and stromal associations of early-stage lung cancer using a novel orthotopic animal model.J. Thorac. Oncol.2015101465810.1097/JTO.0000000000000367 25654727
    [Google Scholar]
  19. BibbyM.C. Orthotopic models of cancer for preclinical drug evaluation.Eur. J. Cancer200440685285710.1016/j.ejca.2003.11.021 15120041
    [Google Scholar]
  20. StevensL.E. Arnal-EstapéA. NguyenD.X. Pre-conditioning the airways of mice with bleomycin increases the efficiency of orthotopic lung cancer cell engraftment.J. Vis. Exp.2018201813656650 30010648
    [Google Scholar]
  21. Zaw ThinM. MooreC. SnoeksT. KalberT. DownwardJ. BehrensA. Micro-CT acquisition and image processing to track and characterize pulmonary nodules in mice.Nat. Protoc.2023183990101510.1038/s41596‑022‑00769‑5 36494493
    [Google Scholar]
  22. BarckK.H. Bou-ReslanH. RastogiU. Quantification of tumor burden in a genetically engineered mouse model of lung cancer by micro-CT and automated analysis.Transl. Oncol.20158212613510.1016/j.tranon.2015.03.003 25926079
    [Google Scholar]
  23. IochmannS. LerondelS. BléchetC. Monitoring of tumour progression using bioluminescence imaging and computed tomography scanning in a nude mouse orthotopic model of human small cell lung cancer.Lung Cancer2012771707610.1016/j.lungcan.2012.01.009 22321610
    [Google Scholar]
  24. MomcilovicM. BaileyS.T. LeeJ.T. ZamilpaC. JonesA. AbdelhadyG. Utilizing 18F-FDG PET/CT imaging and quantitative histology to measure dynamic changes in the glucose metabolism in mouse models of lung cancer.J. Vis. Exp.2018201813757167
    [Google Scholar]
  25. RaesF. SobiloJ. Le MéeM. High resolution ultrasound and photoacoustic imaging of orthotopic lung cancer in mice: New perspectives for onco-pharmacology.PLoS One2016114e015353210.1371/journal.pone.0153532 27070548
    [Google Scholar]
  26. XuW. YangS. LuL. Influence of lung cancer model characteristics on tumor targeting behavior of nanodrugs.J. Control. Release202335453855310.1016/j.jconrel.2023.01.026 36641120
    [Google Scholar]
  27. StribblingS.M. RyanA.J. The cell-line-derived subcutaneous tumor model in preclinical cancer research.Nat. Protoc.20221792108212810.1038/s41596‑022‑00709‑3 35859135
    [Google Scholar]
  28. CondeJ. TianF. HernándezY. In vivo tumor targeting via nanoparticle-mediated therapeutic siRNA coupled to inflammatory response in lung cancer mouse models.Biomaterials201334317744775310.1016/j.biomaterials.2013.06.041 23850099
    [Google Scholar]
  29. ShiS. WangR. ChenY. SongH. ChenL. HuangG. Combining antiangiogenic therapy with adoptive cell immunotherapy exerts better antitumor effects in non-small cell lung cancer models.PLoS One201386e6575710.1371/journal.pone.0065757 23799045
    [Google Scholar]
  30. ThotalaD. CraftJ.M. FerraroD.J. KotipatruniR.P. BhaveS.R. JaboinJ.J. Cytosolic PhospholipaseA2 Inhibition with PLA-695 Radiosensitizes tumors in lung cancer animal models.PLoS One201387e69688
    [Google Scholar]
  31. ZhuS. HanX. YangR. Metabolomics study of ribavirin in the treatment of orthotopic lung cancer based on UPLC-Q-TOF/MS.Chem. Biol. Interact.202337011030510.1016/j.cbi.2022.110305 36529159
    [Google Scholar]
  32. KanzakiR. NaitoH. KiseK. Gas6 derived from cancer-associated fibroblasts promotes migration of Axl-expressing lung cancer cells during chemotherapy.Sci. Rep.2017711061310.1038/s41598‑017‑10873‑2 28878389
    [Google Scholar]
  33. WangS. YangX. WangW. ZhangY. LiT. ZhaoL. Interpretation of the absorbed constituents and pharmacological effect of Spica Schizonepetae extract on non-small cell lung cancer.PLoS One2021163e024870010.1371/journal.pone.0248700
    [Google Scholar]
  34. ZhangX. WangY. FanJ. Blocking CD47 efficiently potentiated therapeutic effects of anti-angiogenic therapy in non-small cell lung cancer.J. Immunother. Cancer20197134610.1186/s40425‑019‑0812‑9 31829270
    [Google Scholar]
  35. KorzhovaK.V. KovalenkoL.P. IvanovaE.A. NikitinS.V. DurnevA.D. Effects of 5-hydroxypyrimidine derivatives on tumor growth and lifespan of C57BL/6 mice with epidermoid lung carcinoma.Bull. Exp. Biol. Med.2020169226226510.1007/s10517‑020‑04864‑z 32651822
    [Google Scholar]
  36. YuanM. ZhaiY. MenY. ZhaoM. SunX. MaZ. Anlotinib enhances the antitumor activity of high-dose irradiation combined with anti-PD-L1 by potentiating the tumor immune microenvironment in murine lung cancer.Oxid. Med. Cell. Longev.20221111
    [Google Scholar]
  37. SafonovaE.A. LopatinaK.A. RazinaT.G. ZuevaE.P. Gur’evA.M. BelousovM.V. Effects of Tussilago farfara L. Polysaccharides on the expression of PD-1 (CD279) and PD-L1 (CD274) in peripheral blood and tumor tissue lymphocytes in mice with lewis lung carcinoma.Bull. Exp. Biol. Med.2020169337838210.1007/s10517‑020‑04891‑w 32749562
    [Google Scholar]
  38. TeixeiraA.A.S. BiondoL.A. SilveiraL.S. Doxorubicin modulated clock genes and cytokines in macrophages extracted from tumor-bearing mice.Cancer Biol. Ther.202021434435310.1080/15384047.2019.1702400 31931676
    [Google Scholar]
  39. MoreauM. Yasmin-KarimS. KunjachanS. Priming the abscopal effect using multifunctional smart radiotherapy biomaterials loaded with immunoadjuvants.Front. Oncol.201885610.3389/fonc.2018.00056 29594038
    [Google Scholar]
  40. YangH. GuoQ. WuJ. Deciphering the effects and mechanisms of Yi-Fei-San-Jie-pill on non-small cell lung cancer with integrating network target analysis and experimental validation.Front. Pharmacol.20221385155410.3389/fphar.2022.851554 35645820
    [Google Scholar]
  41. ShangK. WangZ. HuY. HuangY. YuanK. YuY. Gene silencing of indoleamine 2,3 dioxygenase 1 inhibits lung cancer growth by suppressing T cell exhaustion.Oncol. Lett.20201963827383810.3892/ol.2020.11477 32382333
    [Google Scholar]
  42. LuoY. WangK. LiQ. LangJ. Effect of Shenfu injection on immune function of mice bearing Lewis lung sarcoma with chemotherapy.Tumour Biol.2016378101871019110.1007/s13277‑016‑4889‑1 26831661
    [Google Scholar]
  43. DingR.L. XieF. HuY. Preparation of endostatin-loaded chitosan nanoparticles and evaluation of the antitumor effect of such nanoparticles on the Lewis lung cancer model.Drug Deliv.201724130030810.1080/10717544.2016.1247927 28165807
    [Google Scholar]
  44. RuppT. DebaslyS. GenestL. FrogetG. CastagnéV. Therapeutic potential of fingolimod and dimethyl fumarate in non-small cell lung cancer preclinical models.Int. J. Mol. Sci.20222315819210.3390/ijms23158192 35897763
    [Google Scholar]
  45. NowosielskaE.M. ChedaA. PociegielM. ChedaL. SzymańskiP. WiedlochaA. Effects of a unique combination of the whole-body low dose radiotherapy with inactivation of two immune checkpoints and/or a heat shock protein on the transplantable lung cancer in mice.Int. J. Mol. Sci.20212212630910.3390/ijms22126309 34208396
    [Google Scholar]
  46. SkurikhinE.G. PershinaO. ErmakovaN. Cell therapy with human reprogrammed cd8+ t-cells has antimetastatic effects on lewis lung carcinoma in C57BL/6 mice.Int. J. Mol. Sci.202223241578010.3390/ijms232415780 36555420
    [Google Scholar]
  47. SelenzC. CompesA. NillM. EGFR inhibition strongly modulates the tumour immune microenvironment in EGFR-driven non-small-cell lung cancer.Cancers (Basel)20221416394310.3390/cancers14163943 36010935
    [Google Scholar]
  48. ZhangY. WuX. KaiY. Secretome profiling identifies neuron-derived neurotrophic factor as a tumor-suppressive factor in lung cancer.JCI Insight2019424e12934410.1172/jci.insight.129344 31852841
    [Google Scholar]
  49. AcencioM.M.P. PukaJ. MarchiE. A modified experimental model of malignant pleural disease induced by lung Lewis carcinoma (LLC) cells.J. Transl. Med.201513130210.1186/s12967‑015‑0662‑2 26373420
    [Google Scholar]
  50. ŽilionytėK. BagdzevičiūtėU. MlynskaA. Functional antigen processing and presentation mechanism as a prerequisite factor of response to treatment with dendritic cell vaccines and anti-PD-1 in preclinical murine LLC1 and GL261 tumor models.Cancer Immunol. Immunother.202271112691270010.1007/s00262‑022‑03190‑9 35364740
    [Google Scholar]
  51. ZhangL.X. GaoJ. LongX. The circular RNA circHMGB2 drives immunosuppression and anti-PD-1 resistance in lung adenocarcinomas and squamous cell carcinomas via the miR-181a-5p/CARM1 axis.Mol. Cancer202221111010.1186/s12943‑022‑01586‑w 35525959
    [Google Scholar]
  52. SislerD.J. HinzT.K. LeA.T. KleczkoE.K. NemenoffR.A. HeasleyL.E. Evaluation of KRASG12C inhibitor responses in novel murine KRASG12C lung cancer cell line models.Front. Oncol.202313109412310.3389/fonc.2023.1094123 36845684
    [Google Scholar]
  53. ZhaoB. HuiX. JiaoL. A TCM formula YYWY inhibits tumor growth in non-small cell lung cancer and enhances immune-response through facilitating the maturation of dendritic cells.Front. Pharmacol.20201179810.3389/fphar.2020.00798 32595493
    [Google Scholar]
  54. CaoM. LongM. ChenQ. Development of β-elemene and cisplatin co-loaded liposomes for effective lung cancer therapy and evaluation in patient-derived tumor xenografts.Pharm. Res.201936812110.1007/s11095‑019‑2656‑x 31214786
    [Google Scholar]
  55. LiY. TangM. HuangL-L. Ginsenoside 3β-O-Glc-DM (C3DM) enhances the antitumor activity of Taxol on Lewis lung cancer by targeting the interleukin-6/Jak2/STAT3 and interleukin-6/AKT signaling pathways.World J. Tradit. Chin. Med.20206443210.4103/wjtcm.wjtcm_51_20
    [Google Scholar]
  56. LiD. BeisswengerC. HerrC. Expression of the antimicrobial peptide cathelicidin in myeloid cells is required for lung tumor growth.Oncogene201433212709271610.1038/onc.2013.248 23812430
    [Google Scholar]
  57. TerraccianoR. Carcamo-BahenaY. RoyalA.L.R. Zonal intratumoral delivery of nanoparticles guided by surface functionalization.Langmuir20223845139831399410.1021/acs.langmuir.2c02319 36318182
    [Google Scholar]
  58. StankeviciusV. KuodyteK. SchveigertD. Gene and miRNA expression profiles of mouse Lewis lung carcinoma LLC1 cells following single or fractionated dose irradiation.Oncol. Lett.20171364190420010.3892/ol.2017.5877 28599420
    [Google Scholar]
  59. LiH.Y. McSharryM. BullockB. The tumor microenvironment regulates sensitivity of murine lung tumors to PD-1/PD-L1 antibody blockade.Cancer Immunol. Res.20175976777710.1158/2326‑6066.CIR‑16‑0365 28819064
    [Google Scholar]
  60. ChenS. GaoD. SunR. Anlotinib prove to be a potential therapy for the treatment of pulmonary fibrosis complicated with lung adenocarcinoma.Pulm. Pharmacol. Ther.20238010220210.1016/j.pupt.2023.102202 36906117
    [Google Scholar]
  61. SpielerB. GiretT.M. WelfordS. TotigerT.M. MihaylovI.B. Lung inflammation predictors in combined immune checkpoint-inhibitor and radiation therapy—Proof-of-concept animal study.Biomedicines2022105117310.3390/biomedicines10051173 35625911
    [Google Scholar]
  62. van den HeuvelM.M. VerheijM. BoshuizenR. NHS-IL2 combined with radiotherapy: Preclinical rationale and phase Ib trial results in metastatic non-small cell lung cancer following first-line chemotherapy.J. Transl. Med.20151313210.1186/s12967‑015‑0397‑0 25622640
    [Google Scholar]
  63. MuellerR. MoreauM. Yasmin-KarimS. Imaging and characterization of sustained gadolinium nanoparticle release from next generation radiotherapy biomaterial.Nanomaterials (Basel)20201011224910.3390/nano10112249 33202903
    [Google Scholar]
  64. CapaccioneK.M. DoubrovinM. BraumullerB. LeibowitzD. BhattN. Momen-HeraviF. Evaluating the combined anticancer response of checkpoint inhibitor immunotherapy and fap-targeted molecular radiotherapy in murine models of melanoma and lung cancer.Cancers (Basel)2022141921
    [Google Scholar]
  65. LiT. HuZ. WangC. PD-L1-targeted microbubbles loaded with docetaxel produce a synergistic effect for the treatment of lung cancer under ultrasound irradiation.Biomater. Sci.2020851418143010.1039/C9BM01575B 31942578
    [Google Scholar]
  66. LiuT. XieC. MaH. Gr-1+CD11b+ cells facilitate Lewis lung cancer recurrence by enhancing neovasculature after local irradiation.Sci. Rep.201441483310.1038/srep04833 24776637
    [Google Scholar]
  67. BoothL. RobertsJ.L. PoklepovicA. DentP. [pemetrexed + sildenafil], via autophagy-dependent HDAC downregulation, enhances the immunotherapy response of NSCLC cells.Cancer Biol. Ther.201718970571410.1080/15384047.2017.1362511 28812434
    [Google Scholar]
  68. SavioM. FerraroD. MaccarioC. Resveratrol analogue 4,4′-dihydroxy-trans-stilbene potently inhibits cancer invasion and metastasis.Sci. Rep.2016611997310.1038/srep19973 26829331
    [Google Scholar]
  69. ChenK. HuangH.T. HangW.J. PanL.B. MaH.T. Effects of lung cancer cell-associated B7-H1 on T-cell proliferation in vitro and in vivo.Braz. J. Med. Biol. Res.2016497e526310.1590/1414‑431x20165263 27332773
    [Google Scholar]
  70. HuD. ShenW. GongC. Grain‐sized moxibustion promotes NK cell antitumour immunity by inhibiting adrenergic signalling in non–small cell lung cancer.J. Cell. Mol. Med.20212562900290810.1111/jcmm.16320 33506637
    [Google Scholar]
  71. LiuZ. WangT. SheY. N6-methyladenosine-modified circIGF2BP3 inhibits CD8+ T-cell responses to facilitate tumor immune evasion by promoting the deubiquitination of PD-L1 in non-small cell lung cancer.Mol. Cancer202120110510.1186/s12943‑021‑01398‑4 34416901
    [Google Scholar]
  72. YouW. LiL. SunD. Farnesoid X receptor constructs an immunosuppressive microenvironment and sensitizes FXRhighPD-L1low NSCLC to anti–PD-1 immunotherapy.Cancer Immunol. Res.201976990100010.1158/2326‑6066.CIR‑17‑0672 30975694
    [Google Scholar]
  73. JingX. NiuS. LiangY. ChenH. WangN. PengY. FNC inhibits non-small cell lung cancer by activating the mitochondrial apoptosis pathway.Genes Genomics202244112313110.1007/s13258‑021‑01179‑9
    [Google Scholar]
  74. MaX. Phi VanV. KimmM.A. Integrin-targeted hybrid fluorescence molecular tomography/x-ray computed tomography for imaging tumor progression and early response in non-small cell lung cancer.Neoplasia201719181610.1016/j.neo.2016.11.009 27940248
    [Google Scholar]
  75. TongJ.B. ZhangX. WangX. ZengS.J. WangD.Y. ZhangZ.Q. Qiyusanlong decoction suppresses lung cancer in mice via Wnt/β-catenin pathway.Mol. Med. Rep.201817453205327
    [Google Scholar]
  76. ShenL. ZhangL.L. LiH. Oroxylin A inhibits the generation of Tregs in non-small cell lung cancer.Oncotarget2017830493954940810.18632/oncotarget.17218 28472762
    [Google Scholar]
  77. HsuY.L. HuangM.S. HungJ.Y. Bone-marrow-derived cell-released extracellular vesicle miR-92a regulates hepatic pre-metastatic niche in lung cancer.Oncogene202039473975310.1038/s41388‑019‑1024‑y 31558801
    [Google Scholar]
  78. WanH. XuB. ZhuN. RenB. PGC-1α activator–induced fatty acid oxidation in tumor-infiltrating CTLs enhances effects of PD-1 blockade therapy in lung cancer.Tumori20201061556310.1177/0300891619868287 31451071
    [Google Scholar]
  79. FournelL. WuZ. StadlerN. Cisplatin increases PD-L1 expression and optimizes immune check-point blockade in non-small cell lung cancer.Cancer Lett.201946451410.1016/j.canlet.2019.08.005 31404614
    [Google Scholar]
  80. ZhangN. GaoY. HuangZ. PARP inhibitor plus radiotherapy reshapes an inflamed tumor microenvironment that sensitizes small cell lung cancer to the anti-PD-1 immunotherapy.Cancer Lett.202254521585210.1016/j.canlet.2022.215852 35926817
    [Google Scholar]
  81. LiF. HuangQ. LusterT.A. In vivo epigenetic CRISPR screen identifies Asf1a as an immunotherapeutic target in Kras -mutant lung adenocarcinoma.Cancer Discov.202010227028710.1158/2159‑8290.CD‑19‑0780 31744829
    [Google Scholar]
  82. SnipstadS. BremnesF. DehliH.M. SulheimE. Characterization of immune cell populations in syngeneic murine tumor models.Cancer Med.20231210115891160110.1002/cam4.5784 36912188
    [Google Scholar]
  83. WangY. GuT. TianX. A small molecule antagonist of pd-1/pd-l1 interactions acts as an immune checkpoint inhibitor for NSCLC and melanoma immunotherapy.Front. Immunol.20211265446310.3389/fimmu.2021.654463 34054817
    [Google Scholar]
  84. SunF. GuoZ.S. GregoryA.D. ShapiroS.D. XiaoG. QuZ. Dual but not single PD-1 or TIM-3 blockade enhances oncolytic virotherapy in refractory lung cancer.J. Immunother. Cancer202081e00029410.1136/jitc‑2019‑000294 32461344
    [Google Scholar]
  85. AnayamaT. NakajimaT. DunneM. ZhengJ. AllenC. DriscollB. A novel minimally invasive technique to create a rabbit VX2 lung tumor model for nano-sized image contrast and interventional studies.PLoS One201386e6735510.1371/journal.pone.0067355
    [Google Scholar]
  86. HirohashiK. AnayamaT. WadaH. Lung cancer photothermal ablation by low-power near-infrared laser and topical injection of indocyanine green.Interact. Cardiovasc. Thorac. Surg.201929569369810.1093/icvts/ivz158 31280301
    [Google Scholar]
  87. MotookaY. FujinoK. GregorA. Endobronchial ultrasound-guided radiofrequency ablation of lung tumors and mediastinal lymph nodes: A preclinical study in animal lung tumor and mediastinal adenopathy models.Semin. Thorac. Cardiovasc. Surg.202032357057810.1053/j.semtcvs.2020.02.003 32057971
    [Google Scholar]
  88. AnuragM. JaehnigE.J. KrugK. Proteogenomic markers of chemotherapy resistance and response in triple-negative breast cancer.Cancer Discov.202212112586260510.1158/2159‑8290.CD‑22‑0200 36001024
    [Google Scholar]
  89. MoteaE.A. HuangX. SinghN. NQO1-dependent, tumor-selective radiosensitization of non–small cell lung cancers.Clin. Cancer Res.20192582601260910.1158/1078‑0432.CCR‑18‑2560 30617135
    [Google Scholar]
  90. LaiC.W. ChenH.L. YenC.C. WangJ.L. YangS.H. ChenC.M. Using dual fluorescence reporting genes to establish an in vivo imaging model of orthotopic lung adenocarcinoma in mice.Mol. Imaging Biol.201618684985910.1007/s11307‑016‑0967‑4 27197534
    [Google Scholar]
  91. HuangW.J. TangY.A. ChenM.Y. A histone deacetylase inhibitor YCW1 with antitumor and antimetastasis properties enhances cisplatin activity against non-small cell lung cancer in preclinical studies.Cancer Lett.20143461849310.1016/j.canlet.2013.12.016 24355296
    [Google Scholar]
  92. NaranjoS. CabanaC.M. LaFaveL.M. Modeling diverse genetic subtypes of lung adenocarcinoma with a next-generation alveolar type 2 organoid platform.Genes Dev.20223615-1693694910.1101/gad.349659.122 36175034
    [Google Scholar]
  93. VercoJ. JohnstonW. FrostM. Inhaled submicron particle paclitaxel (NanoPac) induces tumor regression and immune cell infiltration in an orthotopic athymic nude rat model of non-small cell lung cancer.J. Aerosol Med. Pulm. Drug Deliv.201932526627710.1089/jamp.2018.1517 31347939
    [Google Scholar]
  94. ZhangY. SchwerbrockN.M.J. RogersA.B. KimW.Y. HuangL. Codelivery of VEGF siRNA and gemcitabine monophosphate in a single nanoparticle formulation for effective treatment of NSCLC.Mol. Ther.20132181559156910.1038/mt.2013.120 23774791
    [Google Scholar]
  95. WuW. BiC. CredilleK.M. Inhibition of tumor growth and metastasis in non-small cell lung cancer by LY2801653, an inhibitor of several oncokinases, including MET.Clin. Cancer Res.201319205699571010.1158/1078‑0432.CCR‑13‑1758 23989980
    [Google Scholar]
  96. LiJ. DengH. HuM. Inhibition of non-small cell lung cancer (NSCLC) growth by a novel small molecular inhibitor of EGFR.Oncotarget2015696749676110.18632/oncotarget.3155 25730907
    [Google Scholar]
  97. OkimotoR.A. LinL. OlivasV. ChanE. MarkegardE. RymarA. Preclinical efficacy of a RAF inhibitor that evades paradoxical MAPK pathway activation in protein kinase BRAF -mutant lung cancer.Proc. Natl. Acad. Sci.201611347134561346110.1073/pnas.1610456113
    [Google Scholar]
  98. LiuS. HuC. LiM. Estrogen receptor beta promotes lung cancer invasion via increasing CXCR4 expression.Cell Death Dis.20221317010.1038/s41419‑022‑04514‑4 35064116
    [Google Scholar]
  99. Dias AmoedoN. DardL. SarlakS. Targeting human lung adenocarcinoma with a suppressor of mitochondrial superoxide production.Antioxid. Redox Signal.2020331388390210.1089/ars.2019.7892 32475148
    [Google Scholar]
  100. ShevtsovM. PitkinE. IschenkoA. Ex vivo Hsp70-Activated NK cells in combination with PD-1 inhibition significantly increase overall survival in preclinical models of glioblastoma and lung cancer.Front. Immunol.20191045410.3389/fimmu.2019.00454 30967859
    [Google Scholar]
  101. TaromiS. KayserG. von ElverfeldtD. An orthotopic mouse model of small cell lung cancer reflects the clinical course in patients.Clin. Exp. Metastasis201633765166010.1007/s10585‑016‑9808‑8 27380917
    [Google Scholar]
  102. NakajimaT. AnayamaT. MatsudaY. Orthotopic lung cancer murine model by nonoperative transbronchial approach.Ann. Thorac. Surg.20149751771177510.1016/j.athoracsur.2014.01.048 24792261
    [Google Scholar]
  103. LeiserD. SamantaS. EleyJ. StraussJ. CreedM. KingsburyT. Role of caveolin-1 as a biomarker for radiation resistance and tumor aggression in lung cancer.PLoS One20211611e025895110.1371/journal.pone.0258951
    [Google Scholar]
  104. AktarR. DietrichA. TillnerF. Pre-clinical imaging for establishment and comparison of orthotopic non-small cell lung carcinoma: In search for models reflecting clinical scenarios.Br. J. Radiol.20199210952018053910.1259/bjr.20180539 30215546
    [Google Scholar]
  105. ZhouY. ShouF. ZhangH. YouQ. Adenovirus-delivered wwox inhibited lung cancer growth in vivo in a mouse model.Cancer Gene Ther.20162311610.1038/cgt.2015.56 26516139
    [Google Scholar]
  106. WuD. LiuT. DengS. HanR. XuY. SLC39A4 expression is associated with enhanced cell migration, cisplatin resistance, and poor survival in non-small cell lung cancer.Sci. Rep.201771721110.1038/s41598‑017‑07830‑4 28775359
    [Google Scholar]
  107. SuchowskiK. PöschingerT. RehemtullaA. StürzlM. ScheuerW. Noninvasive bioluminescence imaging of AKT kinase activity in subcutaneous and orthotopic NSCLC xenografts: Correlation of AKT activity with tumor growth kinetics.Neoplasia201719431032010.1016/j.neo.2017.02.005 28285180
    [Google Scholar]
  108. ZhuH.Z. FangC.J. GuoY. ZhangQ. HuangL.M. QiuD. Detection of miR-155-5p and imaging lung cancer for early diagnosis: In vitro and in vivo study.J. Cancer Res. Clin. Oncol.2020146819411951
    [Google Scholar]
  109. ReppelL. TsahouridisO. AkulianJ. Targeting disialoganglioside GD2 with chimeric antigen receptor-redirected T cells in lung cancer.J. Immunother. Cancer2022101e00389710.1136/jitc‑2021‑003897 35022195
    [Google Scholar]
  110. HuangC.W. HsiehW.C. HsuS.T. The use of PET imaging for prognostic integrin α 2 β 1 phenotyping to detect non-small cell lung cancer and monitor drug resistance responses.Theranostics20177164013402810.7150/thno.19304 29109795
    [Google Scholar]
  111. ChanS.M. LinB.F. WongC.S. ChuangW.T. ChouY.T. WuZ.F. Levobuipivacaine-induced dissemination of A549 lung cancer cells.Sci. Rep.201771864610.1038/s41598‑017‑08885‑z 28819223
    [Google Scholar]
  112. HoyosV. Del BufaloF. YagyuS. Mesenchymal stromal cells for linked delivery of oncolytic and apoptotic adenoviruses to non-small-cell lung cancers.Mol. Ther.20152391497150610.1038/mt.2015.110 26084970
    [Google Scholar]
  113. HsuT.I. ChenY.J. HungC.Y. A novel derivative of betulinic acid, SYK023, suppresses lung cancer growth and malignancy.Oncotarget2015615136711368710.18632/oncotarget.3701 25909174
    [Google Scholar]
  114. Zyuz’kovG.N. AmosovaE.N. ChaikovskiiA.V. Antitumor effects of JAK3 inhibitor on the model of transplantable lewis lung carcinoma and mechanisms of their development.Bull. Exp. Biol. Med.2016161336737010.1007/s10517‑016‑3415‑1 27502536
    [Google Scholar]
  115. ValenciaK. Martín-FernándezM. ZanduetaC. miR-326 associates with biochemical markers of bone turnover in lung cancer bone metastasis.Bone201352153253910.1016/j.bone.2012.10.033 23142363
    [Google Scholar]
  116. RhoJ.K. LeeI.Y. ChoiY.J. Superior efficacy and selectivity of novel smallmolecule kinase inhibitors of T790M-mutant EGFR in preclinical models of lung cancer.Cancer Res.20177751200121110.1158/0008‑5472.CAN‑16‑2432 28082405
    [Google Scholar]
  117. TanJ. LiM. ZhongW. HuC. GuQ. XieY. Tyrosine kinase inhibitors show different anti-brain metastases efficacy in NSCLC: A direct comparative analysis of icotinib, gefitinib, and erlotinib in a nude mouse model.Oncotarget2017858987719878110.18632/oncotarget.21936
    [Google Scholar]
  118. ZhangY. LiY. HanY. Experimental study of EGFR-TKI aumolertinib combined with ionizing radiation in EGFR mutated NSCLC brain metastases tumor.Eur. J. Pharmacol.202394517557110.1016/j.ejphar.2023.175571 36804545
    [Google Scholar]
  119. ReijmenE. De MeyS. De MeyW. GevaertT. De RidderK. LocyH. Fractionated radiation severely reduces the number of CD8+ T cells and mature antigen presenting cells within lung tumors.Int. J. Radiat. Oncol. Biol. Phys.20211111272283
    [Google Scholar]
  120. YunM.R. KimD.H. KimS.Y. Repotrectinib Exhibits potent antitumor activity in treatment-naïve and solvent-front–mutant ROS1-rearranged non–small cell lung cancer.Clin. Cancer Res.202026133287329510.1158/1078‑0432.CCR‑19‑2777 32269053
    [Google Scholar]
  121. YiB.R. KimS.U. ChoiK.C. Co-treatment with therapeutic neural stem cells expressing carboxyl esterase and CPT-11 inhibit growth of primary and metastatic lung cancers in mice.Oncotarget2014524128351284810.18632/oncotarget.2547 25544747
    [Google Scholar]
  122. BallardP. YatesJ.W.T. YangZ. Preclinical Comparison of osimertinib with other EGFR-TKIs in EGFR-Mutant NSCLC brain metastases models, and early evidence of clinical brain metastases activity.Clin. Cancer Res.201622205130514010.1158/1078‑0432.CCR‑16‑0399 27435396
    [Google Scholar]
  123. ShahN. LiuZ. TallmanR.M. Drug resistance occurred in a newly characterized preclinical model of lung cancer brain metastasis.BMC Cancer202020129210.1186/s12885‑020‑06808‑2 32264860
    [Google Scholar]
  124. HsuP.C. MiaoJ. HuangZ. Inhibition of yes‐associated protein suppresses brain metastasis of human lung adenocarcinoma in a murine model.J. Cell. Mol. Med.20182263073308510.1111/jcmm.13582 29575527
    [Google Scholar]
  125. Ilhan-MutluA. OsswaldM. LiaoY. Bevacizumab Prevents brain metastases formation in lung adenocarcinoma.Mol. Cancer Ther.201615470271010.1158/1535‑7163.MCT‑15‑0582 26809491
    [Google Scholar]
  126. RussoM.V. FaversaniA. GattiS. A new mouse avatar model of non-small cell lung cancer.Front. Oncol.20155FEB5210.3389/fonc.2015.00052 25785245
    [Google Scholar]
  127. NanjoS. EbiH. AraiS. High efficacy of third generation EGFR inhibitor AZD9291 in a leptomeningeal carcinomatosis model with EGFR -mutant lung cancer cells.Oncotarget2016743847385610.18632/oncotarget.6758 26716903
    [Google Scholar]
/content/journals/crcep/10.2174/0127724328295592240419064719
Loading
/content/journals/crcep/10.2174/0127724328295592240419064719
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article.


  • Article Type:
    Review Article
Keyword(s): allograft; animal model; cell-derived allograft; GEMM; Lung cancer; xenograft animals
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test