Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-3963
  • E-ISSN: 1875-6336

Abstract

There is evidence that few trace elements in the environment work as hazardous materials in terms of their exposure in the perinatal period, causing autistic spectrum disorder (ASD) in children, and avoiding these exposures in the environment can reduce the number of new cases. This perspective study provides preliminary evidence to consider a few trace elements as culprits for ASD. More studies with larger cohorts are needed, but meanwhile, as per available evidence, exposure to these hazardous materials must be warranted during pregnancy and early stages of life.

Loading

Article metrics loading...

/content/journals/cpr/10.2174/0115733963251295231031102941
2025-01-01
2024-11-01
Loading full text...

Full text loading...

References

  1. Del BarrioV. Diagnostic and Statistical Manual of Mental Disorders.American Psychiatric PublishingWashington, DC2004
    [Google Scholar]
  2. ElsabbaghM. DivanG. KohY.J. KimY.S. KauchaliS. MarcínC. Montiel-NavaC. PatelV. PaulaC.S. WangC. YasamyM.T. FombonneE. Global prevalence of autism and other pervasive developmental disorders.Autism Res.20125316017910.1002/aur.23922495912
    [Google Scholar]
  3. WHOAutism.2023Available From: https://www.who.int/news-room/fact-sheets/detail/autism-spectrum-disorders 2021
  4. GaríM. GrzesiakM. KrekoraM. KaczmarekP. JankowskaA. KrólA. KaletaD. JerzyńskaJ. JanasikB. KuraśR. TartaglioneA.M. CalamandreiG. HankeW. PolańskaK. Prenatal exposure to neurotoxic metals and micronutrients and neurodevelopmental outcomes in early school age children from Poland.Environ. Res.2022204Pt B11204910.1016/j.envres.2021.11204934520749
    [Google Scholar]
  5. SharpG.C. SalasL.A. MonnereauC. AllardC. YousefiP. EversonT.M. BohlinJ. XuZ. HuangR.C. ReeseS.E. XuC.J. BaïzN. HoyoC. AghaG. RoyR. HollowayJ.W. GhantousA. MeridS.K. BakulskiK.M. KüpersL.K. ZhangH. RichmondR.C. PageC.M. DuijtsL. LieR.T. MeltonP.E. VonkJ.M. NohrE.A. Williams-DeVaneC. HuenK. Rifas-ShimanS.L. Ruiz-ArenasC. GonsethS. RezwanF.I. HercegZ. EkströmS. CroenL. FalahiF. PerronP. KaragasM.R. QuraishiB.M. SudermanM. MagnusM.C. JaddoeV.W.V. TaylorJ.A. AndersonD. ZhaoS. SmitH.A. JoseyM.J. BradmanA. BaccarelliA.A. BustamanteM. HåbergS.E. PershagenG. Hertz-PicciottoI. NewschafferC. CorpeleijnE. BouchardL. LawlorD.A. MaguireR.L. BarcellosL.F. Davey SmithG. EskenaziB. KarmausW. MarsitC.J. HivertM.F. SniederH. FallinM.D. MelénE. Munthe-KaasM.C. ArshadH. WiemelsJ.L. Annesi-MaesanoI. VrijheidM. OkenE. HollandN. MurphyS.K. SørensenT.I.A. KoppelmanG.H. NewnhamJ.P. WilcoxA.J. NystadW. LondonS.J. FelixJ.F. ReltonC.L. Maternal BMI at the start of pregnancy and offspring epigenome-wide DNA methylation: Findings from the pregnancy and childhood epigenetics (PACE) consortium.Hum. Mol. Genet.201726204067408510.1093/hmg/ddx29029016858
    [Google Scholar]
  6. OrnoyA. ReeceE.A. PavlinkovaG. KappenC. MillerR.K. Effect of maternal diabetes on the embryo, fetus, and children: Congenital anomalies, genetic and epigenetic changes and developmental outcomes.Embryo Today. Rev.20151515372
    [Google Scholar]
  7. WangC. GengH. LiuW. ZhangG. Prenatal, perinatal, and postnatal factors associated with autism.Medicine (Baltimore)20179618e669610.1097/MD.000000000000669628471964
    [Google Scholar]
  8. RaghavanR. RileyA.W. VolkH. CarusoD. HironakaL. SicesL. HongX. WangG. JiY. BrucatoM. WahlA. StiversT. PearsonC. ZuckermanB. StuartE.A. LandaR. FallinM.D. WangX. Maternal Multivitamin Intake, Plasma Folate and Vitamin B 12 Levels and Autism Spectrum Disorder Risk in Offspring.Paediatr. Perinat. Epidemiol.201832110011110.1111/ppe.1241428984369
    [Google Scholar]
  9. LintasC. Linking genetics to epigenetics: The role of folate and folate-related pathways in neurodevelopmental disorders.Clin. Genet.201995224125210.1111/cge.1342130047142
    [Google Scholar]
  10. AlexandrovP.N. PogueA.I. LukiwW.J. of Neuroscience P, Professor of Alzheimer B.Integr. Food. Nutr. Metab.20185329938114
    [Google Scholar]
  11. YokelR.A. McNamaraP.J. Aluminium toxicokinetics: An updated minireview.Pharmacol. Toxicol.200188415916710.1034/j.1600‑0773.2001.d01‑98.x11322172
    [Google Scholar]
  12. WangL. Entry and Deposit of Aluminum in the Brain.Adv. Exp. Med. Biol.20181091395110.1007/978‑981‑13‑1370‑7_330315448
    [Google Scholar]
  13. RöllinH.B. ChannaK. OlutolaB. NogueiraC. OdlandJ.Ø. In utero exposure to aluminium and other neurotoxic elements in urban coastal south african women at delivery: An emerging concern.Int. J. Environ. Res. Public Health2020175172410.3390/ijerph1705172432155754
    [Google Scholar]
  14. FewtrellM.S. EdmondsC.J. IsaacsE. BishopN.J. LucasA. Aluminium exposure from parenteral nutrition in preterm infants and later health outcomes during childhood and adolescence.Proc. Nutr. Soc.201170329930410.1017/S002966511100049821781356
    [Google Scholar]
  15. SundarS. ChakravartyJ. Antimony Toxicity.Int. J. Environ. Res. Public Health20107124267427710.3390/ijerph712426721318007
    [Google Scholar]
  16. Iwai-ShimadaM. KameoS. NakaiK. Yaginuma-SakuraiK. TatsutaN. KurokawaN. NakayamaS.F. SatohH. Exposure profile of mercury, lead, cadmium, arsenic, antimony, copper, selenium and zinc in maternal blood, cord blood and placenta: The Tohoku Study of Child Development in Japan.Environ. Health Prev. Med.20192413510.1186/s12199‑019‑0783‑y31101007
    [Google Scholar]
  17. XiaS. ZhuX. YanY. ZhangT. ChenG. LeiD. WangG. Developmental neurotoxicity of antimony (Sb) in the early life stages of zebrafish.Ecotoxicol. Environ. Saf.202121811230810.1016/j.ecoenv.2021.11230833975224
    [Google Scholar]
  18. AdamsJB BaralM GeisE MitchellJ IngramJ HensleyA The Severity of Autism Is Associated with Toxic Metal Body Burden and Red Blood Cell Glutathione Levels.J Toxicol.2009200917
    [Google Scholar]
  19. BjørklundG. SkalnyA.V. RahmanM.M. DadarM. YassaH.A. AasethJ. ChirumboloS. SkalnayaM.G. TinkovA.A. Toxic metal(loid)-based pollutants and their possible role in autism spectrum disorder.Environ. Res.201816623425010.1016/j.envres.2018.05.02029902778
    [Google Scholar]
  20. DickersonA.S. RahbarM.H. BakianA.V. BilderD.A. HarringtonR.A. PettygroveS. KirbyR.S. DurkinM.S. HanI. MoyéL.A.III PearsonD.A. WingateM.S. ZahorodnyW.M. Autism spectrum disorder prevalence and associations with air concentrations of lead, mercury, and arsenic.Environ. Monit. Assess.2016188740710.1007/s10661‑016‑5405‑127301968
    [Google Scholar]
  21. LuanS ZhangS PanL HuW CuiH WeiX Salivary microbiota analysis of patients with membranous nephropathy.Mol Med Rep.202225519010.3892/mmr.2022.12706
    [Google Scholar]
  22. LiH. LiH. LiY. LiuY. ZhaoZ. Blood Mercury, Arsenic, Cadmium, and Lead in Children with Autism Spectrum Disorder.Biol. Trace Elem. Res.20181811313710.1007/s12011‑017‑1002‑628480499
    [Google Scholar]
  23. BLAUROCK-BUSCH E. Blood Mercury, Arsenic, Cadmium, and Lead in Children with Autism Spectrum Disorder.Maedica (Bucur).20116424757
    [Google Scholar]
  24. Blaurock-buschE AminOR DessokiHH Toxic Metals and Essential Elements in Hair and Severity of Symptoms among Children with Autism.Maedica (Bucur).201226738
    [Google Scholar]
  25. ZhaiQ. CenS. JiangJ. ZhaoJ. ZhangH. ChenW. Disturbance of trace element and gut microbiota profiles as indicators of autism spectrum disorder: A pilot study of Chinese children.Environ. Res.201917150150910.1016/j.envres.2019.01.06030743242
    [Google Scholar]
  26. SkalnyA.V. SimashkovaN.V. KlyushnikT.P. GrabeklisA.R. RadyshI.V. SkalnayaM.G. TinkovA.A. Analysis of Hair Trace Elements in Children with Autism Spectrum Disorders and Communication Disorders.Biol. Trace Elem. Res.2017177221522310.1007/s12011‑016‑0878‑x27785740
    [Google Scholar]
  27. WangM. HossainF. SulaimanR. RenX. Exposure to Inorganic Arsenic and Lead and Autism Spectrum Disorder in Children: A Systematic Review and Meta-Analysis.Chem. Res. Toxicol.201932101904191910.1021/acs.chemrestox.9b0013431549506
    [Google Scholar]
  28. RossignolD.A. GenuisS.J. FryeR.E. Environmental toxicants and autism spectrum disorders: a systematic review.Transl Psychiatry201442123
    [Google Scholar]
  29. Joanna Kałużna-CzaplińskaW.G.J.R. Neurotoxic factors in the child&acutes environment as a reason for developmental disorders in autism.Nowa Pediatr.2008
    [Google Scholar]
  30. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans Arsenic, metals, fibres, and dusts.IARC Monogr. Eval. Carcinog. Risks Hum.2012100Pt C1146523189751
    [Google Scholar]
  31. Kulik-KupkaK. KoszowskaA. Brończyk-PuzońA. NowakJ. GwizdekK. Zubelewicz-SzkodzińskaB. ARSEN-TRUCIZNA CZY LEK? ARSENIC-POISON OR MEDICINE?2016Available From: http://medpr.imp.lodz.xn--plpracapogldowa-e0b
  32. AdamsJ.B. AudhyaT. McDonough-MeansS. RubinR.A. QuigD. GeisE. Toxicological Status of Children with Autism vs. Neurotypical Children and the Association with Autism Severity.Bio. Trace Element Res.2013151171180
    [Google Scholar]
  33. ZhouH. ZhaoW. YeL. ChenZ. CuiY. Postnatal low-concentration arsenic exposure induces autism-like behavior and affects frontal cortex neurogenesis in rats.Environ. Toxicol. Pharmacol.20186218819810.1016/j.etap.2018.07.01230064059
    [Google Scholar]
  34. SkogheimT.S. WeydeK.V.F. EngelS.M. AaseH. SurénP. ØieM.G. BieleG. Reichborn-KjennerudT. CaspersenI.H. HornigM. HaugL.S. VillangerG.D. Metal and essential element concentrations during pregnancy and associations with autism spectrum disorder and attention-deficit/hyperactivity disorder in children.Environ. Int.202115210646810.1016/j.envint.2021.10646833765546
    [Google Scholar]
  35. Kille W.J. TeshJ.M. McAnultyP.A. RossF.W. Sucralose: Assessment of teratogenic potential in the rat and the rabbit.Food Chem Toxicol.200038Suppl 2S4352
    [Google Scholar]
  36. AdamsJ.B. BaralM. GeisE. MitchellJ. IngramJ. HensleyA. ZappiaI. NewmarkS. GehnE. RubinR.A. MitchellK. BradstreetJ. El-DahrJ. Safety and efficacy of oral DMSA therapy for children with autism spectrum disorders: Part B - Behavioral results.BMC Clin. Pharmacol.2009911710.1186/1472‑6904‑9‑1719852790
    [Google Scholar]
  37. AdamsJB BaralM GeisE MitchellJ IngramJ HensleyA Safety and efficacy of oral DMSA therapy for children with autism spectrum disorders: Part A - Medical results.BMC Clin. Pharmacol.2009916
    [Google Scholar]
  38. HeindelJ.J. PriceC.J. SchwetzB.A. The developmental toxicity of boric acid in mice, rats, and rabbits.Environ Health Perspect.1994102Suppl 7107-1210.1289/ehp.94102s71077889869PMC1566650
    [Google Scholar]
  39. WONGL.C. Boric Acid Poisoning: Report of 11 Cases.Can Med Assoc J196490171018
    [Google Scholar]
  40. GordonAS PrichardJS FreedmanMH Seizure disorders and anemia associated with chronic borax intoxication.Can Med Assoc J19731086719
    [Google Scholar]
  41. Cadmium.2023Available From: https://www.osha.gov/cadmium
  42. DharmadasaP. KimN. ThundersM. Maternal cadmium exposure and impact on foetal gene expression through methylation changes.Food Chem. Toxicol.2017109Pt 171472010.1016/j.fct.2017.09.00228887092
    [Google Scholar]
  43. Al omairiN.E. RadwanO.K. AlzahraniY.A. KassabR.B. Neuroprotective efficiency of Mangifera indica leaves extract on cadmium-induced cortical damage in rats.Metab. Brain Dis.20183341121113010.1007/s11011‑018‑0222‑629557530
    [Google Scholar]
  44. LinC.M. DoyleP. WangD. HwangY.H. ChenP.C. Does prenatal cadmium exposure affect fetal and child growth?Occup. Environ. Med.201168964164610.1136/oem.2010.05975821186202
    [Google Scholar]
  45. CiesielskiT. WeuveJ. BellingerD.C. SchwartzJ. LanphearB. WrightR.O. Cadmium exposure and neurodevelopmental outcomes in U.S. children.Environ. Health Perspect.2012120575876310.1289/ehp.110415222289429
    [Google Scholar]
  46. ZhouT. GuoJ. ZhangJ. XiaoH. QiX. WuC. ChangX. ZhangY. LiuQ. ZhouZ. Sex-Specific Differences in Cognitive Abilities Associated with Childhood Cadmium and Manganese Exposures in School-Age Children: A Prospective Cohort Study.Biol. Trace Elem. Res.20201931899910.1007/s12011‑019‑01703‑930977088
    [Google Scholar]
  47. KipplerM. BottaiM. GeorgiouV. KoutraK. ChalkiadakiG. KampouriM. KyriklakiA. VafeiadiM. FthenouE. VassilakiM. KogevinasM. VahterM. ChatziL. Impact of prenatal exposure to cadmium on cognitive development at preschool age and the importance of selenium and iodine.Eur. J. Epidemiol.201631111123113410.1007/s10654‑016‑0151‑927147065
    [Google Scholar]
  48. OsmanK. ÅkessonA. BerglundM. BremmeK. SchützA. AskK. VahterM. Toxic and essential elements in placentas of swedish women.Clin. Biochem.200033213113810.1016/S0009‑9120(00)00052‑710751591
    [Google Scholar]
  49. JeongK.S. ParkH. HaE. HongY.C. HaM. ParkH. KimB.N. LeeB.E. LeeS.J. LeeK.Y. KimJ.H. KimY. Performance IQ in children is associated with blood cadmium concentration in early pregnancy.J. Trace Elem. Med. Biol.20153010711110.1016/j.jtemb.2014.11.00725511909
    [Google Scholar]
  50. GustinK. TofailF. VahterM. KipplerM. Cadmium exposure and cognitive abilities and behavior at 10 years of age: A prospective cohort study.Environ. Int.201811325926810.1016/j.envint.2018.02.02029459184
    [Google Scholar]
  51. SalnikowK. ZhitkovichA. Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: Nickel, arsenic, and chromium.Chem. Res. Toxicol.2008211284410.1021/tx700198a17970581
    [Google Scholar]
  52. ValkoM. RhodesC.J. MoncolJ. IzakovicM. MazurM. Free radicals, metals and antioxidants in oxidative stress-induced cancer.Chem. Biol. Interact.2006160114010.1016/j.cbi.2005.12.00916430879
    [Google Scholar]
  53. SpeerR.M. WiseJ.P. Current Status on Chromium Research and Its Implications for Health and Risk Assessment.Reference Module in Chemistry, Molecular Sciences and Chemical Engineering.ElsevierAmsterdam201810.1016/B978‑0‑12‑409547‑2.14283‑0
    [Google Scholar]
  54. WiseJ.P.Jr YoungJ.L. CaiJ. CaiL. Current understanding of hexavalent chromium [Cr(VI)] neurotoxicity and new perspectives.Environ. Int.202215810687710.1016/j.envint.2021.10687734547640
    [Google Scholar]
  55. ShrivastavaR. UpretiR.K. SethP.K. ChaturvediU.C. Effects of chromium on the immune system.FEMS Immunol. Med. Microbiol.20023411710.1111/j.1574‑695X.2002.tb00596.x12208600
    [Google Scholar]
  56. IijimaS. MatsumotoN. LuC.C. Transfer of chromic chloride to embryonic mice and changes in the embryonic mouse neuroepithelium.Toxicology1983263-425726510.1016/0300‑483X(83)90086‑06857698
    [Google Scholar]
  57. TalbottEO MarshallLP RagerJR ArenaVC SharmaRK StacySL Air toxics and the risk of autism spectrum disorder: The results of a population based case–control study in southwestern Pennsylvania.Environ Health.2015148010.1186/s12940‑015‑0064‑1
    [Google Scholar]
  58. BarcelouxD.G. BarcelouxD. Cobalt.J. Toxicol. Clin. Toxicol.199937220121610.1081/CLT‑10010242010382556
    [Google Scholar]
  59. LauwerysR. LisonD. Health risks associated with cobalt exposure — an overview.Sci. Total Environ.19941501-31610.1016/0048‑9697(94)90125‑27939580
    [Google Scholar]
  60. KubrakO.I. HusakV.V. RovenkoB.M. StoreyJ.M. StoreyK.B. LushchakV.I. Cobalt-induced oxidative stress in brain, liver and kidney of goldfish Carassius auratus.Chemosphere201185698398910.1016/j.chemosphere.2011.06.07821777937
    [Google Scholar]
  61. Calderón-GarcidueñasL. Serrano-SierraA. Torres-JardónR. ZhuH. YuanY. SmithD. Delgado-ChávezR. CrossJ.V. Medina-CortinaH. KavanaughM. GuilarteT.R. The impact of environmental metals in young urbanites’ brains.Exp. Toxicol. Pathol.201365550351110.1016/j.etp.2012.02.00622436577
    [Google Scholar]
  62. LeonardS. GannettP.M. RojanasakulY. Schwegler-BerryD. CastranovaV. VallyathanV. ShiX. Cobalt-mediated generation of reactive oxygen species and its possible mechanism.J. Inorg. Biochem.1998703-423924410.1016/S0162‑0134(98)10022‑39720310
    [Google Scholar]
  63. HengstlerJ.G. Bolm-AudorffU. FaldumA. JanssenK. ReifenrathM. GötteW. JungD. Mayer-PopkenO. FuchsJ. GebhardS. BienfaitH.G. SchlinkK. DietrichC. FaustD. EpeB. OeschF. Occupational exposure to heavy metals: DNA damage induction and DNA repair inhibition prove co-exposures to cadmium, cobalt and lead as more dangerous than hitherto expected.Carcinogenesis2003241637310.1093/carcin/24.1.6312538350
    [Google Scholar]
  64. CaiG. ZhuJ. ShenC. CuiY. DuJ. ChenX. The effects of cobalt on the development, oxidative stress, and apoptosis in zebrafish embryos.Biol. Trace Elem. Res.20121501-320020710.1007/s12011‑012‑9506‑622983774
    [Google Scholar]
  65. MendolaP. SelevanS.G. GutterS. RiceD. Environmental factors associated with a spectrum of neurodevelopmental deficits.Ment. Retard. Dev. Disabil. Res. Rev.20028318819710.1002/mrdd.1003312216063
    [Google Scholar]
  66. FornsJ. FortM. CasasM. CáceresA. GuxensM. GasconM. Garcia-EstebanR. JulvezJ. GrimaltJ.O. SunyerJ. Exposure to metals during pregnancy and neuropsychological development at the age of 4 years.Neurotoxicology201440162210.1016/j.neuro.2013.10.00624211492
    [Google Scholar]
  67. YasudaH. YasudaY. TsutsuiT. TsutsuiT. Estimation of autistic children by metallomics analysis.Sci. Rep.201331119910.1038/srep0119923383369
    [Google Scholar]
  68. EllingsenDG MøllerLB AasethJ Handbook on the Toxicology of Metals.ElsevierAmsterdam2013
    [Google Scholar]
  69. ZorodduM.A. AasethJ. CrisponiG. MediciS. PeanaM. NurchiV.M. The essential metals for humans: A brief overview.J. Inorg. Biochem.201919512012910.1016/j.jinorgbio.2019.03.01330939379
    [Google Scholar]
  70. Uriu-AdamsJ.Y. ScherrR.E. LanoueL. KeenC.L. Influence of copper on early development: Prenatal and postnatal considerations.Biofactors201036213615210.1002/biof.8520232410
    [Google Scholar]
  71. MadsenE. GitlinJ.D. Copper and iron disorders of the brain.Annu. Rev. Neurosci.200730131733710.1146/annurev.neuro.30.051606.09423217367269
    [Google Scholar]
  72. SalvadorA. Edinburgh Research Explorer Maternal copper status and neuropsychological development in infants and preschool children Citation for published version.Int J Hyg Environ Health.2019222350351210.1016/j.ijheh.2019.01.007
    [Google Scholar]
  73. NuttallJ.R. The plausibility of maternal toxicant exposure and nutritional status as contributing factors to the risk of autism spectrum disorders.Nutri. Neurosci201724
    [Google Scholar]
  74. ATSDRToxicological Profile for Fluorides, Hydrogen Fluoride, and Fluorine2003Available From: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=212&tid=38
  75. ChiocaL.R. RauppI.M. Da CunhaC. LossoE.M. AndreatiniR. Subchronic fluoride intake induces impairment in habituation and active avoidance tasks in rats.Eur. J. Pharmacol.20085791-319620110.1016/j.ejphar.2007.10.01918001709
    [Google Scholar]
  76. MullenixP.J. DenbestenP.K. SchuniorA. KernanW.J. Neurotoxicity of sodium fluoride in rats.Neurotoxicol. Teratol.199517216917710.1016/0892‑0362(94)00070‑T7760776
    [Google Scholar]
  77. RonM. SingerL. MenczelJ. KidroniG. Fluoride concentration in amniotic fluid and fetal cord and maternal plasma.Eur. J. Obstet. Gynecol. Reprod. Biol.198621421321810.1016/0028‑2243(86)90018‑33709921
    [Google Scholar]
  78. Abduweli UyghurturkD GoinDE Martinez-MierEA WoodruffTJ DenbestenPK Maternal and fetal exposures to fluoride during mid-gestation among pregnant women in northern California.Environ Health20201913810.1186/s12940‑020‑00581‑2
    [Google Scholar]
  79. GrandjeanP. LandriganP.J. Neurobehavioural effects of developmental toxicity.Lancet Neurol.201413333033810.1016/S1474‑4422(13)70278‑324556010
    [Google Scholar]
  80. ChoiAL SunG ZhangY GrandjeanP Developmental Fluoride Neurotoxicity: A Systematic Review and Meta-Analysis.Environ Health Perspect.2012120101362810.1289/ehp.1104912
    [Google Scholar]
  81. GreenR. LanphearB. HornungR. FloraD. Martinez-MierE.A. NeufeldR. AyotteP. MuckleG. TillC. Association Between Maternal Fluoride Exposure During Pregnancy and IQ Scores in Offspring in Canada.JAMA Pediatr.20191731094094810.1001/jamapediatrics.2019.172931424532
    [Google Scholar]
  82. ZhangX. LuE. StoneS.L. DiopH. Dental Cleaning, Community Water Fluoridation and Preterm Birth, Massachusetts: 2009–2016.Matern. Child Health J.201923445145810.1007/s10995‑018‑2659‑y30542985
    [Google Scholar]
  83. HwangY.S. WengS.F. ChoC.Y. TsaiW.H. Higher prevalence of autism in Taiwanese children born prematurely: A nationwide population-based study.Res. Dev. Disabil.20133492462246810.1016/j.ridd.2013.05.01923747937
    [Google Scholar]
  84. SinghGK KenneyMK GhandourRM KoganMD LuMC Mental Health Outcomes in US Children and Adolescents Born Prematurely or with Low Birthweight.Depression Res Treat20132013857074310.1155/2013/570743
    [Google Scholar]
  85. MacArthurJD Pregnancy and fluoride do not mix : Prenatal fluoride and premature birth, preeclampsia, autism.AbeBooksVictoria, British Columbia2016
    [Google Scholar]
  86. What's New on Regulations.gov.2023Available From: www.regulations.gov
  87. Lavado-AutricR. AusóE. García-VelascoJ.V. del Carmen ArufeM. Escobar del ReyF. BerbelP. Morreale de EscobarG. Early maternal hypothyroxinemia alters histogenesis and cerebral cortex cytoarchitecture of the progeny.J. Clin. Invest.200311171073108210.1172/JCI20031626212671057
    [Google Scholar]
  88. SACN Statement on Iodine and Health - 2014 .2014Available From: https://www.gov.uk/government/publications/sacn-statement-on-iodine-and-health-2014
  89. BłażewiczA. MakarewiczA. Korona-GlowniakI. DolliverW. KocjanR. Iodine in autism spectrum disorders.J. Trace Elem. Med. Biol.201634323710.1016/j.jtemb.2015.12.00226854242
    [Google Scholar]
  90. Diagnostic and statistical manual for mental disorders.1987Available From: https://ci.nii.ac.jp/naid/10004884779/
  91. LevieD. BathS. GuxensM. TK-TJ of, 2020 undefined.Maternal iodine status during pregnancy is not consistently associated with attention-deficit hyperactivity disorder or autistic traits in children. academic.oup.com [Internet]. [cited 2022 Aug 31]; https://academic.oup.com/jn/article-abstract/150/6/1516/5805456
    [Google Scholar]
  92. CromieK.J. ThreapletonD.E. SnartC.J.P. TaylorE. MasonD. WrightB. KellyB. ReidS. AzadR. KeebleC. WatermanA.H. MeadowsS. McKillionA. AlwanN.A. CadeJ.E. SimpsonN.A.B. StewartP.M. ZimmermannM. WrightJ. WaiblingerD. Mon-WilliamsM. HardieL.J. GreenwoodD.C. Maternal iodine status in a multi-ethnic UK birth cohort: Associations with autism spectrum disorder.BMC Pediatr.202020154410.1186/s12887‑020‑02440‑y33276760
    [Google Scholar]
  93. KambleR.K. ThakareM.G. IngleA.B. Iron in the environment.Indian J Environ Prot.20133311881888
    [Google Scholar]
  94. BeardJ.L. Why iron deficiency is important in infant development.J. Nutr.2008138122534253610.1093/jn/138.12.253419022985
    [Google Scholar]
  95. SachdevH.P.S. GeraT. NestelP. Effect of iron supplementation on mental and motor development in children: Systematic review of randomised controlled trials.Public Health Nutr.20058211713210.1079/PHN200467715877905
    [Google Scholar]
  96. BlackM.M. BaquiA.H. ZamanK. Ake PerssonL. El ArifeenS. LeK. McNaryS.W. ParveenM. HamadaniJ.D. BlackR.E. Iron and zinc supplementation promote motor development and exploratory behavior among Bangladeshi infants.Am. J. Clin. Nutr.200480490391010.1093/ajcn/80.4.90315447897
    [Google Scholar]
  97. SiddappaA.M. GeorgieffM.K. WewerkaS. WorwaC. NelsonC.A. DeregnierR.A. Iron deficiency alters auditory recognition memory in newborn infants of diabetic mothers.Pediatr. Res.20045561034104110.1203/01.pdr.0000127021.38207.6215155871
    [Google Scholar]
  98. StoltzfusR.J. Iron-deficiency anemia: Reexamining the nature and magnitude of the public health problem. Summary: Implications for research and programs.J. Nutr.20011312697S701S10.1093/jn/131.2.697S11160600
    [Google Scholar]
  99. LozoffB. JimenezE. WolfA.W. Long-term developmental outcome of infants with iron deficiency.N. Engl. J. Med.19913251068769410.1056/NEJM1991090532510041870641
    [Google Scholar]
  100. SchmidtRJ TancrediDJ KrakowiakP HansenRL OzonoffS Maternal Intake of Supplemental Iron and Risk of Autism Spectrum Disorder.Am J Epidemiol.2014180989090010.1093/aje/kwu208
    [Google Scholar]
  101. OsmanA.M. KamelH.M. Abdel-NaemE.A. HigaziA.M. AbdullahN.M. Association between maternal iron and vitamin d with risky development of autistic children. Indian J Public Health Res Dev2019101010.5958/0976‑5506.2019.02500.2
    [Google Scholar]
  102. BashashM. ThomasD. HuH. Angeles Martinez-MierE. SanchezB.N. BasuN. PetersonK.E. EttingerA.S. WrightR. ZhangZ. LiuY. SchnaasL. Mercado-GarcíaA. María Téllez-RojoM. Hernández-AvilaM. Prenatal Fluoride Exposure and Cognitive Outcomes in Children at 4 and 6–12 Years of Age in Mexico.Environ. Health Perspect.2017125909701710.1289/EHP65528937959
    [Google Scholar]
  103. LidskyT.I. SchneiderJ.S. Lead neurotoxicity in children: Basic mechanisms and clinical correlates.Brain2003126151910.1093/brain/awg01412477693
    [Google Scholar]
  104. CohenD.J. JohnsonW.T. CaparuloB.K. Pica and elevated blood lead level in autistic and atypical children.Am. J. Dis. Child.197613014748813517
    [Google Scholar]
  105. ShannonM. GraefJ.W. Lead intoxication in children with pervasive developmental disorders.J. Toxicol. Clin. Toxicol.199634217718110.3109/155636596090137678618251
    [Google Scholar]
  106. LidskyT. ResJ.S-J.A. Lead intoxication in children with pervasive developmental disorders.J Appl Res20055118
    [Google Scholar]
  107. ClarkB. VandermeerB. SimonettiA. BukaI. Is lead a concern in Canadian autistic children?Paediatr. Child Health2010151172210.1093/pch/15.1.1721197164
    [Google Scholar]
  108. AroraM. ReichenbergA. WillforsC. Fetal and postnatal metal dysregulation in autism.Nat. Commun.2017815493
    [Google Scholar]
  109. GuilarteT.R. McglothanJ.L. DegaonkarM. ChenM-K. BarkerP.B. SyversenT. Evidence for Cortical Dysfunction and Widespread Manganese Accumulation in the Nonhuman Primate Brain following Chronic Manganese Exposure: A 1H-MRS and MRI Study.Toxicol. Sci.200694235135810.1093/toxsci/kfl106
    [Google Scholar]
  110. ClarkJ.B. N-acetyl aspartate: A marker for neuronal loss or mitochondrial dysfunction.Dev. Neurosci.1998204-527127610.1159/0000173219778562
    [Google Scholar]
  111. BlockW. TräberF. FlackeS. JessenF. PohlC. SchildH. in-vivo proton MR-spectroscopy of the human brain: Assessment of N-acetylaspartate (NAA) reduction as a marker for neurodegeneration.Amino Acids2002231-331732310.1007/s00726‑001‑0144‑012373553
    [Google Scholar]
  112. ChangY. WooS.T. LeeJ.J. SongH.J. LeeH.J. YooD.S. KimS.H. LeeH. KwonY.J. AhnH.J. AhnJ.H. ParkS.J. WeonY.C. ChungI.S. JeongK.S. KimY. Neurochemical changes in welders revealed by proton magnetic resonance spectroscopy.Neurotoxicology200930695095710.1016/j.neuro.2009.07.00819631686
    [Google Scholar]
  113. DydakU. JiangY.M. LongL.L. ZhuH. ChenJ. LiW.M. EddenR.A.E. HuS. FuX. LongZ. MoX.A. MeierD. HarezlakJ. AschnerM. MurdochJ.B. ZhengW. in vivo measurement of brain GABA concentrations by magnetic resonance spectroscopy in smelters occupationally exposed to manganese.Environ. Health Perspect.2011119221922410.1289/ehp.100219220876035
    [Google Scholar]
  114. MoraA.M. AroraM. HarleyK.G. KogutK. ParraK. Hernández-BonillaD. GunierR.B. BradmanA. SmithD.R. EskenaziB. Prenatal and postnatal manganese teeth levels and neurodevelopment at 7, 9, and 10.5years in the CHAMACOS cohort.Environ. Int.201584395410.1016/j.envint.2015.07.00926209874
    [Google Scholar]
  115. TungP.W. BurtA. KaragasM. JacksonB.P. PunshonT. LesterB. MarsitC.J. Association between placental toxic metal exposure and NICU Network Neurobehavioral Scales (NNNS) profiles in the Rhode Island Child Health Study (RICHS).Environ. Res.2022204Pt A11193910.1016/j.envres.2021.11193934461121
    [Google Scholar]
  116. Kaya AkyuzluD. KayaaltiZ. SoylemezE. SoylemezogluT. Association between Autism and Arsenic, Lead, Cadmium, Manganese Levels in Hair and Urine.J. Pharm. Pharmacol.20142140144
    [Google Scholar]
  117. RahbarM.H. Samms-VaughanM. DickersonA.S. LovelandK.A. Ardjomand-HessabiM. BresslerJ. Blood manganese concentrations in Jamaican children with and without autism spectrum disorders.Environmental Health2014136910.1186/1476‑069X‑13‑69
    [Google Scholar]
  118. HawariI. EskandarM.B. AlzeerS. The Role of Lead, Manganese, and Zinc in Autism Spectrum Disorders (ASDs) and Attention-Deficient Hyperactivity Disorder (ADHD): A Case-Control Study on Syrian Children Affected by the Syrian CrisisBiological Trace Element Res.2020197107114
    [Google Scholar]
  119. AndiarenaA IrizarA MolinuevoA UrbietaN BabarroI Subiza-PérezM Prenatal Manganese Exposure and Long-Term Neuropsychological Development at 4 Years of Age in a Population-Based Birth Cohort.Int J Environ Res Public Health.20201751665
    [Google Scholar]
  120. SandersA.P. Claus HennB. WrightR.O. Perinatal and Childhood Exposure to Cadmium, Manganese, and Metal Mixtures and Effects on Cognition and Behavior: A Review of Recent Literature.Curr. Environ. Health Rep.20152328429410.1007/s40572‑015‑0058‑826231505
    [Google Scholar]
  121. LandriganP.J. LambertiniL. BirnbaumL.S. A research strategy to discover the environmental causes of autism and neurodevelopmental disabilities.Environ. Health Perspect.20121207a258a26010.1289/ehp.110428522543002
    [Google Scholar]
  122. MostafaG.A. The Possible Association between Elevated Levels of Blood Mercury and the Increased Frequency of Serum Anti-myelin Basic Protein Auto-antibodies in Autistic Children.J. Clin. Cell. Immunol.20156210.4172/2155‑9899.1000310
    [Google Scholar]
  123. MostafaG.A. RefaiT.M. Antineuronal antibodies in autistic children: Relation to blood mercury.Egypt. J. Pediatr. Allergy Immunol.2007512130
    [Google Scholar]
  124. ElaminN.E. Al-AyadhiL.Y. Brain autoantibodies in autism spectrum disorder.Biomarkers Med.20148334535210.2217/bmm.14.124712424
    [Google Scholar]
  125. PirasI.S. HaapanenL. NapolioniV. SaccoR. Van de WaterJ. PersicoA.M. Anti-brain antibodies are associated with more severe cognitive and behavioral profiles in Italian children with Autism Spectrum Disorder.Brain Behav. Immun.201438919910.1016/j.bbi.2013.12.02024389156
    [Google Scholar]
  126. GoldingJ RaiD GregoryS EllisG EmondA Iles-CavenY Prenatal mercury exposure and features of autism: A prospective population study.Mol Autism.201893010.1186/s13229‑018‑0215‑7
    [Google Scholar]
  127. GeierD.A. KernJ.K. GeierM.R. A prospective study of prenatal mercury exposure from maternal dental amalgams and autism severity.Acta Neurobiol. Exp. (Warsz.)200969218919719593333
    [Google Scholar]
  128. ShiL. CaoH. LuoJ. LiuP. WangT. HuG. ZhangC. Effects of molybdenum and cadmium on the oxidative damage and kidney apoptosis in Duck.Ecotoxicol. Environ. Saf.2017145243110.1016/j.ecoenv.2017.07.00628692912
    [Google Scholar]
  129. SpearsJ.W. Nickel as a “newer trace element” in the nutrition of domestic animals.J. Anim. Sci.198459382383510.2527/jas1984.593823x6386782
    [Google Scholar]
  130. MarzecZ. Alimentary chromium, nickel, and selenium intake of adults in Poland estimated by analysis and calculations using the duplicate portion technique.Nahrung2004481475210.1002/food.20030035515053351
    [Google Scholar]
  131. XuS.C. HeM.D. ZhongM. ZhangY.W. WangY. YangL. YangJ. YuZ.P. ZhouZ. Melatonin protects against Nickel-induced neurotoxicity in vitro by reducing oxidative stress and maintaining mitochondrial function.J. Pineal Res.2010491no10.1111/j.1600‑079X.2010.00770.x20536687
    [Google Scholar]
  132. FatehyabS. HasanM. HasanM.Z. AnwarJ. Effect of nickel on the levels of dopamine, noradrenaline and serotonin in different regions of the rat brain.Acta Pharmacol. Toxicol. (Copenh.)19804743183207468231
    [Google Scholar]
  133. NationJ.R. HareM.F. BakerD.M. ClarkD.E. BourgeoisA.E. Dietary administration of nickel: Effects on behavior and metallothionein levels.Physiol. Behav.198534334935310.1016/0031‑9384(85)90194‑54011715
    [Google Scholar]
  134. DavidA. LobnerD. in vitro cytotoxicity of orthodontic archwires in cortical cell cultures.Eur. J. Orthod.200426442142610.1093/ejo/26.4.42115366387
    [Google Scholar]
  135. JiaC. RomanC. HeggC.C. Nickel sulfate induces location-dependent atrophy of mouse olfactory epithelium: Protective and proliferative role of purinergic receptor activation.Toxicol. Sci.2010115254755610.1093/toxsci/kfq07120200219
    [Google Scholar]
  136. RobertsA.L. LyallK. HartJ.E. LadenF. JustA.C. BobbJ.F. KoenenK.C. AscherioA. WeisskopfM.G. Perinatal air pollutant exposures and autism spectrum disorder in the children of Nurses’ Health Study II participants.Environ. Health Perspect.2013121897898410.1289/ehp.120618723816781
    [Google Scholar]
  137. LeeA.S.E. JiY. RaghavanR. WangG. HongX. PearsonC. MirolliG. BindE. SteffensA. MukherjeeJ. HaltmeierD. FanZ.T. WangX. Maternal prenatal selenium levels and child risk of neurodevelopmental disorders: A prospective birth cohort study.Autism Res.202114122533254310.1002/aur.261734558795
    [Google Scholar]
  138. LenntechChemical properties of silicon - Health effects of silicon - Environmental effects of silicon.2023Available From: https://www.lenntech.com/periodic/elements/si.htm
  139. YouR HoYS HungCHL LiuY HuangCX ChanHN Silica nanoparticles induce neurodegeneration-like changes in behavior, neuropathology, and affect synapse through MAPK activation.Part Fibre Toxicol.20181512810.1186/s12989‑018‑0263‑3
    [Google Scholar]
  140. LenntechChemical properties of tin - Health effects of tin - Environmental effects of tin.2023Available From: https://www.lenntech.com/periodic/elements/sn.htm
  141. FryeR.E. CakirJ. RoseS. DelheyL. BennuriS.C. TippettM. PalmerR.F. AustinC. CurtinP. AroraM. Early life metal exposure dysregulates cellular bioenergetics in children with regressive autism spectrum disorder.Transl. Psychiatry202010122310.1038/s41398‑020‑00905‑332636364
    [Google Scholar]
  142. AdamsJ. HowsmonD.P. KrugerU. GeisE. GehnE. FimbresV. PollardE. MitchellJ. IngramJ. HellmersR. QuigD. HahnJ. Significant Association of Urinary Toxic Metals and Autism-Related Symptoms—A Nonlinear Statistical Analysis with Cross Validation.PLoS One2017121e016952610.1371/journal.pone.016952628068407
    [Google Scholar]
  143. RehderD. Vanadium. Its role for humans.Met. Ions Life Sci.20131313916910.1007/978‑94‑007‑7500‑8_524470091
    [Google Scholar]
  144. MilnerJ. GreenR. Sustainable diets are context specific but are they realistic?Lancet Planet. Health2018210e425e42610.1016/S2542‑5196(18)30207‑930318099
    [Google Scholar]
  145. JiangM. LiY. ZhangB. ZhouA. ZhengT. QianZ. DuX. ZhouY. PanX. HuJ. WuC. PengY. LiuW. ZhangC. XiaW. XuS. A nested case–control study of prenatal vanadium exposure and low birthweight.Hum. Reprod.20163192135214110.1093/humrep/dew17627381766
    [Google Scholar]
  146. StantonJ.E. MalijauskaiteS. McGourtyK. GrabruckerA.M. The Metallome as a Link Between the “Omes” in Autism Spectrum Disorders.Front. Mol. Neurosci.20211469587310.3389/fnmol.2021.69587334290588
    [Google Scholar]
  147. VyasY LeeK JungY MontgomeryJM Influence of maternal zinc supplementation on the development of autism-associated behavioural and synaptic deficits in offspring Shank3-knockout mice.Mol Brain.202013111010.1186/s13041‑020‑00650‑0
    [Google Scholar]
/content/journals/cpr/10.2174/0115733963251295231031102941
Loading
/content/journals/cpr/10.2174/0115733963251295231031102941
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test