Skip to content
2000
Volume 12, Issue 1
  • ISSN: 2211-5560
  • E-ISSN: 2211-5579

Abstract

This narrative review delves into the potential therapeutic implications of semaglutide, a Glucagon-Like Peptide-1 (GLP-1) receptor agonist, in the context of Substance Use Disorders (SUDs). By systematically exploring databases from 2011 to 2023, and incorporating foundational works from 2004, a total of 59 articles were identified as pertinent to the topic. Utilizing the SANRA scale for assessment, the quality and relevance of these studies were rigorously evaluated. Preliminary findings indicate that semaglutide may play a pivotal role in modulating behaviors associated with SUDs, potentially providing fresh perspectives on the neurobiological mechanisms underlying these disorders. While the precise pathways of action for semaglutide remain to be fully deciphered, its recurrent mention in the literature underscores its emerging importance in the field of SUD research. As the understanding of semaglutide's influence expands, it holds promise as a focal point in future studies, warranting further in-depth exploration to ascertain its full therapeutic potential.

Loading

Article metrics loading...

/content/journals/cpsp/10.2174/0122115560282952231218061257
2023-12-30
2025-03-14
Loading full text...

Full text loading...

References

  1. VadherK. PatelH. ModyR. Efficacy of tirzepatide 5, 10 and 15 mg versus semaglutide 2 mg in patients with type 2 diabetes: An adjusted indirect treatment comparison.Diabetes Obes. Metab.20222491861186810.1111/dom.14775 35589616
    [Google Scholar]
  2. JacobsG.K. CapponiL.C.Z. KindelM.E. The use of semaglutide for weight loss: A literature review.II Seven International Congress Of Health10.56238/homeIIsevenhealth‑004
    [Google Scholar]
  3. CoulterA.A. RebelloC.J. GreenwayF.L. Centrally acting agents for obesity: Past, present, and future.Drugs201878111113113210.1007/s40265‑018‑0946‑y 30014268
    [Google Scholar]
  4. FardoneE. MontoyaI.D. SchackmanB.R. McCollisterK.E. Economic benefits of substance use disorder treatment: A systematic literature review of economic evaluation studies from 2003 to 2021.JSAT202315220908410.1016/j.josat.2023.209084 37302488
    [Google Scholar]
  5. HagemeierN.E. Introduction to the opioid epidemic: The economic burden on the healthcare system and impact on quality of life.Am. J. Manag. Care20182410S200S206 29851449
    [Google Scholar]
  6. MilsteinJ.L. FerrisH.A. The brain as an insulin-sensitive metabolic organ.Mol. Metab.20215210123410.1016/j.molmet.2021.101234 33845179
    [Google Scholar]
  7. LennerzB. LennerzJ.K. Food addiction, high-glycemic-index carbohydrates, and obesity.Clin. Chem.2018641647110.1373/clinchem.2017.273532 29158252
    [Google Scholar]
  8. KullmannS. KleinriddersA. SmallD.M. Central nervous pathways of insulin action in the control of metabolism and food intake.Lancet Diabetes Endocrinol.20208652453410.1016/S2213‑8587(20)30113‑3 32445739
    [Google Scholar]
  9. MartyV.N. FarokhniaM. MunierJ.J. MulpuriY. LeggioL. SpigelmanI. Long-acting glucagon-like peptide-1 receptor agonists suppress voluntary alcohol intake in male wistar rats.Front. Neurosci.20201459964610.3389/fnins.2020.599646 33424537
    [Google Scholar]
  10. DeR. PrasadF. StogiosN. Promising translatable pharmacological interventions for body weight management in individuals with severe mental illness – a narrative review.Expert Opin. Pharmacother.2023241618231832Epub ahead of print10.1080/14656566.2023.2254698 37653675
    [Google Scholar]
  11. LeslieM. Hot weight loss drugs tested against addiction.Science2023381666193093110.1126/science.adk5720 37651529
    [Google Scholar]
  12. BaethgeC. Goldbeck-WoodS. MertensS. SANRA—a scale for the quality assessment of narrative review articles.Res. Integr. Peer Rev.201941510.1186/s41073‑019‑0064‑8 30962953
    [Google Scholar]
  13. FritzlanL. RumneyA. Addiction therapy and treatment.Jefferson, NCMcFarland2022
    [Google Scholar]
  14. SevarinoK. Treatment of substance use disorders.London, EnglandRoutledge201310.4324/9780203890363
    [Google Scholar]
  15. BrockE. Assessment and treatment of substance use disorders.USAAmerican Medical2022
    [Google Scholar]
  16. JosephJ.E. KellyT.H. LileJ.A. The neurobiological basis of personality risk for addiction. In: Biological Research on Addiction.Elsevier201340141210.1016/B978‑0‑12‑398335‑0.00040‑6
    [Google Scholar]
  17. Fernández-EspejoE. [Neurobiological basis of drug addiction].Rev. Neurol.2002347659664 12080517
    [Google Scholar]
  18. CadoniC. De FeliceM. CorongiuS. Role of genetic background in the effects of adolescent nicotine exposure on mesolimbic dopamine transmission.Addict. Biol.2020255e1280310.1111/adb.12803 31342609
    [Google Scholar]
  19. DaurioA.M. DeschaineS.L. ModabberniaA. LeggioL. Parsing out the role of dopamine D4 receptor gene (DRD4) on alcohol‐related phenotypes: A meta‐analysis and systematic review.Addict. Biol.2020253e1277010.1111/adb.12770 31149768
    [Google Scholar]
  20. ChiamuleraC. WestR.J. What role does dopamine really play in tobacco addiction?Addiction201811381379138010.1111/add.14235 29766605
    [Google Scholar]
  21. RichterA. ReinhardF. KraemerB. GruberO. A high-resolution fMRI approach to characterize functionally distinct neural pathways within dopaminergic midbrain and nucleus accumbens during reward and salience processing.Eur. Neuropsychopharmacol.20203613715010.1016/j.euroneuro.2020.05.005 32546416
    [Google Scholar]
  22. LuoS.X. HuangE.J. Dopaminergic neurons and brain reward pathways: From neurogenesis to circuit assembly.Am. J. Pathol.2016186347848810.1016/j.ajpath.2015.09.023 26724386
    [Google Scholar]
  23. RiosA. NonomuraS. KatoS. Reward expectation enhances action-related activity of nigral dopaminergic and two striatal output pathways.Commun. Biol.20236191410.1038/s42003‑023‑05288‑x 37673949
    [Google Scholar]
  24. WikmanP. RinneT. PetkovC.I. Reward cues readily direct monkeys’ auditory performance resulting in broad auditory cortex modulation and interaction with sites along cholinergic and dopaminergic pathways.Sci. Rep.201991305510.1038/s41598‑019‑38833‑y 30816142
    [Google Scholar]
  25. SolinasM. BelujonP. FernagutP.O. JaberM. ThirietN. Dopamine and addiction: What have we learned from 40 years of research.J. Neural Transm.2019126448151610.1007/s00702‑018‑1957‑2 30569209
    [Google Scholar]
  26. ClayS. AllenJ. ParranT. A review of addiction.Postgrad. Med.20081202E01E0710.3810/pgm.2008.07.1802 18654058
    [Google Scholar]
  27. TomkinsD.M. SellersE.M. Addiction and the brain: The role of neurotransmitters in the cause and treatment of drug dependence.CMAJ20011646817821 11276551
    [Google Scholar]
  28. Colon-PerezL. MontesinosJ. MonsivaisM. The future of neuroimaging and gut-brain axis research for substance use disorders.Brain Res.2022178114783510.1016/j.brainres.2022.147835 35172178
    [Google Scholar]
  29. TanabeJ. RegnerM. SakaiJ. MartinezD. GowinJ. Neuroimaging reward, craving, learning, and cognitive control in substance use disorders: Review and implications for treatment.Br. J. Radiol.20199211012018094210.1259/bjr.20180942 30855982
    [Google Scholar]
  30. AdisetiyoV. GrayK.M. Neuroimaging the neural correlates of increased risk for substance use disorders in attention-deficit/hyperactivity disorder-A systematic review.Am. J. Addict.20172629911110.1111/ajad.12500 28106934
    [Google Scholar]
  31. KurtzhalsP. Flindt KreinerF. Singh BindraR. The role of weight control in the management of type 2 diabetes mellitus: Perspectives on semaglutide.Diabetes Res. Clin. Pract.202320311088110.1016/j.diabres.2023.110881 37591343
    [Google Scholar]
  32. KanoskiS.E. HayesM.R. SkibickaK.P. GLP-1 and weight loss: Unraveling the diverse neural circuitry.Am. J. Physiol. Regul. Integr. Comp. Physiol.201631010R885R89510.1152/ajpregu.00520.2015 27030669
    [Google Scholar]
  33. GaberyS. SalinasC.G. PaulsenS.J. Semaglutide lowers body weight in rodents via distributed neural pathways.JCI Insight202056e13342910.1172/jci.insight.133429 32213703
    [Google Scholar]
  34. WilliamsD.L. Neural integration of satiation and food reward: Role of GLP-1 and orexin pathways.Physiol. Behav.201413619419910.1016/j.physbeh.2014.03.013 24650552
    [Google Scholar]
  35. NakanishiS. HikidaT. YawataS. Distinct dopaminergic control of the direct and indirect pathways in reward-based and avoidance learning behaviors.Neuroscience2014282495910.1016/j.neuroscience.2014.04.026 24769227
    [Google Scholar]
  36. KawaharaY. KanekoF. YamadaM. KishikawaY. KawaharaH. NishiA. Food reward-sensitive interaction of ghrelin and opioid receptor pathways in mesolimbic dopamine system.Neuropharmacology20136739540210.1016/j.neuropharm.2012.11.022 23220294
    [Google Scholar]
  37. BarrM. FitzgeraldP. FarzanF. GeorgeT. DaskalakisZ. Transcranial magnetic stimulation to understand the pathophysiology and treatment of substance use disorders.Curr. Drug Abuse Rev.20081332833910.2174/1874473710801030328 19630729
    [Google Scholar]
  38. KlausenM.K. ThomsenM. WortweinG. Fink-JensenA. The role of glucagon‐like peptide 1 (GLP‐1) in addictive disorders.Br. J. Pharmacol.2022179462564110.1111/bph.15677 34532853
    [Google Scholar]
  39. RichardJ.E. AnderbergR.H. GötesonA. GribbleF.M. ReimannF. SkibickaK.P. Activation of the GLP-1 receptors in the nucleus of the solitary tract reduces food reward behavior and targets the mesolimbic system.PLoS One2015103e011903410.1371/journal.pone.0119034 25793511
    [Google Scholar]
  40. ChuongV. FarokhniaM. KhomS. The glucagon-like peptide-1 (GLP-1) analogue semaglutide reduces alcohol drinking and modulates central GABA neurotransmission.JCI Insight2023812e17067110.1172/jci.insight.170671 37192005
    [Google Scholar]
  41. SørensenG. ReddyI.A. WeikopP. The glucagon-like peptide 1 (GLP-1) receptor agonist exendin-4 reduces cocaine self-administration in mice.Physiol. Behav.201514926226810.1016/j.physbeh.2015.06.013 26072178
    [Google Scholar]
  42. VallöfD. VestlundJ. JerlhagE. Glucagon-like peptide-1 receptors within the nucleus of the solitary tract regulate alcohol-mediated behaviors in rodents.Neuropharmacology201914912413210.1016/j.neuropharm.2019.02.020 30772374
    [Google Scholar]
  43. DixonT.N. McNallyG.P. OngZ.Y. Glucagon-like peptide-1 receptor signaling in the ventral tegmental area reduces alcohol self-administration in male rats.Alcohol. Clin. Exp. Res.202044102118212910.1111/acer.14437 33043520
    [Google Scholar]
  44. ColvinK.J. KillenH.S. KanterM.J. HalperinM.C. EngelL. CurrieP.J. Brain site-specific inhibitory effects of the GLP-1 analogue exendin-4 on alcohol intake and operant responding for palatable food.Int. J. Mol. Sci.20202124971010.3390/ijms21249710 33352692
    [Google Scholar]
  45. TuestaL.M. ChenZ. DuncanA. GLP-1 acts on habenular avoidance circuits to control nicotine intake.Nat. Neurosci.201720570871610.1038/nn.4540 28368384
    [Google Scholar]
  46. BessesenD.H. Van GaalL.F. Progress and challenges in anti-obesity pharmacotherapy.Lancet Diabetes Endocrinol.20186323724810.1016/S2213‑8587(17)30236‑X 28919062
    [Google Scholar]
  47. KoshalP JamwalS KumarP. Glucagon-like peptide-1 (GLP-1) and neurotransmitters signaling in epilepsy: An insight review.Neuropharmacology2018136Pt B27127910.1016/j.neuropharm.2017.11.01529129776
    [Google Scholar]
  48. JerlhagE. The therapeutic potential of glucagon-like peptide-1 for persons with addictions based on findings from preclinical and clinical studies.Front. Pharmacol.202314106303310.3389/fphar.2023.1063033 37063267
    [Google Scholar]
  49. Eren-YaziciogluC.Y. YigitA. DogruozR.E. Yapici-EserH. Can GLP-1 be a target for reward system related disorders? A qualitative synthesis and systematic review analysis of studies on palatable food, drugs of abuse, and alcohol.Front. Behav. Neurosci.20211461488410.3389/fnbeh.2020.614884 33536884
    [Google Scholar]
  50. SørensenG. CaineS.B. ThomsenM. Effects of the GLP-1 agonist Exendin-4 on intravenous ethanol self-administration in mice.Alcohol. Clin. Exp. Res.201640102247225210.1111/acer.13199 27579999
    [Google Scholar]
  51. DenckerD EgeciogluE JerlhagE. SY15-2 subchronic low dose exendin-4 pretreatment inhibits relapse to alcohol drinking in high alcohol prefering C57BL6 mice.Alcohol Alcohol201550117.4-8
    [Google Scholar]
  52. VallöfD MaccioniP ColomboG. P-48the glucagon-like peptide 1 analogue liraglutide attenuates alcohol-induced reward, decreases alcohol intake and prevents relapse-like drinking to alcohol in outbred rodents as well as reduces operant alcohol selfadministration in Sardinian alcohol-preferring rats.Alcohol Alcohol201550i57.3
    [Google Scholar]
  53. VallöfD. MaccioniP. ColomboG. The glucagon‐like peptide 1 receptor agonist liraglutide attenuates the reinforcing properties of alcohol in rodents.Addict. Biol.201621242243710.1111/adb.12295 26303264
    [Google Scholar]
  54. BlundellJ. FinlaysonG. AxelsenM. Effects of once‐weekly semaglutide on appetite, energy intake, control of eating, food preference and body weight in subjects with obesity.Diabetes Obes. Metab.20171991242125110.1111/dom.12932 28266779
    [Google Scholar]
  55. GibbonsC. BlundellJ. Tetens HoffS. DahlK. BauerR. BækdalT. Effects of oral semaglutide on energy intake, food preference, appetite, control of eating and body weight in subjects with type 2 diabetes.Diabetes Obes. Metab.202123258158810.1111/dom.14255 33184979
    [Google Scholar]
  56. AasethJ. EllefsenS. AlehagenU. SundførT.M. AlexanderJ. Diets and drugs for weight loss and health in obesity – An update.Biomed. Pharmacother.202114011178910.1016/j.biopha.2021.111789 34082399
    [Google Scholar]
  57. CTG labs - NCBI. Available from: https://www.clinical trials.gov/search?cond=Substance (Accessed on: September 9, 2023).
  58. SmitsM.M. Van RaalteD.H. Safety of semaglutide.Front. Endocrinol.20211264556310.3389/fendo.2021.645563 34305810
    [Google Scholar]
  59. ChristouG.A. KatsikiN. BlundellJ. FruhbeckG. KiortsisD.N. Semaglutide as a promising antiobesity drug.Obes. Rev.201920680581510.1111/obr.12839 30768766
    [Google Scholar]
  60. FallowsE. EllsL. AnandV. Semaglutide and the future of obesity care in the UK.Lancet2023401103942093209610.1016/S0140‑6736(23)01083‑8 37290459
    [Google Scholar]
  61. WildingJ.P.H. BatterhamR.L. CalannaS. Once-weekly semaglutide in adults with overweight or obesity.N. Engl. J. Med.202138411989100210.1056/NEJMoa2032183 33567185
    [Google Scholar]
  62. TeetersJ. LancasterC. BrownD. BackS. Substance use disorders in military veterans: Prevalence and treatment challenges.Subst. Abuse Rehabil.20178697710.2147/SAR.S116720 28919834
    [Google Scholar]
  63. AlessiS.M. RashC.J. PescatelloL.S. Reinforcing exercise to improve drug abuse treatment outcomes: A randomized controlled study in a substance use disorder outpatient treatment setting.Psychol. Addict. Behav.2020341526410.1037/adb0000517 31599603
    [Google Scholar]
  64. AlyS.M. OmranA. GaulierJ.M. AllorgeD. Substance abuse among children.Arch. Pediatr.202027848048410.1016/j.arcped.2020.09.006 33011026
    [Google Scholar]
  65. Ivan Ezquerra-RomanoI. LawnW. KrupitskyE. MorganC.J.A. Ketamine for the treatment of addiction: Evidence and potential mechanisms.Neuropharmacology2018142728210.1016/j.neuropharm.2018.01.017 29339294
    [Google Scholar]
  66. VolkowN.D. MichaelidesM. BalerR. The neuroscience of drug reward and addiction.Physiol. Rev.20199942115214010.1152/physrev.00014.2018 31507244
    [Google Scholar]
  67. FadusM.C. SquegliaL.M. ValadezE.A. TomkoR.L. BryantB.E. GrayK.M. Adolescent substance use disorder treatment: An update on evidence-based strategies.Curr. Psychiatry Rep.201921109610.1007/s11920‑019‑1086‑0 31522280
    [Google Scholar]
  68. HasinD.S. O’BrienC.P. AuriacombeM. DSM-5 criteria for substance use disorders: Recommendations and rationale.Am. J. Psychiatry2013170883485110.1176/appi.ajp.2013.12060782 23903334
    [Google Scholar]
  69. RaoW.W. ZongQ.Q. ZhangJ.W. Obesity increases the risk of depression in children and adolescents: Results from a systematic review and meta-analysis.J. Affect. Disord.2020267788510.1016/j.jad.2020.01.154 32063576
    [Google Scholar]
  70. MilaneschiY. SimmonsW.K. van RossumE.F.C. PenninxB.W.J.H. Depression and obesity: Evidence of shared biological mechanisms.Mol. Psychiatry2019241183310.1038/s41380‑018‑0017‑5 29453413
    [Google Scholar]
  71. LuppinoF.S. de WitL.M. BouvyP.F. Overweight, obesity, and depression: A systematic review and meta-analysis of longitudinal studies.Arch. Gen. Psychiatry201067322022910.1001/archgenpsychiatry.2010.2 20194822
    [Google Scholar]
/content/journals/cpsp/10.2174/0122115560282952231218061257
Loading
/content/journals/cpsp/10.2174/0122115560282952231218061257
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test