- Home
- A-Z Publications
- Current Protein and Peptide Science
- Previous Issues
- Volume 14, Issue 5, 2013
Current Protein and Peptide Science - Volume 14, Issue 5, 2013
Volume 14, Issue 5, 2013
-
-
Regulation of Adrenomedullin and its Family Peptide by RAMP System – Lessons from Genetically Engineered Mice
Adrenomedullin (ADM), originally identified as a vasodilating peptide, is now recognized to be a pleiotropic molecule involved in both the pathogenesis of cardiovascular diseases and circulatory homeostasis. Homozygotes of ADM knockout mice (ADM-/-) were lethal at mid-gestation with abnormalities of vascular development and this finding clarified the angiogenic potency of ADM. Calcitonin gene-related peptide (C Read More
-
-
-
Comparing the Molecular Pharmacology of CGRP and Adrenomedullin
Authors: Michael J. Woolley and Alex C. ConnerCGRP and adrenomedullin [AM] are peptides that have a number of physiological effects, including vasodilation, through the activation of a shared GPCR, the family B calcitonin receptor-like receptor [CLR]. Specificity to each ligand is conferred through the unusual association of CLR with a single transmembrane accessory protein. For CGRP this is receptor activity-modifying protein 1 [RAMP1] and for AM acting at the AM1 re Read More
-
-
-
Ectodomain Structures of the CGRP and AM Receptors
Authors: Seisuke Kusano and Shigeyuki YokoyamaReceptor activity-modifying proteins (RAMPs) 1–3, which are classified as type I transmembrane proteins, serve as the partner proteins of several family B GPCRs for physiologically active peptides, including the calcitonin receptor- like receptor (CLR). The properties of the GPCRs are defined by the RAMP and peptide ligand combination. The CLR•RAMP1 heterodimer functions mainly as the calcitonin gene-related peptide (CGRP) Read More
-
-
-
CGRP Receptor Antagonism and Migraine Therapy
Authors: Lars Edvinsson and Karin WarfvingeMigraine is the most prevalent of the neurological disorders and can affect the patient throughout the lifetime. Calcitonin gene-related peptide (CGRP) is a neuropeptide that is expressed in the central and peripheral nervous systems. It is now 2 decades since it was proposed to be involved in migraine pathophysiology. The cranial sensory system contains C-fibers storing CGRP and trigeminal nerve activation and acute migra Read More
-
-
-
Roles of CLR/RAMP Receptor Signaling in Reproduction and Development
Authors: Chia Lin Chang and Sheau Yu Teddy HsuAdrenomedullin (ADM), calcitonin gene-related peptides (α- and β-CGRPs), and intermedin/adrenomedullin 2 (IMD/ADM2) are major regulators of vascular tone and cardiovascular development in vertebrates. Recent research into their functions in reproduction has illuminated the role of these peptides and their cognate receptors (calcitonin receptorlike receptor/receptor activity-modifying protein (CLR/RAMP) receptors) in fetal Read More
-
-
-
Role of CGRP-Receptor Component Protein (RCP) in CLR/RAMP Function
More LessThe receptor for calcitonin gene-related peptide (CGRP) and adrenomedullin (AM) requires an intracellular peripheral membrane protein named CGRP-receptor component protein (RCP) for signaling. RCP is required for CGRP and AM receptor signaling, and it has recently been discovered that RCP enables signaling by binding directly to the receptor. RCP is present in most immortalized cell lines, but in vivo RCP expression is limi Read More
-
-
-
Functions of Third Extracellular Loop and Helix 8 of Family B GPCRs Complexed with RAMPs and Characteristics of their Receptor Trafficking
Authors: Kenji Kuwasako, Debbie L Hay, Sayaka Nagata, Manabu Murakami, Kazuo Kitamura and Johji KatoAt least one of three receptor activity-modifying proteins (RAMP1, RAMP2 and RAMP3) can interact with 10 G protein-coupled receptors (GPCRs; nine Family B GPCRs and a Family C GPCR). All three RAMPs interact with the calcitonin (CT) receptor (CTR), the CTR-like receptor (CLR), the vasoactive intestinal peptide (VIP)/pituitary adenylate cyclase-activating polypeptide (PACAP) 1 (VPAC1) and the VPAC2 receptor, which a Read More
-
-
-
Is the Cytoskeleton an Intracellular Receptor for Adrenomedullin and PAMP?
Classical transmembrane receptors have been described for both adrenomedullin (AM) and proadrenomedullin N-terminal 20 peptide (PAMP). Through interactions with these membrane receptors, AM and PAMP exert a variety of endocrine, paracrine, and autocrine functions. In addition to these better known activities, recent publications have shown that both peptides can bind directly to the cytoskeleton resulting in import Read More
-
Volumes & issues
-
Volume 26 (2025)
-
Volume 25 (2024)
-
Volume 24 (2023)
-
Volume 23 (2022)
-
Volume 22 (2021)
-
Volume 21 (2020)
-
Volume 20 (2019)
-
Volume 19 (2018)
-
Volume 18 (2017)
-
Volume 17 (2016)
-
Volume 16 (2015)
-
Volume 15 (2014)
-
Volume 14 (2013)
-
Volume 13 (2012)
-
Volume 12 (2011)
-
Volume 11 (2010)
-
Volume 10 (2009)
-
Volume 9 (2008)
-
Volume 8 (2007)
-
Volume 7 (2006)
-
Volume 6 (2005)
-
Volume 5 (2004)
-
Volume 4 (2003)
-
Volume 3 (2002)
-
Volume 2 (2001)
-
Volume 1 (2000)
Most Read This Month
Article
content/journals/cpps
Journal
10
5
false
en
