Skip to content
2000
Volume 20, Issue 1
  • ISSN: 2772-4328
  • E-ISSN: 2772-4336

Abstract

Natural products have historically driven pharmaceutical discovery, but their reliance has diminished with synthetic drugs. Approximately 35% of medicines originate from natural products. Scopoletin, a natural coumarin compound found in herbs, exhibits antioxidant, hepatoprotective, antiviral, and antimicrobial properties through diverse intracellular signaling mechanisms. Furthermore, it also enhances the activity of antioxidants. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) causes viral pneumonia through cytokine storms and systemic inflammation. Cellular autophagy pathways play a role in coronavirus replication and inflammation. The Silent Information Regulator 1 (SIRT1) pathway, linked to autophagy, protects cells FOXO3, inhibits apoptosis, and modulates SIRT1 in type-II epithelial cells. SIRT1 activation by adenosine monophosphate-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) enhances the autophagy cascade. This pathway holds therapeutic potential for alveolar and pulmonary diseases and is crucial in lung inflammation. Angiotensin-converting enzyme 2 (ACE-2) activation, inhibited by reduced expression, prevents COVID-19 virus entry into type-II epithelial cells. The coronavirus disease 2019 (COVID-19) virus binds ACE-2 to enter into the host cells, and XBB.1.5 COVID-19 displays high ACE-2-binding affinity. ACE-2 expression in pneumocytes is regulated by signal transducers and activators of transcription-3 (STAT3), which can increase COVID-19 virus replication. SIRT1 regulates STAT3, and the SIRT1/STAT3 pathway is involved in lung diseases. Therapeutic regulation of SIRT1 protects the lungs from inflammation caused by viral-mediated oxidative stress. Scopoletin, as a modulator of the SIRT1 cascade, can regulate autophagy and inhibit the entry and life cycle of XBB.1.5 COVID-19 in host cells.

Loading

Article metrics loading...

/content/journals/crcep/10.2174/0127724328281178240225082456
2024-03-01
2025-01-08
Loading full text...

Full text loading...

References

  1. AlhmoudE. AbdelsamadO. SoalyE. Anticoagulation clinic drive-up service during COVID-19 pandemic in Qatar.J. Thromb. Thrombolysis20215129730010.1007/s11239‑020‑02206‑4
    [Google Scholar]
  2. BarnesG.D. BurnettA. AllenA. Thromboembolism and anticoagulant therapy during the COVID-19 pandemic: interim clinical guidance from the anticoagulation forum.J. Thromb. Thrombolysis2020501728110.1007/s11239‑020‑02138‑z 32440883
    [Google Scholar]
  3. DongE. DuH. GardnerL. An interactive web-based dashboard to track COVID-19 in real time.Lancet Infect. Dis.202020553353410.1016/S1473‑3099(20)30120‑1 32087114
    [Google Scholar]
  4. AliabadiF. AjamiM. Pazoki-ToroudiH. Why does COVID‐19 pathology have several clinical forms?BioEssays20204212200019810.1002/bies.202000198 33174637
    [Google Scholar]
  5. Farasati FarB. BokovD. WidjajaG. Metronidazole, acyclovir and tetrahydrobiopterin may be promising to treat COVID-19 patients, through interaction with interleukin-12.J. Biomol. Struct. Dyn.202341104253427110.1080/07391102.2022.2064917 35446232
    [Google Scholar]
  6. GanesanA. The impact of natural products upon modern drug discovery.Curr. Opin. Chem. Biol.200812330631710.1016/j.cbpa.2008.03.016 18423384
    [Google Scholar]
  7. MishraB.B. TiwariV.K. Natural products: An evolving role in future drug discovery.Eur. J. Med. Chem.201146104769480710.1016/j.ejmech.2011.07.057 21889825
    [Google Scholar]
  8. RenJ. YangL. QiuS. ZhangA.H. WangX.J. Efficacy evaluation, active ingredients, and multitarget exploration of herbal medicine.Trends Endocrinol. Metab.202334314615710.1016/j.tem.2023.01.005 36710216
    [Google Scholar]
  9. CalixtoJ.B. The role of natural products in modern drug discovery.An. Acad. Bras. Cienc.201991Suppl. 3e2019010510.1590/0001‑3765201920190105 31166478
    [Google Scholar]
  10. LiZ. KongD. LiuY. LiM. Pharmacological perspectives and molecular mechanisms of coumarin derivatives against virus disease.Genes Dis.202291809410.1016/j.gendis.2021.03.007 35005109
    [Google Scholar]
  11. SotoudeheianM. HoseiniS. MirahmadiS.M.S. FarahmandianN. Pazoki-ToroudiH. Oleuropein as a therapeutic agent for non-alcoholic fatty liver disease during hepatitis C.Rev. Bras. Farmacogn.202333468869510.1007/s43450‑023‑00396‑5
    [Google Scholar]
  12. ZhuY. JiangZ. LiuL. Scopoletin reactivates latent HIV-1 by inducing NF-κB expression without global T cell activation.Int. J. Mol. Sci.202324161264910.3390/ijms241612649 37628826
    [Google Scholar]
  13. AjamiM. SotoudeheianM. Houshiar-RadA. Quercetin may reduce the risk of developing the symptoms of COVID-19.Avicenna J. Phytomed.202310.22038/AJP.2023.22920
    [Google Scholar]
  14. AbdelmohsenU.R. AlbohyA. AbdulrazikB.S. Natural coumarins as potential anti-SARS-CoV-2 agents supported by docking analysis.RSC Advances20211128169701697910.1039/D1RA01989A 35479715
    [Google Scholar]
  15. Mirzay-RazazJ. HassanghomiM. AjamiM. KoochakpoorG. Hosseini-EsfahaniF. MirmiranP. Effective food hygiene principles and dietary intakes to reinforce the immune system for prevention of COVID-19: A systematic review.BMC Nutr.2022815310.1186/s40795‑022‑00546‑3 35655264
    [Google Scholar]
  16. MillerK. McGrathM.E. HuZ. Coronavirus interactions with the cellular autophagy machinery.Autophagy202016122131213910.1080/15548627.2020.1817280 32964796
    [Google Scholar]
  17. DiaoF. JiangC. SunY. Porcine reproductive and respiratory syndrome virus infection triggers autophagy via ER stress-induced calcium signaling to facilitate virus replication.PLoS Pathog.2023193e101129510.1371/journal.ppat.1011295 36972295
    [Google Scholar]
  18. JasseyA. JacksonW.T. Viruses and autophagy: Bend, but don’t break.Nat. Rev. Microbiol.202311310.1038/s41579‑023‑00995‑y 38102460
    [Google Scholar]
  19. MorrisG. AthanE. WalderK. Can endolysosomal deacidification and inhibition of autophagy prevent severe COVID-19?Life Sci.202026211854110.1016/j.lfs.2020.118541 33035581
    [Google Scholar]
  20. Delorme-AxfordE. KlionskyD.J. Highlights in the fight against COVID-19: Does autophagy play a role in SARS-CoV-2 infection?Taylor & Francis20202123212710.1080/15548627.2020.1844940
    [Google Scholar]
  21. QuY. WangX. ZhuY. ORF3a-mediated incomplete autophagy facilitates severe acute respiratory syndrome coronavirus-2 replication.Front. Cell Dev. Biol.2021971620810.3389/fcell.2021.716208 34386498
    [Google Scholar]
  22. LimanaqiF. BiagioniF. GambardellaS. FamiliariP. FratiA. FornaiF. Promiscuous roles of autophagy and proteasome in neurodegenerative proteinopathies.Int. J. Mol. Sci.2020218302810.3390/ijms21083028 32344772
    [Google Scholar]
  23. LimanaqiF. BuscetiC.L. BiagioniF. Cell clearing systems as targets of polyphenols in viral infections: Potential implications for COVID-19 pathogenesis.Antioxidants2020911110510.3390/antiox9111105 33182802
    [Google Scholar]
  24. BroussyS. LaaroussiH. VidalM. Biochemical mechanism and biological effects of the inhibition of silent information regulator 1 (SIRT1) by EX-527 (SEN0014196 or selisistat).J. Enzyme Inhib. Med. Chem.20203511124113610.1080/14756366.2020.1758691 32366137
    [Google Scholar]
  25. YooA. NarayanV.P. HongE.Y. WhangW.K. ParkT. Scopolin ameliorates high-fat diet induced hepatic steatosis in mice: potential involvement of SIRT1-mediated signaling cascades in the liver.Sci. Rep.201771225110.1038/s41598‑017‑02416‑6 28533555
    [Google Scholar]
  26. AlossaimiM.A. AlzeerM.A. Abdel BarF.M. ElNaggarM.H. Pelargonium sidoides root extract: Simultaneous HPLC separation, determination, and validation of selected biomolecules and evaluation of SARS-CoV-2 inhibitory activity.Pharmaceuticals20221510118410.3390/ph15101184 36297296
    [Google Scholar]
  27. SunW. ShahrajabianM.H. Therapeutic potential of phenolic compounds in medicinal plants—natural health products for human health.Molecules2023284184510.3390/molecules28041845 36838831
    [Google Scholar]
  28. HeB.T. LiuZ.H. LiB.Z. YuanY.J. Advances in biosynthesis of scopoletin.Microb. Cell Fact.202221115210.1186/s12934‑022‑01865‑7 35918699
    [Google Scholar]
  29. FirmansyahA. WiningsihW. ManobiJ.D.Y. Review of scopoletin: Isolation, analysis process, and pharmacological activity.Biointerface Res. Appl. Chem.2020114120061201910.33263/BRIAC114.1200612019
    [Google Scholar]
  30. KhanN.M.U. HossainM.S. Scopoletin and Î2-sitosterol glucoside from roots of Ipomoea digitata.J. Pharmacogn. Phytochem.2015457
    [Google Scholar]
  31. GnonlonfinG.J.B. SanniA. BrimerL. Review scopoletin–a coumarin phytoalexin with medicinal properties.Crit. Rev. Plant Sci.2012311475610.1080/07352689.2011.616039
    [Google Scholar]
  32. TripathiN. SinghR. LepchaS.T.S. Isolation of scopoletin via LC-MS in roots of Girardinia diversifolia.Mater. Today Proc.20238036336610.1016/j.matpr.2023.02.372
    [Google Scholar]
  33. PubChemInformation NCfB. PubChem Compound Summary for CID 5280460, Scopoletin. PubChem.Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Scopoletin
    [Google Scholar]
  34. ParamaD. GirisaS. KhatoonE. An overview of the pharmacological activities of scopoletin against different chronic diseases.Pharmacol. Res.202217910620210.1016/j.phrs.2022.106202 35378275
    [Google Scholar]
  35. ZengY. LiS. WangX. GongT. SunX. ZhangZ. Validated LC-MS/MS method for the determination of scopoletin in rat plasma and its application to pharmacokinetic studies.Molecules20152010189881900110.3390/molecules201018988 26492227
    [Google Scholar]
  36. WangY. XingX. CaoY. Development and application of an UHPLC-MS/MS method for comparative pharmacokinetic study of eight major bioactive components from yin chen hao tang in normal and acute liver injured rats.Evid. Based Complement. Alternat. Med.2018201811210.1155/2018/3239785 30519262
    [Google Scholar]
  37. TabanaY.M. HassanL.E.A. AhamedM.B.K. Scopoletin, an active principle of tree tobacco (Nicotiana glauca) inhibits human tumor vascularization in xenograft models and modulates ERK1, VEGF-A, and FGF-2 in computer model.Microvasc. Res.2016107173310.1016/j.mvr.2016.04.009 27133199
    [Google Scholar]
  38. BhanuvalliR.S. LothaR. SivasubramanianA. Phenyl propanoid rich extract of edible plant Halosarcia indica exert diuretic, analgesic, and anti-inflammatory activity on Wistar albino rats.Nat. Prod. Res.202034111616162010.1080/14786419.2018.1521404 30394103
    [Google Scholar]
  39. AgarwalP. SharmaB. AlokS. Screening of anti-inflammatory and anti analgesic activity of Convolvulus pluricaulis Choisy.Int. J. Pharm. Sci. Res.201456245810.13040/IJPSR.0975‑8232.5(6).2458‑63
    [Google Scholar]
  40. CottamE.M. MaierH.J. ManifavaM. Coronavirus nsp6 proteins generate autophagosomes from the endoplasmic reticulum via an omegasome intermediate.Autophagy20117111335134710.4161/auto.7.11.16642 21799305
    [Google Scholar]
  41. CottamE.M. WhelbandM.C. WilemanT. Coronavirus NSP6 restricts autophagosome expansion.Autophagy20141081426144110.4161/auto.29309 24991833
    [Google Scholar]
  42. KindrachukJ OrkB HartBJ MazurS Antiviral potential of ERK/MAPK and PI3K/AKT/mTOR signaling modulation for Middle East respiratory syndrome coronavirus infection as identified by temporal kinome analysis.agents chemother20155910889910.1128/AAC.03659‑14
    [Google Scholar]
  43. GassenN.C. PapiesJ. BajajT. Analysis of SARS-CoV-2-controlled autophagy reveals spermidine, MK-2206, and niclosamide as putative antiviral therapeutics.BioRxiv20202020.0410.1101/2020.04.15.997254
    [Google Scholar]
  44. Carmona-GutierrezD. BauerM.A. ZimmermannA. Digesting the crisis: Autophagy and coronaviruses.Microb. Cell20207511912810.15698/mic2020.05.715 32391393
    [Google Scholar]
  45. KudchodkarS.B. LevineB. Viruses and autophagy.Rev. Med. Virol.200919635937810.1002/rmv.630 19750559
    [Google Scholar]
  46. JacksonW.T. Viruses and the autophagy pathway.Virology2015479-48045045610.1016/j.virol.2015.03.042 25858140
    [Google Scholar]
  47. ChudeC. AmaravadiR. Targeting autophagy in cancer: Update on clinical trials and novel inhibitors.Int. J. Mol. Sci.2017186127910.3390/ijms18061279 28621712
    [Google Scholar]
  48. FitzwalterB.E. TowersC.G. SullivanK.D. Autophagy inhibition mediates apoptosis sensitization in cancer therapy by relieving FOXO3a turnover.Dev. Cell20184455556510.1016/j.devcel.2018.02.014
    [Google Scholar]
  49. TompkinsK.D. ThorburnA. Regulation of apoptosis by autophagy to enhance cancer therapy.Biol. Med.2019924707718 31866785
    [Google Scholar]
  50. ZehH.J. BaharyN. BooneB.A. A randomized phase II preoperative study of autophagy inhibition with high-dose hydroxychloroquine and gemcitabine/nab-paclitaxel in pancreatic cancer patients.Clin. Cancer Res.202026133126313410.1158/1078‑0432.CCR‑19‑4042 32156749
    [Google Scholar]
  51. KlionskyD.J. AbdelmohsenK. AbeA. Guidelines for the use and interpretation of assays for monitoring autophagy.In: Autophagy.3rd edition.201612122210.1080/15548627.2015.1100356
    [Google Scholar]
  52. AxeE.L. WalkerS.A. ManifavaM. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum.J. Cell Biol.2008182468570110.1083/jcb.200803137 18725538
    [Google Scholar]
  53. LambC.A. YoshimoriT. ToozeS.A. The autophagosome: Origins unknown, biogenesis complex.Nat. Rev. Mol. Cell Biol.2013141275977410.1038/nrm3696 24201109
    [Google Scholar]
  54. ToozeS.A. Current views on the source of the autophagosome membrane.Essays Biochem.201355293810.1042/bse0550029 24070469
    [Google Scholar]
  55. GosertR. KanjanahaluethaiA. EggerD. BienzK. BakerS.C. RNA replication of mouse hepatitis virus takes place at double-membrane vesicles.J. Virol.20027683697370810.1128/JVI.76.8.3697‑3708.2002 11907209
    [Google Scholar]
  56. KnoopsK. KikkertM. WormS.H.E. SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum.PLoS Biol.200869e22610.1371/journal.pbio.0060226 18798692
    [Google Scholar]
  57. UlasliM VerheijeMH de HaanCA ReggioriF Qualitative and quantitative ultrastructural analysis of the membrane rearrangements induced by coronavirus.Cel microbiol2010128446110.1111/j.1462‑5822.2010.01437.x
    [Google Scholar]
  58. van den WormS.H.E. KnoopsK. Zevenhoven-DobbeJ.C. Development and RNA-synthesizing activity of coronavirus replication structures in the absence of protein synthesis.J. Virol.201185115669567310.1128/JVI.00403‑11 21430047
    [Google Scholar]
  59. MaierH. BrittonP. Involvement of autophagy in coronavirus replication.Viruses20124123440345110.3390/v4123440 23202545
    [Google Scholar]
  60. KabeyaY. MizushimaN. UenoT. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing.EMBO J.200019215720572810.1093/emboj/19.21.5720 11060023
    [Google Scholar]
  61. PrenticeE. McAuliffeJ. LuX. SubbaraoK. DenisonM.R. Identification and characterization of severe acute respiratory syndrome coronavirus replicase proteins.J. Virol.200478189977998610.1128/JVI.78.18.9977‑9986.2004 15331731
    [Google Scholar]
  62. MenonM.B. DhamijaS. Beclin 1 phosphorylation – at the center of autophagy regulation.Front. Cell Dev. Biol.2018613710.3389/fcell.2018.00137 30370269
    [Google Scholar]
  63. LimanaqiF. BiagioniF. BuscetiC.L. Phytochemicals bridging autophagy induction and alpha-synuclein degradation in parkinsonism.Int. J. Mol. Sci.20192013327410.3390/ijms20133274 31277285
    [Google Scholar]
  64. LystadA.H. CarlssonS.R. SimonsenA. Toward the function of mammalian ATG12–ATG5-ATG16L1 complex in autophagy and related processes.Autophagy20191581485148610.1080/15548627.2019.1618100 31122169
    [Google Scholar]
  65. Sanchez-WandelmerJ. ReggioriF. Amphisomes: Out of the autophagosome shadow?EMBO J.201332243116311810.1038/emboj.2013.246 24219988
    [Google Scholar]
  66. LimanaqiF. BiagioniF. GambardellaS. RyskalinL. FornaiF. Interdependency between autophagy and synaptic vesicle trafficking: Implications for dopamine release.Front. Mol. Neurosci.20181129910.3389/fnmol.2018.00299 30186112
    [Google Scholar]
  67. LinY. WuC. WangX. Glucosamine promotes hepatitis B virus replication through its dual effects in suppressing autophagic degradation and inhibiting MTORC1 signaling.Autophagy202016354856110.1080/15548627.2019.1632104 31204557
    [Google Scholar]
  68. GassenN.C. NiemeyerD. MuthD. SKP2 attenuates autophagy through Beclin1-ubiquitination and its inhibition reduces MERS-Coronavirus infection.Nat. Commun.2019101577010.1038/s41467‑019‑13659‑4 31852899
    [Google Scholar]
  69. OuX. LiuY. LeiX. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV.Nat. Commun.2020111162010.1038/s41467‑020‑15562‑9 32221306
    [Google Scholar]
  70. ChenX. WangK. XingY. Coronavirus membrane-associated papain-like proteases induce autophagy through interacting with Beclin1 to negatively regulate antiviral innate immunity.Protein Cell201451291292710.1007/s13238‑014‑0104‑6 25311841
    [Google Scholar]
  71. ChenM. YiL. JinX. Resveratrol attenuates vascular endothelial inflammation by inducing autophagy through the cAMP signaling pathway.Autophagy20139122033204510.4161/auto.26336 24145604
    [Google Scholar]
  72. GurusamyN. LekliI. MukherjeeS. Cardioprotection by resveratrol: A novel mechanism via autophagy involving the mTORC2 pathway.Cardiovasc. Res.201086110311210.1093/cvr/cvp384 19959541
    [Google Scholar]
  73. WangB. YangQ. SunY. Resveratrol‐enhanced autophagic flux ameliorates myocardial oxidative stress injury in diabetic mice.J. Cell. Mol. Med.20141881599161110.1111/jcmm.12312 24889822
    [Google Scholar]
  74. KimY.H. BaeJ.U. KimI.S. ChangC.L. OhS.O. KimC.D. SIRT1 prevents pulmonary thrombus formation induced by arachidonic acid via downregulation of PAF receptor expression in platelets.Platelets201627873574210.1080/09537104.2016.1190005 27275930
    [Google Scholar]
  75. Guixé-MuntetS. de MesquitaF.C. VilaS. Cross-talk between autophagy and KLF2 determines endothelial cell phenotype and microvascular function in acute liver injury.J. Hepatol.2017661869410.1016/j.jhep.2016.07.051 27545498
    [Google Scholar]
  76. LinY.F. LeeY.H. HsuY.H. Resveratrol-loaded nanoparticles conjugated with kidney injury molecule-1 as a drug delivery system for potential use in chronic kidney disease.Nanomedicine201712222741275610.2217/nnm‑2017‑0256 28884615
    [Google Scholar]
  77. HuangF.C. KuoH.C. HuangY.H. YuH.R. LiS.C. KuoH.C. Anti-inflammatory effect of resveratrol in human coronary arterial endothelial cells via induction of autophagy: Implication for the treatment of Kawasaki disease.BMC Pharmacol. Toxicol.2017181310.1186/s40360‑016‑0109‑2 28069066
    [Google Scholar]
  78. GuoD. XieJ. ZhaoJ. HuangT. GuoX. SongJ. Resveratrol protects early brain injury after subarachnoid hemorrhage by activating autophagy and inhibiting apoptosis mediated by the Akt/mTOR pathway.Neuroreport201829536837910.1097/WNR.0000000000000975 29360689
    [Google Scholar]
  79. Al AzzazJ RieuA AiresV Resveratrol-induced xenophagy promotes intracellular bacteria clearance in intestinal epithelial cells and macrophages.Front immun20199314910.3389/fimmu.2018.03149
    [Google Scholar]
  80. YangQ.B. HeY.L. ZhongX.W. XieW.G. ZhouJ.G. Resveratrol ameliorates gouty inflammation via upregulation of sirtuin 1 to promote autophagy in gout patients.Inflammopharmacology2019271475610.1007/s10787‑018‑00555‑4 30600470
    [Google Scholar]
  81. LeK. Chibaatar DalivE. WuS. SIRT1-regulated HMGB1 release is partially involved in TLR4 signal transduction: A possible anti-neuroinflammatory mechanism of resveratrol in neonatal hypoxic-ischemic brain injury.Int. Immunopharmacol.20197510577910.1016/j.intimp.2019.105779 31362164
    [Google Scholar]
  82. XingJ. LiuH. YangH. ChenR. ChenY. XuJ. Upregulation of Unc-51-like kinase 1 by nitric oxide stabilizes SIRT1, independent of autophagy.PLoS One2014912e11616510.1371/journal.pone.0116165 25541949
    [Google Scholar]
  83. RahmanI KinnulaVL GorbunovaV YaoH SIRT1 as a therapeutic target in inflammaging of the pulmonary disease.Prev Med201254Suppl)(SupplS20810.1016/j.ypmed.2011.11.014 22178470
    [Google Scholar]
  84. ArabianM. AboutalebN. SoleimaniM. MehrjerdiF.Z. AjamiM. Pazoki-ToroudiH. Role of morphine preconditioning and nitric oxide following brain ischemia reperfusion injury in mice.Iran. J. Basic Med. Sci.2015181142110.22038/ijbms.2015.3881 25810871
    [Google Scholar]
  85. PotenteM. DimmelerS. NO targets SIRT1: A novel signaling network in endothelial senescence.Am Heart Assoc2008281577157910.1161/ATVBAHA.108.173682
    [Google Scholar]
  86. LiuX. YangT. SunT. ShaoK. SIRT1-mediated regulation of oxidative stress induced by Pseudomonas aeruginosa lipopolysaccharides in human alveolar epithelial cells.Mol. Med. Rep.201715281381810.3892/mmr.2016.6045 28000862
    [Google Scholar]
  87. AzadM.B. ChenY. GibsonS.B. Regulation of autophagy by reactive oxygen species (ROS): Implications for cancer progression and treatment.Antioxid. Redox Signal.200911477779010.1089/ars.2008.2270 18828708
    [Google Scholar]
  88. JavedanG. ShidfarF. DavoodiS.H. Conjugated linoleic acid rat pretreatment reduces renal damage in ischemia/reperfusion injury: Unraveling antiapoptotic mechanisms and regulation of phosphorylated mammalian target of rapamycin.Mol. Nutr. Food Res.201660122665267710.1002/mnfr.201600112 27466783
    [Google Scholar]
  89. SotoudeheianM. SoleimaniM. FarahmandianN. Molecular pathways disturbances during COVID-19 lead to cardiomyocyte necroptosis.Preprints2023488210.20944/preprints202304.0882.v1
    [Google Scholar]
  90. NamH. KimM.M. Scopoletin has a potential activity for anti-aging via autophagy in human lung fibroblasts.Phytomedicine201522336236810.1016/j.phymed.2015.01.004 25837273
    [Google Scholar]
  91. NarasimhanK.K.S. JayakumarD. VelusamyP. Morinda citrifolia and its active principle scopoletin mitigate protein aggregation and neuronal apoptosis through augmenting the DJ-1/Nrf2/ARe signaling pathway.Oxid. Med. Cell. Longev.2019201911310.1155/2019/2761041 31191797
    [Google Scholar]
  92. ZhaoP. DouY. ChenL. SC-III3, a novel scopoletin derivative, induces autophagy of human hepatoma HepG2 cells through AMPK/mTOR signaling pathway by acting on mitochondria.Fitoterapia2015104314010.1016/j.fitote.2015.05.002 25964188
    [Google Scholar]
  93. SotoudeheianM. HoseiniS. Therapeutic properties of polyphenols affect AMPK molecular pathway in hyperlipidemia.Preprints202310.20944/preprints202301.0528.v1
    [Google Scholar]
  94. ChattreeV. SinghK. SinghK. GoelA. MaityA. LoneA. A comprehensive review on modulation of SIRT1 signaling pathways in the immune system of COVID ‐19 patients by phytotherapeutic melatonin and epigallocatechin‐3‐gallate.J. Food Biochem.20224612e1425910.1111/jfbc.14259 35662052
    [Google Scholar]
  95. KhanH. PatelS. MajumdarA. Role of NRF2 and Sirtuin activators in COVID-19.Clin. Immunol.202123310887910.1016/j.clim.2021.108879 34798239
    [Google Scholar]
  96. ClarkeN.E. BelyaevN.D. LambertD.W. TurnerA.J. Epigenetic regulation of angiotensin-converting enzyme 2 (ACE2) by SIRT1 under conditions of cell energy stress.Clin. Sci.2014126750751610.1042/CS20130291 24147777
    [Google Scholar]
  97. PintoB.G.G. OliveiraA.E.R. SinghY. ACE2 expression is increased in the lungs of patients with comorbidities associated with severe COVID-19.J. Infect. Dis.2020222455656310.1093/infdis/jiaa332 32526012
    [Google Scholar]
  98. SahuS. PatilC.R. KumarS. ApparsundaramS. GoyalR.K. Role of ACE2-Ang (1–7)-Mas axis in post-COVID-19 complications and its dietary modulation.Mol. Cell. Biochem.2022477122524010.1007/s11010‑021‑04275‑2 34655418
    [Google Scholar]
  99. ShamirI. Abutbul-AmitaiM. Abbas-EgbariyaH. Pasmanik-ChorM. ParetG. Nevo-CaspiY. STAT3 isoforms differentially affect ACE2 expression: A potential target for COVID‐19 therapy.J. Cell. Mol. Med.20202421128641286810.1111/jcmm.15838 32949179
    [Google Scholar]
  100. LiangL. WangD. YuH. Transcriptional regulation and small compound targeting of ACE2 in lung epithelial cells.Acta Pharmacol. Sin.202243112895290410.1038/s41401‑022‑00906‑6 35468992
    [Google Scholar]
  101. KarbasforooshanH. RoohbakhshA. KarimiG. SIRT1 and microRNAs: The role in breast, lung and prostate cancers.Exp. Cell Res.201836711610.1016/j.yexcr.2018.03.023 29574020
    [Google Scholar]
  102. XuG. CaiJ. WangL. MicroRNA-30e-5p suppresses non-small cell lung cancer tumorigenesis by regulating USP22-mediated Sirt1/JAK/STAT3 signaling.Exp. Cell Res.2018362226827810.1016/j.yexcr.2017.11.027 29174979
    [Google Scholar]
  103. ZhuoY. ZhangS. LiC. YangL. GaoH. WangX. Resolvin D1 promotes SIRT1 expression to counteract the activation of STAT3 and NF-κB in mice with septic-associated lung injury.Inflammation20184151762177110.1007/s10753‑018‑0819‑2 30014231
    [Google Scholar]
  104. ZhouY. ZhangF. DingJ. As a modulator, multitasking roles of SIRT1 in respiratory diseases.Immune Netw.2022223e2110.4110/in.2022.22.e21 35799705
    [Google Scholar]
  105. JafarzadehA. NematiM. JafarzadehS. Contribution of STAT3 to the pathogenesis of COVID-19.Microb. Pathog.202115410483610.1016/j.micpath.2021.104836 33691172
    [Google Scholar]
  106. HennighausenL. LeeH.K. Activation of the SARS-CoV-2 receptor Ace2 by cytokines through pan JAK-STAT enhancers.BioRxiv2020
    [Google Scholar]
  107. GottschalkG. KnoxK. RoyA. ACE2: At the crossroad of COVID-19 and lung cancer.Gene Rep.20212310107710.1016/j.genrep.2021.101077 33723522
    [Google Scholar]
  108. YueC. SongW. WangL. ACE2 binding and antibody evasion in enhanced transmissibility of XBB.1.5.Lancet Infect. Dis.202323327828010.1016/S1473‑3099(23)00010‑5 36746173
    [Google Scholar]
  109. CallawayE. Is coronavirus variant XBB. 1.5 a global threat.Nature202361322222310.1038/d41586‑023‑00014‑3 36624320
    [Google Scholar]
  110. AtanasoffK.E. BrambillaL. AdelsbergD.C. An in vitro experimental pipeline to characterize the epitope of a SARS-CoV-2 neutralizing antibody.MBio2023e02477e2310.1128/mbio.02477‑23 38054729
    [Google Scholar]
  111. Eurosurveillance editorial team. Using the rear-view mirror to look forward.Euro Surveill.2023282220112e10.2807/1560‑7917.ES.2023.28.2.220112e
    [Google Scholar]
  112. GrahamF. Daily briefing: Is subvariant XBB. 1.5 a global threat?Nature 2023 Available from: https://www.nature.com/articles/d41586-023-00052-x Accessed 20 January 2023.
    [Google Scholar]
  113. ShiZ. LiN. ChenC. Novel NO-releasing scopoletin derivatives induce cell death via mitochondrial apoptosis pathway and cell cycle arrest.Eur. J. Med. Chem.202020011238610.1016/j.ejmech.2020.112386 32438251
    [Google Scholar]
  114. ModanwalS. MishraN. Rejuvenation of traditional medicine in the twenty-first century against SARS-CoV-2.Nat. Singap.202311513610.1007/978‑981‑99‑3664‑9_5
    [Google Scholar]
  115. IkanovicT. SehercehajicE. SaricB. In silico analysis of scopoletin interaction with potential SARS-CoV-2 target.International Conference “New Technologies, Development and Applications”: NT89790310.1007/978‑3‑030‑75275‑0_99
    [Google Scholar]
  116. GayN.H. SuwanjangW. RuankhamW. Butein, isoliquiritigenin, and scopoletin attenuate neurodegeneration via antioxidant enzymes and SIRT1/ADAM10 signaling pathway.RSC Advances20201028165931660610.1039/C9RA06056A 35498835
    [Google Scholar]
  117. ZhangT. XuL. GuoX. The potential of herbal drugs to treat heart failure: The roles of Sirt1/AMPK.J. Pharm. Anal.202310.1016/j.jpha.2023.09.001
    [Google Scholar]
  118. YanT. ZhengR. LiY. Epidemiological insights into the omicron outbreak via meltarray-assisted real-time tracking of SARS-CoV-2 variants.Viruses20231512239710.3390/v15122397 38140638
    [Google Scholar]
  119. ParumsD.V. Editorial: The XBB.1.5 (‘Kraken’) subvariant of omicron SARS-CoV-2 and its rapid global spread.Med. Sci. Monit.202329e93958010.12659/MSM.939580 36722047
    [Google Scholar]
  120. DevasundaramS. TerposE. RosatiM. XBB. 1.5 neutralizing antibodies upon bivalent COVID ‐19 vaccination are similar to XBB but lower than BQ. 1.1.Am. J. Hematol.2023985E123E12610.1002/ajh.26887 36810791
    [Google Scholar]
  121. van WerkhovenH. ValkA-W. SmaggeB. Early COVID-19 vaccine effectiveness of XBB. 1.5 vaccine against hospitalization and ICU admission, the Netherlands.medRxiv1210.1101/2023.12.12.23299855
    [Google Scholar]
  122. UrakiR. ItoM. KisoM. Antiviral and bivalent vaccine efficacy against an omicron XBB.1.5 isolate.Lancet Infect. Dis.202323440240310.1016/S1473‑3099(23)00070‑1 36773622
    [Google Scholar]
  123. BaggieriM. GioacchiniS. BorgonovoG. Antiviral, virucidal and antioxidant properties of Artemisia annua against SARS-CoV-2.Biomed. Pharmacother.202316811568210.1016/j.biopha.2023.115682 37832410
    [Google Scholar]
/content/journals/crcep/10.2174/0127724328281178240225082456
Loading
/content/journals/crcep/10.2174/0127724328281178240225082456
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): ACE2; anti-inflammatory; antioxidant; autophagy; coumarin; Gelseminic
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test