Skip to content
2000
Volume 12, Issue 1
  • ISSN: 2211-5560
  • E-ISSN: 2211-5579

Abstract

Depression has a high prevalence and associated comorbidities. It is still unknown what the molecular basis of depression is, regardless of many theories that have been put up to explain it. Many researchers investigate that present-day therapies for depression are ineffective due to their low efficacy, delayed onset of action (typically two weeks), and adverse effects. Novel medications that operate more quickly and effectively are thus needed. Several novel molecules (, ketamine, buprenorphine) have been proven to produce quick and dependable antidepressant benefits in depressive patients who are resistant to treatment; yet, questions about their effectiveness, possible abuse, and adverse effects persist. The molecular basis and pharmacological interventions for depression were included in this study. Even if pharmaceutical treatments for depression have mostly failed to alleviate the condition, identifying and addressing possible risk factors in an effort to reduce the prevalence of this psychiatric disease is beneficial for public health. We emphasized the neuroanatomy and etiopathogenesis of depression, along with a discussion of the putative pharmacological mechanisms, novel targets, research hurdles, and prospective therapeutic futures.

Loading

Article metrics loading...

/content/journals/cpsp/10.2174/0122115560281804240102054639
2024-01-19
2025-03-15
Loading full text...

Full text loading...

References

  1. ProudmanD. GreenbergP. NellesenD. The growing burden of major depressive disorders (MDD): Implications for researchers and policy makers.PharmacoEconomics202139661962510.1007/s40273‑021‑01040‑7 34013439
    [Google Scholar]
  2. SalkR.H. HydeJ.S. AbramsonL.Y. Gender differences in depression in representative national samples: Meta-analyses of diagnoses and symptoms.Psychol. Bull.2017143878382210.1037/bul0000102 28447828
    [Google Scholar]
  3. IyerK. KhanZ. Review paper depression-A review.Res. J. Recent Sci.2012147987
    [Google Scholar]
  4. DalyM. RobinsonE. Depression and anxiety during COVID-19.Lancet20223991032451810.1016/S0140‑6736(22)00187‑8 35123689
    [Google Scholar]
  5. ParkL.T. ZarateC.A.Jr Depression in the primary care setting.N. Engl. J. Med.2019380655956810.1056/NEJMcp1712493 30726688
    [Google Scholar]
  6. ChakrabartiS. Bipolar disorder in the international classification of diseases-eleventh version: A review of the changes, their basis, and usefulness.World J. Psychiatry202212121335135510.5498/wjp.v12.i12.1335 36579354
    [Google Scholar]
  7. AvasthiA. GroverS. Clinical practice guidelines for management of depression in elderly.Indian J. Psychiatry201860734110.4103/0019‑5545.224474 29535469
    [Google Scholar]
  8. PetterssonA. BoströmK.B. GustavssonP. EkseliusL. Which instruments to support diagnosis of depression have sufficient accuracy? A systematic review.Nord. J. Psychiatry201569749750810.3109/08039488.2015.1008568 25736983
    [Google Scholar]
  9. MaS. YangJ. YangB. The patient health questionnaire-9 vs. the hamilton rating scale for depression in assessing major depressive disorder.Front. Psychiatry20211274713910.3389/fpsyt.2021.747139 34803766
    [Google Scholar]
  10. BechP. Rating scales in depression: Limitations and pitfalls.Dialogues Clin. Neurosci.20068220721510.31887/DCNS.2006.8.2/pbech 16889106
    [Google Scholar]
  11. ThaparA. CollishawS. PineD.S. ThaparA.K. Depression in adolescence.Lancet201237998201056106710.1016/S0140‑6736(11)60871‑4 22305766
    [Google Scholar]
  12. ArnoneD. McIntoshA.M. EbmeierK.P. MunafòM.R. AndersonI.M. Magnetic resonance imaging studies in unipolar depression: Systematic review and meta-regression analyses.Eur. Neuropsychopharmacol.201222111610.1016/j.euroneuro.2011.05.003 21723712
    [Google Scholar]
  13. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-4).1994
    [Google Scholar]
  14. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-5).2013
    [Google Scholar]
  15. ValerioM.P. SzmulewiczA.G. MartinoD.J. A quantitative review on outcome-to-antidepressants in melancholic unipolar depression.Psychiatry Res.201826510011010.1016/j.psychres.2018.03.088 29702301
    [Google Scholar]
  16. CartaM.G. ParibelloP. NardiA.E. PretiA. Current pharmacotherapeutic approaches for dysthymic disorder and persistent depressive disorder.Expert Opin. Pharmacother.201920141743175410.1080/14656566.2019.1637419 31290333
    [Google Scholar]
  17. Laborde-LahozP. El-GabalawyR. KinleyJ. KirwinP.D. SareenJ. PietrzakR.H. Subsyndromal depression among older adults in the USA: Prevalence, comorbidity, and risk for new‐onset psychiatric disorders in late life.Int. J. Geriatr. Psychiatry201530767768510.1002/gps.4204 25345806
    [Google Scholar]
  18. MelroseS. Seasonal affective disorder: An overview of assessment and treatment approaches.Depress. Res. Treat.201520151610.1155/2015/178564 26688752
    [Google Scholar]
  19. ZaudererC. GanzerC.A. Seasonal affective disorder: An overview.Ment. Health Pract.2015189212410.7748/mhp.18.9.21.e973
    [Google Scholar]
  20. SaveanuR.V. NemeroffC.B. Etiology of depression: Genetic and environmental factors.Psychiatr. Clin. North Am.2012351517110.1016/j.psc.2011.12.001 22370490
    [Google Scholar]
  21. PandyaM. AltinayM. MaloneD.A.Jr AnandA. Where in the brain is depression?Curr. Psychiatry Rep.201214663464210.1007/s11920‑012‑0322‑7 23055003
    [Google Scholar]
  22. LiuI.Y. VarinthraP. Molecular basis for the association between depression and circadian rhythm.Tzu-Chi Med. J.2019312677210.4103/tcmj.tcmj_181_18 31007484
    [Google Scholar]
  23. ZhangF.F. PengW. SweeneyJ.A. JiaZ.Y. GongQ.Y. Brain structure alterations in depression: Psychoradiological evidence.CNS Neurosci. Ther.20182411994100310.1111/cns.12835 29508560
    [Google Scholar]
  24. NandamL.S. BrazelM. ZhouM. JhaveriD.J. Cortisol and major depressive disorder-translating findings from humans to animal models and back.Front. Psychiatry20201097410.3389/fpsyt.2019.00974 32038323
    [Google Scholar]
  25. BaoA.M. SwaabD.F. The human hypothalamus in mood disorders: The HPA axis in the center.IBRO Rep.20196455310.1016/j.ibror.2018.11.008 31211281
    [Google Scholar]
  26. BeurelE. ToupsM. NemeroffC.B. The bidirectional relationship of depression and inflammation: Double trouble.Neuron2020107223425610.1016/j.neuron.2020.06.002 32553197
    [Google Scholar]
  27. OpmeerE.M. KortekaasR. AlemanA. Depression and the role of genes involved in dopamine metabolism and signalling.Prog. Neurobiol.201092211213310.1016/j.pneurobio.2010.06.003 20558238
    [Google Scholar]
  28. HaslerG. Pathophysiology of depression: Do we have any solid evidence of interest to clinicians?World Psychiatry20109315516110.1002/j.2051‑5545.2010.tb00298.x 20975857
    [Google Scholar]
  29. ShadrinaM. BondarenkoE.A. SlominskyP.A. Genetics factors in major depression disease.Front. Psychiatry2018933410.3389/fpsyt.2018.00334 30083112
    [Google Scholar]
  30. PizzagalliD.A. RobertsA.C. Prefrontal cortex and depression.Neuropsychopharmacology202247122524610.1038/s41386‑021‑01101‑7 34341498
    [Google Scholar]
  31. ManjiH.K. DrevetsW.C. CharneyD.S. The cellular neurobiology of depression.Nat. Med.20017554154710.1038/87865 11329053
    [Google Scholar]
  32. BoesA.D. McCormickL.M. CoryellW.H. NopoulosP. Rostral anterior cingulate cortex volume correlates with depressed mood in normal healthy children.Biol. Psychiatry200863439139710.1016/j.biopsych.2007.07.018 17916329
    [Google Scholar]
  33. PhilippiC.L. MotzkinJ.C. PujaraM.S. KoenigsM. Subclinical depression severity is associated with distinct patterns of functional connectivity for subregions of anterior cingulate cortex.J. Psychiatr. Res.20157110311110.1016/j.jpsychires.2015.10.005 26468907
    [Google Scholar]
  34. HeC. FanD. LiuX. Insula network connectivity mediates the association between childhood maltreatment and depressive symptoms in major depressive disorder patients.Transl. Psychiatry20221218910.1038/s41398‑022‑01829‑w 35236833
    [Google Scholar]
  35. WangC. WuH. ChenF. Disrupted functional connectivity patterns of the insula subregions in drug-free major depressive disorder.J. Affect. Disord.201823429730410.1016/j.jad.2017.12.033 29587165
    [Google Scholar]
  36. SchnellbächerG.J. RajkumarR. VeselinovićT. Structural alterations of the insula in depression patients - A 7-Tesla-MRI study.Neuroimage Clin.20223610324910.1016/j.nicl.2022.103249 36451355
    [Google Scholar]
  37. IdunkovaA. LacinovaL. Dubiel-HoppanovaL. Stress, depression, and hippocampus: From biochemistry to electrophysiology.Gen. Physiol. Biophys.202342210712210.4149/gpb_2023001 36896941
    [Google Scholar]
  38. YaoZ. FuY. WuJ. Morphological changes in subregions of hippocampus and amygdala in major depressive disorder patients.Brain Imaging Behav.202014365366710.1007/s11682‑018‑0003‑1 30519998
    [Google Scholar]
  39. ZhangY. ZhangY. AiH. Microstructural deficits of the thalamus in major depressive disorder.Brain Commun.202245fcac23610.1093/braincomms/fcac236 36196087
    [Google Scholar]
  40. HwangW.J. KwakY.B. ChoK.I.K. Thalamic connectivity system across psychiatric disorders: Current status and clinical implications.Biol. Psychiatry Glob. Open Sci.20222433234010.1016/j.bpsgos.2021.09.008 36324665
    [Google Scholar]
  41. YangC. XiaoK. AoY. CuiQ. JingX. WangY. The thalamus is the causal hub of intervention in patients with major depressive disorder: Evidence from the granger causality analysis.Neuroimage Clin.20233710329510.1016/j.nicl.2022.103295 36549233
    [Google Scholar]
  42. FerriJ. EisendrathS.J. FryerS.L. GillungE. RoachB.J. MathalonD.H. Blunted amygdala activity is associated with depression severity in treatment-resistant depression.Cogn. Affect. Behav. Neurosci.20171761221123110.3758/s13415‑017‑0544‑6 29063521
    [Google Scholar]
  43. KayaS. McCabeC. What role does the prefrontal cortex play in the processing of negative and positive stimuli in adolescent depression?Brain Sci.20199510410.3390/brainsci9050104 31067810
    [Google Scholar]
  44. HamiltonJ.P. SiemerM. GotlibI.H. Amygdala volume in major depressive disorder: A meta-analysis of magnetic resonance imaging studies.Mol. Psychiatry20081311993100010.1038/mp.2008.57 18504424
    [Google Scholar]
  45. GabbayV. ElyB.A. LiQ. Striatum-based circuitry of adolescent depression and anhedonia.J. Am. Acad. Child Adolesc. Psychiatry2013526628641.e1310.1016/j.jaac.2013.04.003 23702452
    [Google Scholar]
  46. FitzgeraldM.L. KassirS.A. UnderwoodM.D. BakalianM.J. MannJ.J. ArangoV. Dysregulation of striatal dopamine receptor binding in suicide.Neuropsychopharmacology201742497498210.1038/npp.2016.124 27402414
    [Google Scholar]
  47. DombrovskiA.Y. SiegleG.J. SzantoK. ClarkL. ReynoldsC.F.III AizensteinH. The temptation of suicide: striatal gray matter, discounting of delayed rewards, and suicide attempts in late-life depression.Psychol. Med.20124261203121510.1017/S0033291711002133 21999930
    [Google Scholar]
  48. HamiltonJ.P. SacchetM.D. HjørnevikT. Striatal dopamine deficits predict reductions in striatal functional connectivity in major depression: A concurrent 11C-raclopride positron emission tomography and functional magnetic resonance imaging investigation.Transl. Psychiatry20188126410.1038/s41398‑018‑0316‑2 30504860
    [Google Scholar]
  49. LacerdaA.L.T. NicolettiM.A. BrambillaP. Anatomical MRI study of basal ganglia in major depressive disorder.Psychiatry Res. Neuroimaging2003124312914010.1016/S0925‑4927(03)00123‑9 14623065
    [Google Scholar]
  50. SacchetM.D. CamachoM.C. LivermoreE.E. ThomasE.A.C. GotlibI.H. Accelerated aging of the putamen in patients with major depressive disorder.J. Psychiatry Neurosci.201742316417110.1503/jpn.160010 27749245
    [Google Scholar]
  51. TaoH. GuoS. GeT. Depression uncouples brain hate circuit.Mol. Psychiatry201318110111110.1038/mp.2011.127 21968929
    [Google Scholar]
  52. ZekiS. RomayaJ.P. Neural correlates of hate.PLoS One2008310e355610.1371/journal.pone.0003556 18958169
    [Google Scholar]
  53. ChenY. JiaL. GaoW. Alterations of brainstem volume in patients with first-episode and recurrent major depressive disorder.BMC Psychiatry202323168710.1186/s12888‑023‑05146‑4 37735630
    [Google Scholar]
  54. BeckerG. BeckerT. StruckM. Reduced echogenicity of brainstem raphe specific to unipolar depression: A transcranial color-coded real-time sonography study.Biol. Psychiatry199538318018410.1016/0006‑3223(94)00263‑3 7578661
    [Google Scholar]
  55. Soriano-MasC. Hernández-RibasR. PujolJ. Cross-sectional and longitudinal assessment of structural brain alterations in melancholic depression.Biol. Psychiatry201169431832510.1016/j.biopsych.2010.07.029 20875637
    [Google Scholar]
  56. MatthewsS.C. StrigoI.A. SimmonsA.N. YangT.T. PaulusM.P. Decreased functional coupling of the amygdala and supragenual cingulate is related to increased depression in unmedicated individuals with current major depressive disorder.J. Affect. Disord.20081111132010.1016/j.jad.2008.05.022 18603301
    [Google Scholar]
  57. WaselusM. ValentinoR.J. Van BockstaeleE.J. Collateralized dorsal raphe nucleus projections: A mechanism for the integration of diverse functions during stress.J. Chem. Neuroanat.201141426628010.1016/j.jchemneu.2011.05.011 21658442
    [Google Scholar]
  58. GibbsM.E. HutchinsonD.S. SummersR.J. Noradrenaline release in the locus coeruleus modulates memory formation and consolidation; roles for α- and β-adrenergic receptors.Neuroscience201017041209122210.1016/j.neuroscience.2010.07.052 20709158
    [Google Scholar]
  59. SesackS.R. GraceA.A. Cortico-Basal Ganglia reward network: Microcircuitry.Neuropsychopharmacology2010351274710.1038/npp.2009.93 19675534
    [Google Scholar]
  60. StrawbridgeR. JavedR.R. CaveJ. JauharS. YoungA.H. The effects of reserpine on depression: A systematic review.J. Psychopharmacol.202337324826010.1177/02698811221115762 36000248
    [Google Scholar]
  61. QianX. ZhongZ. LuS. ZhangY. Repeated reserpine treatment induces depressive-like behaviors accompanied with hippocampal impairment and synapse deficit in mice.Brain Res.2023181914854110.1016/j.brainres.2023.148541 37619854
    [Google Scholar]
  62. MaratheS.V. D’almeidaP.L. VirmaniG. BathiniP. AlberiL. Effects of monoamines and antidepressants on astrocyte physiology: Implications for monoamine hypothesis of depression.J. Exp. Neurosci.20181210.1177/1179069518789149 30046253
    [Google Scholar]
  63. SchultzW. StaufferW.R. LakA. The phasic dopamine signal maturing: From reward via behavioural activation to formal economic utility.Curr. Opin. Neurobiol.20174313914810.1016/j.conb.2017.03.013 28390863
    [Google Scholar]
  64. BrigittaB. Pathophysiology of depression and mechanisms of treatment.Dialogues Clin. Neurosci.20024172010.31887/DCNS.2002.4.1/bbondy 22033824
    [Google Scholar]
  65. BaranyiA. Amouzadeh-GhadikolaiO. von LewinskiD. Revisiting the tryptophan-serotonin deficiency and the inflammatory hypotheses of major depression in a biopsychosocial approach.PeerJ20175e396810.7717/peerj.3968 29109914
    [Google Scholar]
  66. NeumeisterA. NugentA.C. WaldeckT. Neural and behavioral responses to tryptophan depletion in unmedicated patients with remitted major depressive disorder and controls.Arch. Gen. Psychiatry200461876577310.1001/archpsyc.61.8.765 15289275
    [Google Scholar]
  67. ShaoX. ZhuG. Associations among monoamine neurotransmitter pathways, personality traits, and major depressive disorder.Front. Psychiatry20201138110.3389/fpsyt.2020.00381 32477180
    [Google Scholar]
  68. AndersonA. OquendoM.A. ParseyR.V. MilakM.S. CampbellC. MannJ.J. Regional brain responses to serotonin in major depressive disorder.J. Affect. Disord.200482341141710.1016/j.jad.2004.04.003 15555692
    [Google Scholar]
  69. LangeneckerS.A. MickeyB.J. EichhammerP. Cognitive control as a 5-HT1A-based domain that is disrupted in major depressive disorder.Front. Psychol.20191069110.3389/fpsyg.2019.00691 30984083
    [Google Scholar]
  70. RizzardiL.F. HickeyP.F. Rodriguez DiBlasiV. Neuronal brain-region-specific DNA methylation and chromatin accessibility are associated with neuropsychiatric trait heritability.Nat. Neurosci.201922230731610.1038/s41593‑018‑0297‑8 30643296
    [Google Scholar]
  71. GescherD.M. KahlK.G. HillemacherT. FrielingH. KuhnJ. FrodlT. Epigenetics in personality disorders: Today’s insights.Front. Psychiatry2018957910.3389/fpsyt.2018.00579 30510522
    [Google Scholar]
  72. MenonV. KattimaniS. Suicide and serotonin: Making sense of evidence.Indian J. Psychol. Med.201537337737810.4103/0253‑7176.162910 26664099
    [Google Scholar]
  73. JokinenJ. CarlborgA. MårtenssonB. ForslundK. NordströmA.L. NordströmP. DST non-suppression predicts suicide after attempted suicide.Psychiatry Res.2007150329730310.1016/j.psychres.2006.12.001 17316825
    [Google Scholar]
  74. WeissmannD. van der LaanS. UnderwoodM.D. Region-specific alterations of A-to-I RNA editing of serotonin 2c receptor in the cortex of suicides with major depression.Transl. Psychiatry201668e87810.1038/tp.2016.121 27576167
    [Google Scholar]
  75. PandeyG.N. DwivediY. Noradrenergic function in suicide.Arch. Suicide Res.200711323524610.1080/13811110701402587 17558608
    [Google Scholar]
  76. SaldanhaD. KumarN. RyaliV.S.S.R. SrivastavaK. PawarA.A. Serum serotonin abnormality in depression.Med. J. Armed Forces India200965210811210.1016/S0377‑1237(09)80120‑2 27408213
    [Google Scholar]
  77. CottinghamC. WangQ. α2 adrenergic receptor dysregulation in depressive disorders: Implications for the neurobiology of depression and antidepressant therapy.Neurosci. Biobehav. Rev.201236102214222510.1016/j.neubiorev.2012.07.011 22910678
    [Google Scholar]
  78. Kaddurah-DaoukR. YuanP. BoyleS.H. Cerebrospinal fluid metabolome in mood disorders-remission state has a unique metabolic profile.Sci. Rep.20122166710.1038/srep00667 22993692
    [Google Scholar]
  79. GoldbergJ.F. BurdickK.E. EndickC.J. Preliminary randomized, double-blind, placebo-controlled trial of pramipexole added to mood stabilizers for treatment-resistant bipolar depression.Am. J. Psychiatry2004161356456610.1176/appi.ajp.161.3.564 14992985
    [Google Scholar]
  80. PrataD.P. MechelliA. FuC.H.Y. Epistasis between the DAT 3′ UTR VNTR and the COMT Val158Met SNP on cortical function in healthy subjects and patients with schizophrenia.Proc. Natl. Acad. Sci.200910632136001360510.1073/pnas.0903007106 19666577
    [Google Scholar]
  81. PanditR. OmraniA. LuijendijkM.C.M. Melanocortin 3 receptor signaling in midbrain dopamine neurons increases the motivation for food reward.Neuropsychopharmacology20164192241225110.1038/npp.2016.19 26852738
    [Google Scholar]
  82. TargumS.D. Identification and treatment of antidepressant tachyphylaxis.Innov. Clin. Neurosci.2014113-42428 24800130
    [Google Scholar]
  83. FornaroM. AnastasiaA. NovelloS. The emergence of loss of efficacy during antidepressant drug treatment for major depressive disorder: An integrative review of evidence, mechanisms, and clinical implications.Pharmacol. Res.201913949450210.1016/j.phrs.2018.10.025 30385364
    [Google Scholar]
  84. FavaG.A. May antidepressant drugs worsen the conditions they are supposed to treat? The clinical foundations of the oppositional model of tolerance.Ther. Adv. Psychopharmacol.20201010.1177/2045125320970325 33224471
    [Google Scholar]
  85. JiangY. PengT. GaurU. Role of corticotropin releasing factor in the neuroimmune mechanisms of depression: Examination of current pharmaceutical and herbal therapies.Front. Cell. Neurosci.20191329010.3389/fncel.2019.00290 31312123
    [Google Scholar]
  86. MikulskaJ. JuszczykG. Gawrońska-GrzywaczM. HerbetM. HPA axis in the pathomechanism of depression and schizophrenia: new therapeutic strategies based on its participation.Brain Sci.20211110129810.3390/brainsci11101298 34679364
    [Google Scholar]
  87. LeeS. JeongJ. KwakY. ParkS.K. Depression research: Where are we now?Mol. Brain201031810.1186/1756‑6606‑3‑8 20219105
    [Google Scholar]
  88. KatzD.A. LockeC. GrecoN. LiuW. TracyK.A. Hypothalamic‐pituitary‐adrenal axis and depression symptom effects of an arginine vasopressin type 1B receptor antagonist in a one‐week randomized Phase 1b trial.Brain Behav.201773e0062810.1002/brb3.628 28293470
    [Google Scholar]
  89. KarachaliouF.H. KaravanakiK. SimatouA. TsintzouE. SkarakisN.S. Kanaka-GatenbeinC. Association of growth hormone deficiency (GHD) with anxiety and depression: Experimental data and evidence from GHD children and adolescents.Hormones202120467968910.1007/s42000‑021‑00306‑1 34195937
    [Google Scholar]
  90. RossiG.N. GuerraL.T.L. BakerG.B. Molecular pathways of the therapeutic effects of ayahuasca, a botanical psychedelic and potential rapid-acting antidepressant.Biomolecules20221211161810.3390/biom12111618 36358968
    [Google Scholar]
  91. ToumaK.T.B. ZouchaA.M. ScarffJ.R. Liothyronine for depression: A review and guidance for safety monitoring.Innov. Clin. Neurosci.2017143-42429 28584694
    [Google Scholar]
  92. RosenthalL.J. GoldnerW.S. O’ReardonJ.P. T3 augmentation in major depressive disorder: Safety considerations.Am. J. Psychiatry2011168101035104010.1176/appi.ajp.2011.10030402 21969047
    [Google Scholar]
  93. DulawaS.C. JanowskyD.S. Cholinergic regulation of mood: From basic and clinical studies to emerging therapeutics.Mol. Psychiatry201924569470910.1038/s41380‑018‑0219‑x 30120418
    [Google Scholar]
  94. FureyM.L. KhannaA. HoffmanE.M. DrevetsW.C. Scopolamine produces larger antidepressant and antianxiety effects in women than in men.Neuropsychopharmacology201035122479248810.1038/npp.2010.131 20736989
    [Google Scholar]
  95. RubinR.T. RhodesM.E. MillerT.H. JakabR.L. CzambelR.K. Sequence of pituitary–adrenal cortical hormone responses to low-dose physostigmine administration in young adult women and men.Life Sci.200679242260226810.1016/j.lfs.2006.07.023 16935309
    [Google Scholar]
  96. YoungJ.W. CopeZ.A. RomoliB. Mice with reduced DAT levels recreate seasonal-induced switching between states in bipolar disorder.Neuropsychopharmacology20184381721173110.1038/s41386‑018‑0031‑y 29520059
    [Google Scholar]
  97. HigleyM.J. PicciottoM.R. Neuromodulation by acetylcholine: Examples from schizophrenia and depression.Curr. Opin. Neurobiol.201429889510.1016/j.conb.2014.06.004 24983212
    [Google Scholar]
  98. CaldaroneB.J. HarristA. ClearyM.A. BeechR.D. KingS.L. PicciottoM.R. High-affinity nicotinic acetylcholine receptors are required for antidepressant effects of amitriptyline on behavior and hippocampal cell proliferation.Biol. Psychiatry200456965766410.1016/j.biopsych.2004.08.010 15522249
    [Google Scholar]
  99. Je JeonW. DeanB. ScarrE. GibbonsA. The role of muscarinic receptors in the pathophysiology of mood disorders: A potential novel treatment?Curr. Neuropharmacol.201513673974910.2174/1570159X13666150612230045 26630954
    [Google Scholar]
  100. WongM.L. LicinioJ. Research and treatment approaches to depression.Nat. Rev. Neurosci.20012534335110.1038/35072566 11331918
    [Google Scholar]
  101. HanQ.Q. YuJ. Inflammation: A mechanism of depression?Neurosci. Bull.201430351552310.1007/s12264‑013‑1439‑3 24838302
    [Google Scholar]
  102. LeeC. GiulianiF. The role of inflammation in depression and fatigue.Front. Immunol.201910169610.3389/fimmu.2019.01696
    [Google Scholar]
  103. HowesO.D. ThaseM.E. PillingerT. Treatment resistance in psychiatry: State of the art and new directions.Mol. Psychiatry2022271587210.1038/s41380‑021‑01200‑3 34257409
    [Google Scholar]
  104. OrsoliniL. PompiliS. Tempia ValentaS. SalviV. VolpeU. C-Reactive protein as a biomarker for major depressive disorder?Int. J. Mol. Sci.2022233161610.3390/ijms23031616 35163538
    [Google Scholar]
  105. RyanK.M. McLoughlinD.M. Peripheral blood inflammatory markers in depression: Response to electroconvulsive therapy and relationship with cognitive performance.Psychiatry Res.202231511472510.1016/j.psychres.2022.114725 35870295
    [Google Scholar]
  106. MaesM. RingelK. KuberaM. BerkM. RybakowskiJ. Increased autoimmune activity against 5-HT: A key component of depression that is associated with inflammation and activation of cell-mediated immunity, and with severity and staging of depression.J. Affect. Disord.2012136338639210.1016/j.jad.2011.11.016 22166399
    [Google Scholar]
  107. JeonS.W. KimY.K. Neuroinflammation and cytokine abnormality in major depression: Cause or consequence in that illness?World J. Psychiatry20166328329310.5498/wjp.v6.i3.283 27679767
    [Google Scholar]
  108. HimmerichH. PatsalosO. LichtblauN. IbrahimM.A.A. DaltonB. Cytokine research in depression: Principles, challenges, and open questions.Front. Psychiatry2019103010.3389/fpsyt.2019.00030 30792669
    [Google Scholar]
  109. TuP.C. LiC.T. LinW.C. ChenM.H. SuT.P. BaiY.M. Structural and functional correlates of serum soluble IL-6 receptor level in patients with bipolar disorder.J. Affect. Disord.201721917217710.1016/j.jad.2017.04.036 28558364
    [Google Scholar]
  110. GandhiA.B. KaleemI. AlexanderJ. Neuroplasticity improves bipolar disorder: A Review.Cureus20201210e11241 33274124
    [Google Scholar]
  111. AlbertP.R. Adult neuroplasticity: A new “cure” for major depression?J. Psychiatry Neurosci.201944314715010.1503/jpn.190072 31038297
    [Google Scholar]
  112. PittengerC. DumanR.S. Stress, depression, and neuroplasticity: A convergence of mechanisms.Neuropsychopharmacology20083318810910.1038/sj.npp.1301574 17851537
    [Google Scholar]
  113. LiuW. GeT. LengY. PanZ. FanJ. YangW. The role of neural plasticity in depression: From hippocampus to prefrontal cortex.Neural Plast.20172017687108910.1155/2017/6871089
    [Google Scholar]
  114. SavitzJ.B. DrevetsW.C. Imaging phenotypes of major depressive disorder: Genetic correlates.Neuroscience2009164130033010.1016/j.neuroscience.2009.03.082 19358877
    [Google Scholar]
  115. InselT.R. Next-generation treatments for mental disorders.Sci. Transl. Med.201241551910.1126/scitranslmed.3004873
    [Google Scholar]
  116. TongJ. MeyerJ.H. BoileauI. Serotonin transporter protein in autopsied brain of chronic users of cocaine.Psychopharmacology202023792661267110.1007/s00213‑020‑05562‑4 32494974
    [Google Scholar]
  117. XuW. KannanS. VermaC.S. NacroK. Update on the development of MNK inhibitors as therapeutic agents.J. Med. Chem.2022652983100710.1021/acs.jmedchem.1c00368 34533957
    [Google Scholar]
  118. VetencourtJ.F.M. TiraboschiE. SpolidoroM. CastrénE. MaffeiL. Serotonin triggers a transient epigenetic mechanism that reinstates adult visual cortex plasticity in rats.Eur. J. Neurosci.2011331495710.1111/j.1460‑9568.2010.07488.x 21156002
    [Google Scholar]
  119. SavliM. BauerA. MitterhauserM. Normative database of the serotonergic system in healthy subjects using multi-tracer PET.Neuroimage201263144745910.1016/j.neuroimage.2012.07.001 22789740
    [Google Scholar]
  120. SteinbergL.J. Rubin-FalconeH. GalfalvyH.C. Cortisol stress response and in vivo PET imaging of human brain serotonin 1A receptor binding.Int. J. Neuropsychopharmacol.201922532933810.1093/ijnp/pyz009 30927011
    [Google Scholar]
  121. BartlettE.A. YttredahlA.A. BoldriniM. In vivo serotonin 1A receptor hippocampal binding potential in depression and reported childhood adversity.Eur. Psychiatry2023661e1710.1192/j.eurpsy.2023.4 36691786
    [Google Scholar]
  122. DuttaA. McKieS. DeakinJ.F.W. Resting state networks in major depressive disorder.Psychiatry Res. Neuroimaging2014224313915110.1016/j.pscychresns.2014.10.003 25456520
    [Google Scholar]
  123. DumanR.S. VoletiB. Signaling pathways underlying the pathophysiology and treatment of depression: novel mechanisms for rapid-acting agents.Trends Neurosci.2012351475610.1016/j.tins.2011.11.004 22217452
    [Google Scholar]
  124. KrishnanV. NestlerE.J. Linking molecules to mood: New insight into the biology of depression.Am. J. Psychiatry2010167111305132010.1176/appi.ajp.2009.10030434 20843874
    [Google Scholar]
  125. JuhaszG. DunhamJ.S. McKieS. The CREB1-BDNF-NTRK2 pathway in depression: Multiple gene-cognition-environment interactions.Biol. Psychiatry201169876277110.1016/j.biopsych.2010.11.019 21215389
    [Google Scholar]
  126. TanX. DuX. JiangY. BotchwayB.O.A. HuZ. FangM. Inhibition of autophagy in microglia alters depressive-like behavior via BDNF pathway in postpartum depression.Front. Psychiatry2018943410.3389/fpsyt.2018.00434 30349488
    [Google Scholar]
  127. OkamotoH. VoletiB. BanasrM. Wnt2 expression and signaling is increased by different classes of antidepressant treatments.Biol. Psychiatry201068652152710.1016/j.biopsych.2010.04.023 20570247
    [Google Scholar]
  128. WangJ.Q. MaoL. The ERK pathway: Molecular mechanisms and treatment of depression.Mol. Neurobiol.20195696197620510.1007/s12035‑019‑1524‑3 30737641
    [Google Scholar]
  129. FriesG.R. SaldanaV.A. FinnsteinJ. ReinT. Molecular pathways of major depressive disorder converge on the synapse.Mol. Psychiatry202328128429710.1038/s41380‑022‑01806‑1 36203007
    [Google Scholar]
  130. Pilar-CúellarF. VidalR. DíazA. Signaling pathways involved in antidepressant-induced cell proliferation and synaptic plasticity.Curr. Pharm. Des.201420233776379410.2174/13816128113196660736 24180397
    [Google Scholar]
  131. AnackerC. ZunszainP.A. CarvalhoL.A. ParianteC.M. The glucocorticoid receptor: Pivot of depression and of antidepressant treatment?Psychoneuroendocrinology201136341542510.1016/j.psyneuen.2010.03.007 20399565
    [Google Scholar]
  132. ZhouL. WangT. YuY. The etiology of poststroke-depression: A hypothesis involving HPA axis.Biomed. Pharmacother.202215111314610.1016/j.biopha.2022.113146 35643064
    [Google Scholar]
  133. HermanJ.P. McKlveenJ.M. GhosalS. Regulation of the hypothalamic-pituitary-adrenocortical stress response.Compr. Physiol.20166260362110.1002/cphy.c150015 27065163
    [Google Scholar]
  134. Abdul AzizN.U. ChiromaS.M. Mohd MoklasM.A. Menhaden fish oil attenuates postpartum depression in rat model via inhibition of NLRP3-inflammasome driven inflammatory pathway.J. Tradit. Complement. Med.202111541942610.1016/j.jtcme.2021.02.007 34522636
    [Google Scholar]
  135. Décarie-SpainL. SharmaS. HryhorczukC. Nucleus accumbens inflammation mediates anxiodepressive behavior and compulsive sucrose seeking elicited by saturated dietary fat.Mol. Metab.20181011310.1016/j.molmet.2018.01.018 29454579
    [Google Scholar]
  136. AndersonG. MaesM. Oxidative/nitrosative stress and immuno-inflammatory pathways in depression: Treatment implications.Curr. Pharm. Des.201420233812384710.2174/13816128113196660738 24180395
    [Google Scholar]
  137. PerezJ. TarditoD. RacagniG. SmeraldiE. ZanardiR. cAMP signaling pathway in depressed patients with psychotic features.Mol. Psychiatry20027220821210.1038/sj.mp.4000969 11840314
    [Google Scholar]
  138. MalemudC.J. MillerA.H. Pro-inflammatory cytokine-induced SAPK/MAPK and JAK/STAT in rheumatoid arthritis and the new anti-depression drugs.Expert Opin. Ther. Targets200812217118310.1517/14728222.12.2.171 18208366
    [Google Scholar]
  139. ShariqA.S. BrietzkeE. RosenblatJ.D. Therapeutic potential of JAK/STAT pathway modulation in mood disorders.Rev. Neurosci.20183011710.1515/revneuro‑2018‑0027 29902157
    [Google Scholar]
  140. LuscherB. ShenQ. SahirN. The GABAergic deficit hypothesis of major depressive disorder.Mol. Psychiatry201116438340610.1038/mp.2010.120 21079608
    [Google Scholar]
  141. TetteF.M. KwofieS.K. WilsonM.D. Therapeutic anti-depressant potential of microbial GABA produced by Lactobacillus rhamnosus strains for GABAergic signaling restoration and inhibition of addiction-induced HPA axis hyperactivity.Curr. Issues Mol. Biol.20224441434145110.3390/cimb44040096 35723354
    [Google Scholar]
  142. NakaoA. MatsunagaY. HayashidaK. TakahashiN. Role of oxidative stress and Ca2+ signaling in psychiatric disorders.Front. Cell Dev. Biol.2021961556910.3389/fcell.2021.615569 33644051
    [Google Scholar]
  143. MorenoC. HermosillaT. HardyP. AballaiV. RojasP. VarelaD. Cav1.2 Activity and downstream signaling pathways in the hippocampus of an animal model of depression.Cells2020912260910.3390/cells9122609 33291797
    [Google Scholar]
  144. DubovskyS.L. Applications of calcium channel blockers in psychiatry: Pharmacokinetic and pharmacodynamic aspects of treatment of bipolar disorder.Expert Opin. Drug Metab. Toxicol.2019151354710.1080/17425255.2019.1558206 30558453
    [Google Scholar]
  145. DudaP. HajkaD. WójcickaO. RakusD. GizakA. GSK3β: A master player in depressive disorder pathogenesis and treatment responsiveness.Cells20209372710.3390/cells9030727 32188010
    [Google Scholar]
  146. McCallumR.T. PerreaultM.L. Glycogen synthase kinase-3: A focal point for advancing pathogenic inflammation in depression.Cells2021109227010.3390/cells10092270 34571919
    [Google Scholar]
  147. JelenL.A. YoungA.H. StoneJ.M. Ketamine: A tale of two enantiomers.J. Psychopharmacol.202135210912310.1177/0269881120959644 33155503
    [Google Scholar]
  148. ZanosP. GouldT.D. Mechanisms of ketamine action as an antidepressant.Mol. Psychiatry201823480181110.1038/mp.2017.255 29532791
    [Google Scholar]
  149. KatoT. Role of mTOR1 signaling in the antidepressant effects of ketamine and the potential of mTORC1 activators as novel antidepressants.Neuropharmacology202322310932510.1016/j.neuropharm.2022.109325 36334763
    [Google Scholar]
  150. TeoC.H. SogaT. ParharI.S. Brain beta-catenin signalling during stress and depression.Neurosignals2018261314210.1159/000487764 29490303
    [Google Scholar]
  151. ArosioB. GueriniF.R. VoshaarR.C.O. AprahamianI. Blood brain-derived neurotrophic factor (BDNF) and major depression: Do we have a translational perspective?Front. Behav. Neurosci.20211562690610.3389/fnbeh.2021.626906 33643008
    [Google Scholar]
  152. YangT. NieZ. ShuH. The role of BDNF on neural plasticity in depression.Front. Cell. Neurosci.2020148210.3389/fncel.2020.00082 32351365
    [Google Scholar]
  153. DumanR.S. DeyamaS. FogaçaM.V. Role of BDNF in the pathophysiology and treatment of depression: Activity‐dependent effects distinguish rapid‐acting antidepressants.Eur. J. Neurosci.202153112613910.1111/ejn.14630 31811669
    [Google Scholar]
  154. Di BenedettoB. RadeckeJ. SchmidtM.V. RupprechtR. Acute antidepressant treatment differently modulates ERK/MAPK activation in neurons and astrocytes of the adult mouse prefrontal cortex.Neuroscience201323216116810.1016/j.neuroscience.2012.11.061 23238574
    [Google Scholar]
  155. Albert-GascóH. Ros-BernalF. Castillo-GómezE. Olucha-BordonauF.E. MAP/ERK signaling in developing cognitive and emotional function and its effect on pathological and neurodegenerative processes.Int. J. Mol. Sci.20202112447110.3390/ijms21124471 32586047
    [Google Scholar]
  156. GaleottiN. GhelardiniC. Regionally selective activation and differential regulation of ERK, JNK and p38 MAP kinase signalling pathway by protein kinase C in mood modulation.Int. J. Neuropsychopharmacol.201215678179310.1017/S1461145711000897 21682943
    [Google Scholar]
  157. ZhangL. XuT. WangS. Curcumin produces antidepressant effects via activating MAPK/ERK-dependent brain-derived neurotrophic factor expression in the amygdala of mice.Behav. Brain Res.20122351677210.1016/j.bbr.2012.07.019 22820234
    [Google Scholar]
  158. KitagishiY KobayashiM KikutaK MatsudaS. Roles of PI3K/AKT/GSK3/mTOR pathway in cell signaling of mental illnesses.Depress Res Treat20122012
    [Google Scholar]
  159. WuZ. WangG. WeiY. XiaoL. WangH. PI3K/AKT/GSK3β/CRMP-2-mediated neuroplasticity in depression induced by stress.Neuroreport201829151256126310.1097/WNR.0000000000001096 30113922
    [Google Scholar]
  160. NeisV.B. MorettiM. RosaP.B. The involvement of PI3K/Akt/mTOR/GSK3β signaling pathways in the antidepressant-like effect of AZD6765.Pharmacol. Biochem. Behav.202019817302010.1016/j.pbb.2020.173020 32861641
    [Google Scholar]
  161. LiS. LuC. KangL. Study on correlations of BDNF, PI3K, AKT and CREB levels with depressive emotion and impulsive behaviors in drug-naïve patients with first-episode schizophrenia.BMC Psychiatry202323122510.1186/s12888‑023‑04718‑8 37013544
    [Google Scholar]
  162. LiuJ-h WuZ-f SunJ JiangL JiangS FuW-b Role of ACcAMP-PKA cascade in antidepressant action of electroacupuncture treatment in rats.Evid Based Complement Alternat Med20122012
    [Google Scholar]
  163. AshokA.H. MarquesT.R. JauharS. The dopamine hypothesis of bipolar affective disorder: The state of the art and implications for treatment.Mol. Psychiatry201722566667910.1038/mp.2017.16 28289283
    [Google Scholar]
  164. KamijimaK. HiguchiT. IshigookaJ. Aripiprazole augmentation to antidepressant therapy in Japanese patients with major depressive disorder: A randomized, double-blind, placebo-controlled study (ADMIRE study).J. Affect. Disord.2013151389990510.1016/j.jad.2013.07.035 24074484
    [Google Scholar]
  165. GershonA.A. AmiazR. Shem-DavidH. GrunhausL. Ropinirole augmentation for depression: A randomized controlled trial pilot study.J. Clin. Psychopharmacol.2019391788110.1097/JCP.0000000000000984 30489382
    [Google Scholar]
  166. YohnC.N. GerguesM.M. SamuelsB.A. The role of 5-HT receptors in depression.Mol. Brain20171012810.1186/s13041‑017‑0306‑y 28646910
    [Google Scholar]
  167. RenP. WangJ. LiN. Sigma-1 receptors in depression: Mechanism and therapeutic development.Front. Pharmacol.20221392587910.3389/fphar.2022.925879 35784746
    [Google Scholar]
  168. FishbackJ.A. RobsonM.J. XuY.T. MatsumotoR.R. Sigma receptors: Potential targets for a new class of antidepressant drug.Pharmacol. Ther.2010127327128210.1016/j.pharmthera.2010.04.003 20438757
    [Google Scholar]
  169. JacobsonM.L. BrowneC.A. LuckiI. Kappa opioid receptor antagonists as potential therapeutics for stress-related disorders.Annu. Rev. Pharmacol. Toxicol.202060161563610.1146/annurev‑pharmtox‑010919‑023317 31914893
    [Google Scholar]
  170. WattD.F. PankseppJ. Depression: An evolutionarily conserved mechanism to terminate separation distress? A review of aminergic, peptidergic, and neural network perspectives.Neuro-psychoanalysis200911175110.1080/15294145.2009.10773593
    [Google Scholar]
  171. ZiębaA. StępnickiP. MatosiukD. KaczorA.A. Overcoming depression with 5-HT2A receptor ligands.Int. J. Mol. Sci.20212311010.3390/ijms23010010 35008436
    [Google Scholar]
  172. SattarY. WilsonJ. KhanA.M. A review of the mechanism of antagonism of N-methyl-D-aspartate receptor by ketamine in treatment-resistant depression.Cureus2018105e265210.7759/cureus.2652 30034974
    [Google Scholar]
  173. AdellA. Brain NMDA receptors in schizophrenia and depression.Biomolecules202010694710.3390/biom10060947 32585886
    [Google Scholar]
  174. BiesdorfC. StratfordR.E. Integrating imaging and microdialysis into systems neuropharmacology.In: Frontiers in Clinical Drug Research-CNS and Neurological Disorders.Bentham Books202110.2174/9781681089041121090003
    [Google Scholar]
  175. SuzukiA. HaraH. KimuraH. Role of the AMPA receptor in antidepressant effects of ketamine and potential of AMPA receptor potentiators as a novel antidepressant.Neuropharmacology202322210930810.1016/j.neuropharm.2022.109308 36341809
    [Google Scholar]
  176. BelujonP. GraceA.A. Dopamine system dysregulation in major depressive disorders.Int. J. Neuropsychopharmacol.201720121036104610.1093/ijnp/pyx056 29106542
    [Google Scholar]
  177. BogdanovaD. Gait disorders in unipolar and bipolar depression.Heliyon202395e1586410.1016/j.heliyon.2023.e15864 37305515
    [Google Scholar]
  178. WhittonA.E. ReinenJ.M. SlifsteinM. Baseline reward processing and ventrostriatal dopamine function are associated with pramipexole response in depression.Brain2020143270171010.1093/brain/awaa002 32040562
    [Google Scholar]
  179. NikiforukA. Targeting the serotonin 5-HT 7 receptor in the search for treatments for CNS disorders: Rationale and progress to date.CNS Drugs201529426527510.1007/s40263‑015‑0236‑0 25721336
    [Google Scholar]
  180. NautiyalK.M. HenR. Serotonin receptors in depression: From A to B.F1000 Res.2017612310.12688/f1000research.9736.1 28232871
    [Google Scholar]
  181. BalcerO.M. SeagerM.A. GleasonS.D. Evaluation of 5-HT7 receptor antagonism for the treatment of anxiety, depression, and schizophrenia through the use of receptor-deficient mice.Behav. Brain Res.201936027027810.1016/j.bbr.2018.12.019 30543903
    [Google Scholar]
  182. KulkarniS.K. DhirA. σ-1 receptors in major depression and anxiety.Expert Rev. Neurother.2009971021103410.1586/ern.09.40 19589051
    [Google Scholar]
  183. FukunagaK. MoriguchiS. Stimulation of the sigma-1 receptor and the effects on neurogenesis and depressive behaviors in mice. Sigma Receptors: Their role in disease and as therapeutic targets.Adv. Exp. Med. Biol.201796420121110.1007/978‑3‑319‑50174‑1_14 28315273
    [Google Scholar]
  184. HayashiT. SuT.P. σ-1 receptor ligands: Potential in the treatment of neuropsychiatric disorders.CNS Drugs200418526928410.2165/00023210‑200418050‑00001 15089113
    [Google Scholar]
  185. LiW. SunH. ChenH. Major depressive disorder and kappa opioid receptor antagonists.Transl. Perioper. Pain Med.201612416 27213169
    [Google Scholar]
  186. BaileyS.J. HusbandsS.M. Targeting opioid receptor signaling in depression: Do we need selective κ opioid receptor antagonists?Neuronal Signal.201822NS2017014510.1042/NS20170145 32714584
    [Google Scholar]
  187. MillerJ.M. ZanderigoF. PurushothamanP.D. Kappa opioid receptor binding in major depression: A pilot study.Synapse2018729e2204210.1002/syn.22042 29935119
    [Google Scholar]
  188. KhanM.I.H. SawyerB.J. AkinsN.S. LeH.V. A systematic review on the kappa opioid receptor and its ligands: New directions for the treatment of pain, anxiety, depression, and drug abuse.Eur. J. Med. Chem.202224311478510.1016/j.ejmech.2022.114785 36179400
    [Google Scholar]
  189. CeladaP. PuigM. Amargós-BoschM. AdellA. ArtigasF. The therapeutic role of 5-HT1A and 5-HT2A receptors in depression.J. Psychiatry Neurosci.2004294252265 15309042
    [Google Scholar]
  190. DograS. ConnP.J. Targeting metabotropic glutamate receptors for the treatment of depression and other stress-related disorders.Neuropharmacology202119610868710.1016/j.neuropharm.2021.108687 34175327
    [Google Scholar]
  191. EsterlisI. HolmesS.E. SharmaP. KrystalJ.H. DeLorenzoC. Metabotropic glutamatergic receptor 5 and stress disorders: Knowledge gained from receptor imaging studies.Biol. Psychiatry20188429510510.1016/j.biopsych.2017.08.025 29100629
    [Google Scholar]
  192. WitkinJ.M. MarekG.J. JohnsonB.G. SchoeppD.D. Metabotropic glutamate receptors in the control of mood disorders.CNS Neurol. Disord. Drug Targets2007628710010.2174/187152707780363302
    [Google Scholar]
  193. BleakmanD. AltA. WitkinJ. AMPA receptors in the therapeutic management of depression.CNS Neurol. Disord. Drug Targets20076211712610.2174/187152707780363258
    [Google Scholar]
  194. AltA. NisenbaumE.S. BleakmanD. WitkinJ.M. A role for AMPA receptors in mood disorders.Biochem. Pharmacol.20067191273128810.1016/j.bcp.2005.12.022 16442080
    [Google Scholar]
  195. RoweS.K. RapaportM.H. Classification and treatment of sub-threshold depression.Curr. Opin. Psychiatry200619191310.1097/01.yco.0000194148.26766.ba 16612172
    [Google Scholar]
  196. CuijpersP. QueroS. DowrickC. ArrollB. Psychological treatment of depression in primary care: Recent developments.Curr. Psychiatry Rep.2019211212910.1007/s11920‑019‑1117‑x 31760505
    [Google Scholar]
  197. RichelsonE. Pharmacology of antidepressants.In: Mayo Clinic Proceedings.Elsevier2001511527
    [Google Scholar]
  198. FasipeO. Neuropharmacological classification of antidepressant agents based on their mechanisms of action.Arch Med Health Sci201861819410.4103/amhs.amhs_7_18
    [Google Scholar]
  199. MalikS. SinghR. AroraG. DangolA. GoyalS. Biomarkers of major depressive disorder: Knowing is half the battle.Clin. Psychopharmacol. Neurosci.2021191122510.9758/cpn.2021.19.1.12 33508785
    [Google Scholar]
  200. RanaT. BehlT. SehgalA. Integrating endocannabinoid signalling in depression.J. Mol. Neurosci.202171102022203410.1007/s12031‑020‑01774‑7 33471311
    [Google Scholar]
  201. CuijpersP. KaryotakiE. de WitL. EbertD.D. The effects of fifteen evidence-supported therapies for adult depression: A meta-analytic review.Psychother. Res.202030327929310.1080/10503307.2019.1649732 31394976
    [Google Scholar]
  202. ComptonS.N. MarchJ.S. BrentD. AlbanoA.M.V. WeersingR. CurryJ. Cognitive-behavioral psychotherapy for anxiety and depressive disorders in children and adolescents: An evidence-based medicine review.J. Am. Acad. Child Adolesc. Psychiatry200443893095910.1097/01.chi.0000127589.57468.bf 15266189
    [Google Scholar]
  203. HirayamaT. OgawaY. YanaiY. SuzukiS. ShimizuK. Behavioral activation therapy for depression and anxiety in cancer patients: a case series study.Biopsychosoc. Med.2019131910.1186/s13030‑019‑0151‑6 31168316
    [Google Scholar]
  204. MarkowitzJ.C. LipsitzJ. MilrodB.L. Critical review of outcome research on interpersonal psychotherapy for anxiety disorders.Depress. Anxiety201431431632510.1002/da.22238 24493661
    [Google Scholar]
  205. ZhangA. ParkS. SullivanJ.E. JingS. The effectiveness of problem-solving therapy for primary care patients’ depressive and/or anxiety disorders: A systematic review and meta-analysis.J. Am. Board Fam. Med.201831113915010.3122/jabfm.2018.01.170270 29330248
    [Google Scholar]
  206. KorteJ. BohlmeijerE.T. CappeliezP. SmitF. WesterhofG.J. Life review therapy for older adults with moderate depressive symptomatology: A pragmatic randomized controlled trial.Psychol. Med.20124261163117310.1017/S0033291711002042 21995889
    [Google Scholar]
  207. ChurchillR. MooreT.H.M. FurukawaT.A. ‘Third wave’ cognitive and behavioural therapies versus treatment as usual for depression.Cochrane Libr.201310CD00870510.1002/14651858.CD008705.pub2 24142810
    [Google Scholar]
/content/journals/cpsp/10.2174/0122115560281804240102054639
Loading
/content/journals/cpsp/10.2174/0122115560281804240102054639
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test