Skip to content
2000
Volume 12, Issue 1
  • ISSN: 2211-5560
  • E-ISSN: 2211-5579

Abstract

A review is presented as to the neurochemical basis of the straight runway task, usually consisting of an acquisition phase followed by an extinction phase. During the acquisition of the appetitive runway task, running speeds from the start box to the goal box progressively increase over trials and then decrease when the reward is withheld. Runway extinction is susceptible to lesions of the limbic system, including the medial frontal cortex, the hippocampus, the septum, the amygdala, and the dorsomedial thalamus. When specific neurotransmitter systems are examined, extinction was delayed when noradrenaline transmission was impeded, perhaps involving noradrenergic projections to the hippocampus and neocortex. Extinction was likewise delayed after either facilitation or blocking of dopamine transmission, a result implicating an inverted U-shaped function caused by dopamine’s role in behavioral activation or reward processes. Extinction was also delayed by indirect GABA receptor agonists injected during acquisition, explained by drug-induced disinhibitory tendencies. This simple paradigm may provide information about the effects of a physiological manipulation on both cognition and emotion.

Loading

Article metrics loading...

/content/journals/cpsp/10.2174/0122115560268626231214070304
2023-12-30
2025-03-15
Loading full text...

Full text loading...

References

  1. KoobG. KelleyA. MasonS. Locus coeruleus lesions: Learning and extinction.Physiol. Behav.197820670971610.1016/0031‑9384(78)90296‑2 684108
    [Google Scholar]
  2. MasonS.T. IversenS.D. Learning in the absence of forebrain noradrenaline.Nature1975258553442242410.1038/258422a0 1196374
    [Google Scholar]
  3. MasonS.T. IversenS.D. Effects of selective forebrain noradrenaline loss on behavioral inhibition in the rat.J. Comp. Physiol. Psychol.197791116517310.1037/h0077311 300082
    [Google Scholar]
  4. SpyrakiC. ArbuthnottG.W. FibigerH.C. The effect of DSP-4 on some positively reinforced operant behaviors in the rat.Pharmacol. Biochem. Behav.198216219720210.1016/0091‑3057(82)90147‑2 7071072
    [Google Scholar]
  5. KawasakiK. IwasakiT. Corticosterone levels during extinction of runway response in rats.Life Sci.199761171721172810.1016/S0024‑3205(97)00778‑9 9363988
    [Google Scholar]
  6. BurnsR.A. HulbertL.G. CribbD. A test for order relevance in a three-element serial learning task.J. Gen. Psychol.19901171919810.1080/00221309.1990.9917776 2313282
    [Google Scholar]
  7. GrangerL. DucharmeR. BélangerD. Effects of water deprivation upon heart rate and running speed of the white rat in a straight alley.Psychophysiology19695663864310.1111/j.1469‑8986.1969.tb02866.x 5812326
    [Google Scholar]
  8. GómezM.J. de la TorreL. Callejas-AguileraJ.E. The partial reinforcement extinction effect (PREE) in female Roman high- (RHA-I) and low-avoidance (RLA-I) rats.Behav. Brain Res.2008194218719210.1016/j.bbr.2008.07.009 18692092
    [Google Scholar]
  9. ShimboA. KosakiY. ItoI. WatanabeS. Mice lacking hippocampal left-right asymmetry show non-spatial learning deficits.Behav. Brain Res.201833615616510.1016/j.bbr.2017.08.043 28864206
    [Google Scholar]
  10. MuzioR.N. SeguraE.T. PapiniM.R. Effects of lesions in the medial pallium on instrumental learning in the toad (Bufo arenarum).Physiol. Behav.199354118518810.1016/0031‑9384(93)90064‑M 8327601
    [Google Scholar]
  11. GrayJ.A. DudderidgeH. Sodium amylobarbitone, the partial reinforcement extinction effect, and the frustration effect in the double runway.Neuropharmacology197110221722210.1016/0028‑3908(71)90042‑6 5093961
    [Google Scholar]
  12. HenkeP.G. Effects of reinforcement omission on rats with lesions in the amygdala.J. Comp. Physiol. Psychol.197384118719310.1037/h0035015 4577766
    [Google Scholar]
  13. HenkeP.G. Dissociation of the frustration effect and the partial reinforcement extinction effect after limbic lesions in rats.J. Comp. Physiol. Psychol.19779151032103810.1037/h0077396
    [Google Scholar]
  14. HenkeP.G. MaxwellD. Lesions in the amygdala and the frustration effect.Physiol. Behav.197310464765010.1016/0031‑9384(73)90137‑6 4575404
    [Google Scholar]
  15. AmselA. MacKinnonJ.R. RashotteM.E. SurridgeC.T. Partial reinforcement (acquisition) effects within subjects.J. Exp. Anal. Behav.19647213513810.1901/jeab.1964.7‑135 14130088
    [Google Scholar]
  16. DunnettS.B. IversenS.D. Learning impairments following selective kainic acid-induced lesions within the neostriatum of rats.Behav. Brain Res.19812218920910.1016/0166‑4328(81)90055‑3 7248057
    [Google Scholar]
  17. GabrieleA. PackardM. Evidence of a role for multiple memory systems in behavioral extinction.Neurobiol. Learn. Mem.200685328929910.1016/j.nlm.2005.12.004 16427329
    [Google Scholar]
  18. BrunnerR.L. HaggbloomS.J. GazzaraR.A. Effects of hippocampal x-irradiation-produced granule-cell agenesis on instrumental runway performance in rats.Physiol. Behav.197413448549410.1016/0031‑9384(74)90278‑9 4475430
    [Google Scholar]
  19. BurnsR.A. LorigT.S. McCraryM.D. Reduction of sucrose reward to smaller and nonreward levels without contrast effects.J. Gen. Psychol.198611319710210.1080/00221309.1986.9710546 28150536
    [Google Scholar]
  20. CalefR.S. ChobanM.C. GlenneyK.R. Perseveration of the partial reinforcement effect in extinction with rats over two phases of extinction and two stages of continuous reinforcement.Psychol. Rep.2007100110110710.2466/pr0.100.1.101‑107 17451011
    [Google Scholar]
  21. CoffeyP.J. FeldonJ. MitchellS. SindenJ. GrayJ.A. RawlinsJ.N.P. Ibotenate-induced total septal lesions reduce resistance to extinction but spare the partial reinforcement extinction effect in the rat.Exp. Brain Res.198977114015210.1007/BF00250576 2792258
    [Google Scholar]
  22. DavisS. NationJ. MaylebenM. The effects of chronic lead exposure on reactivity to frustrative nonreward in rats.Toxicol. Lett.199366323724610.1016/0378‑4274(93)90004‑H 8475504
    [Google Scholar]
  23. EttenbergA. CampC.H. Haloperidol induces a partial reinforcement extinction effect in rats: Implications for a dopamine involvement in food reward.Pharmacol. Biochem. Behav.198625481382110.1016/0091‑3057(86)90392‑8 3786340
    [Google Scholar]
  24. EttenbergA. CampC.H. A partial reinforcement extinction effect in water-reinforced rats intermittently treated with haloperidol.Pharmacol. Biochem. Behav.19862561231123510.1016/0091‑3057(86)90117‑6 3809225
    [Google Scholar]
  25. FeldonJ. GrayJ.A. Effects of medial and lateral septal lesions on the partial reinforcement extinction effect at one trial a day.Q. J. Exp. Psychol.197931465367410.1080/14640747908400756 534287
    [Google Scholar]
  26. FeldonJ. GrayJ.A. Effects of medial and lateral septal lesions on the partial reinforcement extinction effect at short inter-trial intervals.Q. J. Exp. Psychol.197931467569010.1080/14640747908400757 534288
    [Google Scholar]
  27. FeldonJ. GrayJ.A. The partial reinforcement extinction effect: Influence of chlordiazepoxide in septal lesioned rats.Psychopharmacology198174328028910.1007/BF00427111 6791239
    [Google Scholar]
  28. FeldonJ. GrayJ.A. The partial reinforcement extinction effect after treatment with chlordiazepoxide.Psychopharmacology198173326927510.1007/BF00422416 6787648
    [Google Scholar]
  29. FeldonJ. WeinerI. Effects of haloperidol on the multitrial partial reinforcement extinction effect (PREE): Evidence for neuroleptic drug action on nonreinforcement but not on reinforcement.Psychopharmacology1991105340741410.1007/BF02244437 1686816
    [Google Scholar]
  30. FeldonJ. GuillamonA. GrayJ.A. de WitH. McNaughtonN. Sodium amylobarbitone and responses to nonreward.Q. J. Exp. Psychol.1979311195010.1080/14640747908400705 424505
    [Google Scholar]
  31. FeldonJ. RawlinsJ.N.P. GrayJ.A. Fornix-fimbria section and the partial reinforcement extinction effect.Exp. Brain Res.198558343543910.1007/BF00235860 4007086
    [Google Scholar]
  32. FeldonJ. KatzY. WeinerI. The effects of haloperidol on the partial reinforcement extinction effect (PREE): Implications for neuroleptic drug action on reinforcement and nonreinforcement.Psychopharmacology198895452853310.1007/BF00172968 2905502
    [Google Scholar]
  33. FeldonJ. BercovitzH. WeinerI. The effects of amphetamine on a multitrial partial reinforcement extinction effect (PREE) in a runway.Pharmacol. Biochem. Behav.1989321556310.1016/0091‑3057(89)90210‑4 2734351
    [Google Scholar]
  34. GlassD.H. IsonJ.R. ThomasG.J. Anterior limbic cortex and partial reinforcement effects on acquisition and extinction of a runway response in rats.J. Comp. Physiol. Psychol.1969691172410.1037/h0027926 5347362
    [Google Scholar]
  35. GrayJ.A. Sodium amobarbital and effects of frustrative nonreward.J. Comp. Physiol. Psychol.1969691556410.1037/h0027935 5347367
    [Google Scholar]
  36. GrayJ.A. MayesA.R. WilsonM. A barbiturate-like effect of adrenocorticotropic hormone on the partial reinforcement acquisition and extinction effects.Neuropharmacology197110222323010.1016/0028‑3908(71)90043‑8 4328633
    [Google Scholar]
  37. GrayJ.A. QuintãoL. Araujo-SilvaM.T. The partial reinforcement extinction effect in rats with medial septal lesions.Physiol. Behav.19728349149610.1016/0031‑9384(72)90334‑4 5037547
    [Google Scholar]
  38. GrayJ. RickwoodL. DrewettR. DunneE. Gonadal hormones and effects of partial reinforcement on appetitive behaviour in the rat.Physiol. Behav.1977191414510.1016/0031‑9384(77)90156‑1 11803688
    [Google Scholar]
  39. HalevyG. FeldonJ. WeinerI. The effects of clonidine on the partial reinforcement extinction effect (PREE).Psychopharmacology19869019510010.1007/BF00172878 3094069
    [Google Scholar]
  40. HawkinsM. SindenJ. MartinI. GrayJ. Effects of RO 15-1788 on a running response rewarded on continuous or partial reinforcement schedules.Psychopharmacology198894337137810.1007/BF00174692 3128814
    [Google Scholar]
  41. HenkeP.G. Persistence of runway performance after septal lesions in rats.J. Comp. Physiol. Psychol.197486576076710.1037/h0036395 4833582
    [Google Scholar]
  42. IsonJ.R. PennesE.S. Interaction of amobarbital sodium and reinforcement schedule in determining resistance to extinction of an instrumental running response.J. Comp. Physiol. Psychol.1969682, Pt.121521910.1037/h0027511 5792352
    [Google Scholar]
  43. JarrardL.E. FeldonJ. RawlinsJ.N.P. SindenJ.D. GrayJ.A. The effects of intrahippocampal ibotenate on resistance to extinction after continuous or partial reinforcement.Exp. Brain Res.198661351953010.1007/BF00237577 3956613
    [Google Scholar]
  44. MikulkaP.J. PavlikW.B. Deprivation level, competing responses, and the PRE.Psychol. Rep.19661819510210.2466/pr0.1966.18.1.95 5908514
    [Google Scholar]
  45. NairH.P. BerndtJ.D. BarrettD. Gonzalez-LimaF. Maturation of extinction behavior in infant rats: Large-scale regional interactions with medial prefrontal cortex, orbitofrontal cortex, and anterior cingulate cortex.J. Neurosci.200121124400440710.1523/JNEUROSCI.21‑12‑04400.2001 11404426
    [Google Scholar]
  46. NationJ.R. BourgeoisA.E. ClarkD.E. ElissaldeM. Effects of acute trimethyltin exposure on appetitive acquisition and extinction performance in the adult rat.Behav. Neurosci.198498591992410.1037/0735‑7044.98.5.919 6487421
    [Google Scholar]
  47. OwenS. BoarderM.R. GrayJ.A. FillenzM. Acquisition and extinction of continuously and partially reinforced running in rats with lesions of the dorsal noradrenergic bundle.Behav. Brain Res.198251114110.1016/0166‑4328(82)90088‑2 7082464
    [Google Scholar]
  48. RawlinsJ.N.P. FeldonJ. GrayJ.A. The effects of hippocampectomy and of fimbria section upon the partial reinforcement extinction effect in rats.Exp. Brain Res.198038327328310.1007/BF00236646 7371731
    [Google Scholar]
  49. RawlinsJ.N.P. FeldonJ. UrsinH. GrayJ.A. Resistance to extinction after schedules of partial delay or partial reinforcement in rats with hippocampal lesions.Exp. Brain Res.198559227328110.1007/BF00230907 4029302
    [Google Scholar]
  50. SindenJ.D. JarrardL.E. GrayJ.A. The effects of intra-subicular ibotenate on resistance to extinction after continuous or partial reinforcement.Exp. Brain Res.198873231531910.1007/BF00248223 3215307
    [Google Scholar]
  51. TheiosJ. The partial reinforcement effect sustained through blocks of continuous reinforcement.J. Exp. Psychol.19626411610.1037/h0046302 13920533
    [Google Scholar]
  52. WeinerI. BercovitzH. LubowR.E. FeldonJ. The abolition of the partial reinforcement extinction effect (PREE) by amphetamine.Psychopharmacology198586331832310.1007/BF00432221 3929302
    [Google Scholar]
  53. WeinerI. FeldonJ. BercovitzH. The abolition of the partial reinforcement extinction effect (PREE) by amphetamine: Disruption of control by nonreinforcement.Pharmacol. Biochem. Behav.198727220521010.1016/0091‑3057(87)90558‑2 3628434
    [Google Scholar]
  54. WeinerI. TarraschR. HassonO. The effects of chronic administration of ceronapril on the partial reinforcement extinction effect and latent inhibition in rats.Behav. Pharmacol.19945330631410.1097/00008877‑199406000‑00008 11224280
    [Google Scholar]
  55. WillnerP.J. CroweR. Effect of chlordiazepoxide on the partial reinforcement extinction effect.Pharmacol. Biochem. Behav.19777547948210.1016/0091‑3057(77)90218‑0 594093
    [Google Scholar]
  56. WongP.T.P. LeeC.T. NovierF.H. The partial reinforcement effect (PRE) sustained through extinction and continuous reinforcement in two strains of inbred mice.Psychon. Sci.197122314114310.3758/BF03332537
    [Google Scholar]
  57. YeeB.K. FeldonJ. RawlinsJ.N.P. Cytotoxic lesions of the retrohippocampal region attenuate latent inhibition but spare the partial reinforcement extinction effect.Exp. Brain Res.1997115224725610.1007/PL00005694 9224853
    [Google Scholar]
  58. Diaz-GranadosJ.L. GreeneP.L. AmselA. Selective activity enhancement and persistence in weanling rats after hippocampal X-irradiation in infancy: Possible relevance for ADHD.Behav. Neural Biol.199461325125910.1016/S0163‑1047(05)80008‑1 8067980
    [Google Scholar]
  59. BoarderM.R. FeldonJ. GrayJ.A. FillenzM. Effect of runway training on rat brain tyrosine hydroxylase: Differential effect of continuous and partial reinforcement schedules.Neurosci. Lett.1979152-321121510.1016/0304‑3940(79)96115‑9
    [Google Scholar]
  60. BirchD. ValleF.P. Resistance to extinction in the runway following a shift from small to large reward.J. Comp. Physiol. Psychol.1967631505310.1037/h0024173 6029719
    [Google Scholar]
  61. WongP.T.P. A behavioral field approach to instrumental learning in the rat: I. Partial reinforcement effects and sex differences.Anim. Learn. Behav.19775151310.3758/BF03209123
    [Google Scholar]
  62. DrewnowskiA. GrayJ.A. Influence of? 9-tetrahydrocannabinol on partial reinforcement effects.Psychopharmacology197543323323710.1007/BF00429256 1187956
    [Google Scholar]
  63. NelsonPB WollenKA Effects of ethanol and partial reinforcement upon runway acquisition.Psychon Sci196531-12135610.3758/BF03343060
    [Google Scholar]
  64. WolfeJ.W. LubarJ.F. IsonJ.R. Effects of medial cortical lesions on appetitive instrumental conditioning.Physiol. Behav.19672223924410.1016/0031‑9384(67)90040‑6
    [Google Scholar]
  65. LilliquistM.W. NairH.P. Gonzalez-LimaF. AmselA. Extinction after regular and irregular reward schedules in the infant rat: Influence of age and training duration.Dev. Psychobiol.1999341577010.1002/(SICI)1098‑2302(199901)34:1<57::AID‑DEV7>3.0.CO;2‑R 9919433
    [Google Scholar]
  66. NairH.P. Gonzalez-LimaF. Extinction of behavior in infant rats: Development of functional coupling between septal, hippocampal, and ventral tegmental regions.J. Neurosci.199919198646865510.1523/JNEUROSCI.19‑19‑08646.1999 10493765
    [Google Scholar]
  67. NairH.P. BerndtJ.D. BarrettD. Gonzalez-LimaF. Metabolic mapping of brain regions associated with behavioral extinction in preweanling rats.Brain Res.20019031-214115310.1016/S0006‑8993(01)02469‑6 11382397
    [Google Scholar]
  68. LeguizamonP. DillonC. CastroD. LonL. GuelarV. TaraganoF. Pharmacological treatment of cognitive symptoms in Alzheimer’s disease.Curr. Psychopharmacol.201431596610.2174/2211556003666140717184049
    [Google Scholar]
  69. KolbB. Functions of the frontal cortex of the rat: A comparative review.Brain Res. Brain Res. Rev.198481659810.1016/0165‑0173(84)90018‑3 6440660
    [Google Scholar]
  70. JarrardL.E. Effects of hippocampal ablation and intertrial interval on acquisition and extinction of a runway response.J. Comp. Physiol. Psychol.19645744244410.1037/h0041639 14155387
    [Google Scholar]
  71. MiccoD.J.Jr McEwenB.S. SheinW. Modulation of behavioral inhibition in appetitive extinction following manipulation of adrenal steroids in rats: Implications for involvement of the hippocampus.J. Comp. Physiol. Psychol.197993232332910.1037/h0077560 457953
    [Google Scholar]
  72. WinocurG. BindraD. Effects of additional cues on passive avoidance learning and extinction in rats with hippocampal lesions.Physiol. Behav.197617691592010.1016/0031‑9384(76)90008‑1 14677582
    [Google Scholar]
  73. WinocurG. MillsJ.A. Hippocampus and septum in response inhibition.J. Comp. Physiol. Psychol.196967335235710.1037/h0026764 5787385
    [Google Scholar]
  74. DavisR.E. Transections involving the direct subiculum-anterior thalamic fibers: Effects on cue utilization in the straight alley.Behav. Neural Biol.198131219821310.1016/S0163‑1047(81)91222‑X 7259704
    [Google Scholar]
  75. GoodmanJ. GabrieleA. PackardM.G. Differential effects of neural inactivation of the dorsolateral striatum on response and latent extinction.Behav. Neurosci.2017131214314810.1037/bne0000190 28301189
    [Google Scholar]
  76. ThullierF. LalondeR. MahlerP. JoyalC.C. LestienneF. Dorsal striatal lesions in rats. 2: Effects on spatial and non-spatial learning.Arch. Physiol. Biochem.1996104330731210.1076/apab.104.3.307.12895 8793022
    [Google Scholar]
  77. GrayJ.A. Araujo-SilvaM.T. QuintãoL. Resistance to extinction after partial reinforcement training with blocking of the hippocampal theta rhythm by septal stimulation.Physiol. Behav.19728349750210.1016/0031‑9384(72)90335‑6 5037548
    [Google Scholar]
  78. DonaireR. MorónI. BlancoS. Lateral habenula lesions disrupt appetitive extinction, but do not affect voluntary alcohol consumption.Neurosci. Lett.201970318419010.1016/j.neulet.2019.03.044 30928477
    [Google Scholar]
  79. KembleE. BeckmanG. Runway performance of rats following amygdaloid lesions.Physiol. Behav.197051454710.1016/0031‑9384(70)90011‑9 5538402
    [Google Scholar]
  80. MeansL. HarrellT. MayoE. AlexanderG. Effects of dorsomedial thalamic lesions on spontaneous alternation, maze, activity and runway performance in the rat.Physiol. Behav.197412697397910.1016/0031‑9384(74)90144‑9 4832459
    [Google Scholar]
  81. ThompsonR. HarmonD. YuJ. Deficits in response inhibition and attention in rats rendered mentally retarded by early subcortical brain damage.Dev. Psychobiol.198518648349910.1002/dev.420180606 4092837
    [Google Scholar]
  82. MorrisM.D. TremmelF. GebhartG.F. Forebrain noradrenaline depletion blocks the release by chlordiazepoxide of behavioral extinction in the rat.Neurosci. Lett.1979122-334334810.1016/0304‑3940(79)96087‑7 460732
    [Google Scholar]
  83. AnlezarkG.M. CrowT.J. GreenwayA.P. Impaired learning and decreased cortical norepinephrine after bilateral locus coeruleus lesions.Science1973181410068268410.1126/science.181.4100.682 4724483
    [Google Scholar]
  84. WillnerP. MontgomeryT. BirdD. Behavioural changes during withdrawal from desmethylimipramine (DMI).Psychopharmacology1981751606410.1007/BF00433503 6795662
    [Google Scholar]
  85. MarslandA.L. SalmonP. TerryP. StanfordS.C. Effects of propranolol on, and noradrenergic correlates of, the response to nonreward.Pharmacol. Biochem. Behav.1990351414610.1016/0091‑3057(90)90201‑R 2315368
    [Google Scholar]
  86. MasonS.T. IversenS.D. Theories of the dorsal bundle extinction effect.Brain Res. Brain Res. Rev.19791110713710.1016/0165‑0173(79)90018‑3 385111
    [Google Scholar]
  87. TaghzoutiK. le MoalM. SimonH. Enhanced frustrative nonreward effect following 6-hydroxydopamine lesions of the lateral septum in the rat.Behav. Neurosci.19859961066107310.1037/0735‑7044.99.6.1066 3939643
    [Google Scholar]
  88. TaghzoutiK. SimonH. LouilotA. HermanJ.P. Le MoalM. Behavioral study after local injection of 6-hydroxydopamine into the nucleus accumbens in the rat.Brain Res.1985344192010.1016/0006‑8993(85)91184‑9 3930001
    [Google Scholar]
  89. HorvitzJ.C. EttenbergA. Haloperidol blocks the response-reinstating effects of food reward: A methodology for separating neuroleptic effects on reinforcement and motor processes.Pharmacol. Biochem. Behav.198831486186510.1016/0091‑3057(88)90396‑6 3252277
    [Google Scholar]
  90. EttenbergA. HorvitzJ.C. Pimozide prevents the response-reinstating effects of water reinforcement in rats.Pharmacol. Biochem. Behav.199037346546910.1016/0091‑3057(90)90014‑9 2087488
    [Google Scholar]
  91. EttenbergA. Haloperidol prevents the reinstatement of amphetamine-rewarded runway responding in rats.Pharmacol. Biochem. Behav.199036363563810.1016/0091‑3057(90)90268‑M 2377664
    [Google Scholar]
  92. ChausmerA.L. EttenbergA. A role for D2, but not D1, dopamine receptors in the response-reinstating effects of food reinforcement.Pharmacol. Biochem. Behav.199757468168510.1016/S0091‑3057(96)00388‑7 9258994
    [Google Scholar]
  93. ChausmerA. EttenbergA. Intraaccumbens raclopride attenuates amphetamine-induced locomotion, but fails to prevent the response-reinstating properties of food reinforcement.Pharmacol. Biochem. Behav.199962229930510.1016/S0091‑3057(98)00165‑8 9972697
    [Google Scholar]
  94. McDougallS.A. NonnemanA.J. CrawfordC.A. Effects of SCH 23390 and sulpiride on the reinforced responding of the young rat.Behav. Neurosci.1991105574475410.1037/0735‑7044.105.5.744 1840013
    [Google Scholar]
  95. McDougallS.A. CrawfordC.A. NonnemanA.J. Reinforced responding of the 11-day-old rat pup: Synergistic interaction of D1 and D2 dopamine receptors.Pharmacol. Biochem. Behav.199242116316810.1016/0091‑3057(92)90460‑W 1388275
    [Google Scholar]
  96. EganJ. EarleyC.J. LeonardB.E. The effect of amitriptyline and mianserine (Org. GB94) on food motivated behaviour of rats trained in a runway: Possible correlation with biogenic amine concentration in the limbic system.Psychopharmacology197961214314710.1007/BF00426728 108731
    [Google Scholar]
  97. AsinK.E. WirtshafterD. KentE.W. Straight alley acquisition and extinction and open field activity following discrete electrolytic lesions of the mesencephalic raphe nuclei.Behav. Neural Biol.197925224225610.1016/S0163‑1047(79)90597‑1 464976
    [Google Scholar]
  98. RosenA.J. CohenM.E. The effects of cinanserin, a potent serotonin antagonist, on the acquisition of a running response in the rat.Neuropharmacology197312650150810.1016/0028‑3908(73)90001‑4 4725521
    [Google Scholar]
  99. IwaharaS. NagamuraN. IwasakiT. Effect of chlordiazepoxide upon experimental extinction in the straight runway as a function of partial reinforcement in the rat.Jpn. Psychol. Res.19679312813410.4992/psycholres1954.9.128
    [Google Scholar]
  100. ShemerA. TykocinskiO. FeldonJ. Long term effects of chronic chlordiazepoxide (CDP) administration.Psychopharmacology (Berl)198483327728010.1007/BF00464794 6433391
    [Google Scholar]
  101. NorwoodK. McGovernS.F.J. KennedyP.J. ShawD. LeslieJ.C. Effects of chlordiazepoxide on runway behaviours of C57Bl/6 mice under continuous or partial reinforcement.Behav. Pharmacol.201122216717210.1097/FBP.0b013e328343d776 21263313
    [Google Scholar]
  102. BarryH.III WagnerA.R. MillerN.E. Effects of alcohol and amobarbital on performance inhibited by experimental extinction.J. Comp. Physiol. Psychol.196255446446810.1037/h0040717 13865306
    [Google Scholar]
  103. ZiffD.R. CapaldiE.J. Amytal and the small trial partial reinforcement effect: Stimulus properties of early trial nonrewards.J. Exp. Psychol.197187226326910.1037/h0030570
    [Google Scholar]
  104. DudderidgeH.J. GrayJ.A. Joint effects of sodium amylobarbitone and amphetamine sulphate on resistance to extinction of a rewarded running response in the rat.Psychopharmacology197435436537010.1007/BF00429227 4831516
    [Google Scholar]
  105. CohenL.E. CoganD.C. JonesJ.R. CoganC.C. Development and learning in the offspring of rats fed an alcohol diet on a short- or long-term basis.Neurobehav. Toxicol. Teratol.198572129137 4000375
    [Google Scholar]
  106. GrayJ.A. Sodium amobarbital, the hippocampal theta rhythm, and the partial reinforcement extinction effect.Psychol. Rev.197077546548010.1037/h0029804 5506814
    [Google Scholar]
  107. GrayJ.A. FeldonJ. RawlinsJ.N. OwenS. McNaughtonN. The role of the septo-hippocampal system and its noradrenergic afferents in behavioural responses to none-reward.Ciba Found. Symp.19785827530710.1002/9780470720394.ch12
    [Google Scholar]
  108. LalondeR. JoyalC.C. Effects of ketamine and L-glutamic acid diethyl ester on spatial and nonspatial learning tasks in rats.Pharmacol. Biochem. Behav.199344353954510.1016/0091‑3057(93)90164‑O 8451257
    [Google Scholar]
  109. GabrieleA. PackardM.G. D-Cycloserine enhances memory consolidation of hippocampus-dependent latent extinction.Learn. Mem.200714746847110.1101/lm.528007 17600116
    [Google Scholar]
  110. HennessyJ. CohenM. RosenA. Adrenocortical influences upon the extinction of an appetitive runway response.Physiol. Behav.197311676777010.1016/0031‑9384(73)90269‑2 4357861
    [Google Scholar]
  111. GrayJ.A. Effect of ACTH on extinction of rewarded behaiour is blocked by previous administration of ACTH.Nature19712295279525410.1038/229052a0 4321220
    [Google Scholar]
  112. BeattyW.W. O’BriantD.A. Sex differences in extinction of food-rewarded approach responses.Bull. Psychon. Soc.197322979810.3758/BF03327728
    [Google Scholar]
  113. EarleyC.J. LeonardB.E. The effects of castration and hormone replacement on runway behaviour and GABA concentrations in the septum.Ir. J. Med. Sci.1979148122723110.1007/BF02938087 27517425
    [Google Scholar]
  114. EnriquezP. CalésJ. Sánchez-SantedF. GuillamónA. Effects of early postnatal gonadal steroids on extinction of a continuously food-rewarded running response.Physiol. Behav.1991491576110.1016/0031‑9384(91)90230‑L 2017480
    [Google Scholar]
  115. Sánchez-SantedF. CalésJ. EnriquezP. GuillamónA. Early postnatal estrogen organizes sex differences in the extinction of a CRF running response.Brain Res. Bull.1993305-664965310.1016/0361‑9230(93)90096‑T 8457912
    [Google Scholar]
  116. NolandE.A. TaylorD.H. BullR.J. Monomethyl-and trimethyltin compounds induce learning deficiencies in young rats.Neurobehav. Toxicol. Teratol.198245539544 7177305
    [Google Scholar]
  117. BushwayA.A. WhistlerR.L. MyersR.D. Effect of 5-thio-D-glucose on food and water intakes and on the acquisition and performance of maze tasks in the rat.Physiol. Behav.197719224925310.1016/0031‑9384(77)90334‑1 607236
    [Google Scholar]
/content/journals/cpsp/10.2174/0122115560268626231214070304
Loading
/content/journals/cpsp/10.2174/0122115560268626231214070304
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test