Skip to content
2000
image of The Role of Lactate in Ischemic Stroke: As an Energy Source and Signaling Molecule

Abstract

Stroke is an acute cerebrovascular disease that causes brain tissue damage due to sudden blockage or rupture of blood vessels in the brain. According to the latest data from the Global Burden of Disease Study, the number of stroke patients worldwide is estimated to exceed 100 million, and more than 80% of patients suffer from stroke. Ischemic stroke is a type of stroke due to which two-thirds of the patients are disabled or even die, seriously affecting the patient's quality of life. Lactate is an indispensable substance in various physiological and pathological cells and plays a regulatory role in different aspects of energy metabolism and signal transduction. Studies have found that during cerebral ischemia and hypoxia, lactate concentration increases significantly, improving the energy supply to the ischemic area. Based on the scientific concept of lactate travelling through the brain, this article focuses on the important role of lactate as an energy source after ischemic stroke and analyzes the relationship between lactate as a signaling molecule and neuroprotection, angiogenesis, and anti-inflammatory effects. The aim of this study is to outline the molecular mechanisms by which lactate exerts its different effects in ischemic stroke. Some references are provided in this study for the research on lactate therapy for ischemic stroke.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037335945241029111720
2025-01-02
2025-04-29
Loading full text...

Full text loading...

References

  1. Zhao Y. Zhang X. Chen X. Wei Y. Neuronal injuries in cerebral infarction and ischemic stroke: From mechanisms to treatment. Int. J. Mol. Med. 2021 49 2 15 10.3892/ijmm.2021.5070
    [Google Scholar]
  2. Annoni F. Peluso L. Gouvêa Bogossian E. Creteur J. Zanier E.R. Taccone F.S. Brain Protection after Anoxic Brain Injury: Is Lactate Supplementation Helpful? Cells 2021 10 7 1714 10.3390/cells10071714
    [Google Scholar]
  3. Novorolsky R.J. Kasheke G.D.S. Hakim A. Foldvari M. Dorighello G.G. Sekler I. Vuligonda V. Sanders M.E. Renden R.B. Wilson J.J. Robertson G.S. Preserving and enhancing mitochondrial function after stroke to protect and repair the neurovascular unit: novel opportunities for nanoparticle-based drug delivery. Front. Cell. Neurosci. 2023 17 1226630 10.3389/fncel.2023.1226630
    [Google Scholar]
  4. Melkonian E.A. Schury M.P. Biochemistry, Anaerobic Glycolysis. StatPearls Treasure Island (FL): StatPearls Publishing 2023
    [Google Scholar]
  5. Zhao X. Li S. Mo Y. Li R. Huang S. Zhang A. Ni X. Dai Q. Wang J. DCA Protects against Oxidation Injury Attributed to Cerebral Ischemia‐Reperfusion by Regulating Glycolysis through PDK2‐PDH‐Nrf2 Axis. Oxid. Med. Cell. Longev. 2021 2021 1 5173035 10.1155/2021/5173035
    [Google Scholar]
  6. Rogatzki M.J. Ferguson B.S. Goodwin M.L. Gladden L.B. Lactate is always the end product of glycolysis. Front. Neurosci. 2015 9 22 10.3389/fnins.2015.00022
    [Google Scholar]
  7. Fantin V.R. St-Pierre J. Leder P. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 2006 9 6 425 434 [Erratum in: Cancer Cell. 2006 Aug;10]. [2]. [:172. PMID: 16766262]. 10.1016/j.ccr.2006.04.023
    [Google Scholar]
  8. Liberti M.V. Locasale J.W. The Warburg Effect: How Does it Benefit Cancer Cells? Trends Biochem. Sci. 2016 41 3 211 218 [Erratum in: Trends Biochem Sci. 2016 Mar;41]. [3]. [:287. Erratum in: Trends Biochem Sci. 2016 Mar;41]. [3]. [:287. doi: 10.1016/j.tibs.2016.01.004. PMID: 26778478; PMCID: PMC4783224]. 10.1016/j.tibs.2015.12.001
    [Google Scholar]
  9. Lachmandas E. Beigier-Bompadre M. Cheng S.C. Kumar V. van Laarhoven A. Wang X. Ammerdorffer A. Boutens L. de Jong D. Kanneganti T.D. Gresnigt M.S. Ottenhoff T.H.M. Joosten L.A.B. Stienstra R. Wijmenga C. Kaufmann S.H.E. van Crevel R. Netea M.G. Rewiring cellular metabolism via the AKT/mTOR pathway contributes to host defence against Mycobacterium tuberculosis in human and murine cells. Eur. J. Immunol. 2016 46 11 2574 2586 10.1002/eji.201546259
    [Google Scholar]
  10. Exley R.M. Goodwin L. Mowe E. Shaw J. Smith H. Read R.C. Tang C.M. Neisseria meningitidis lactate permease is required for nasopharyngeal colonization. Infect. Immun. 2005 73 9 5762 5766 10.1128/IAI.73.9.5762‑5766.2005
    [Google Scholar]
  11. Wu Y. Ma W. Liu W. Zhang S. Lactate: a pearl dropped in the ocean—an overlooked signal molecule in physiology and pathology. Cell Biol. Int. 2023 47 2 295 307 10.1002/cbin.11975
    [Google Scholar]
  12. Smith D. Pernet A. Hallett W.A. Bingham E. Marsden P.K. Amiel S.A. Lactate: A preferred fuel for human brain metabolism in vivo. J. Cereb. Blood Flow Metab. 2003 23 6 658 664 10.1097/01.WCB.0000063991.19746.11
    [Google Scholar]
  13. Boumezbeur F. Petersen K.F. Cline G.W. Mason G.F. Behar K.L. Shulman G.I. Rothman D.L. The contribution of blood lactate to brain energy metabolism in humans measured by dynamic 13C nuclear magnetic resonance spectroscopy. J. Neurosci. 2010 30 42 13983 13991 10.1523/JNEUROSCI.2040‑10.2010
    [Google Scholar]
  14. Schurr A. Miller J.J. Payne R.S. Rigor B.M. An increase in lactate output by brain tissue serves to meet the energy needs of glutamate-activated neurons. J. Neurosci. 1999 19 1 34 39 10.1523/JNEUROSCI.19‑01‑00034.1999
    [Google Scholar]
  15. Lee T.Y. Lactate: a multifunctional signaling molecule. Yeungnam Univ. J. Med. 2021 38 3 183 193 10.12701/yujm.2020.00892
    [Google Scholar]
  16. Medina J.M. Tabernero A. Lactate utilization by brain cells and its role in CNS development. J. Neurosci. Res. 2005 79 1-2 2 10 10.1002/jnr.20336
    [Google Scholar]
  17. Cheng A. Lu Y. Huang Q. Zuo Z. Attenuating oxygen-glucose deprivation-caused autophagosome accumulation may be involved in sevoflurane postconditioning-induced protection in human neuron-like cells. Eur. J. Pharmacol. 2019 849 84 95 10.1016/j.ejphar.2019.01.051
    [Google Scholar]
  18. Banerjee A. Ghatak S. Sikdar S.K. l ‐Lactate mediates neuroprotection against ischaemia by increasing TREK 1 channel expression in rat hippocampal astrocytes in vitro. J. Neurochem. 2016 138 2 265 281 10.1111/jnc.13638
    [Google Scholar]
  19. Fan H. Yang F. Xiao Z. Luo H. Chen H. Chen Z. Liu Q. Xiao Y. Lactylation: novel epigenetic regulatory and therapeutic opportunities. Am. J. Physiol. Endocrinol. Metab. 2023 324 4 E330 E338 10.1152/ajpendo.00159.2022
    [Google Scholar]
  20. Rabinowitz J.D. Enerbäck S. Lactate: the ugly duckling of energy metabolism. Nat. Metab. 2020 2 7 566 571 10.1038/s42255‑020‑0243‑4
    [Google Scholar]
  21. Monsorno K. Buckinx A. Paolicelli R.C. Microglial metabolic flexibility: emerging roles for lactate. Trends Endocrinol. Metab. 2022 33 3 186 195 10.1016/j.tem.2021.12.001
    [Google Scholar]
  22. Brooks G.A. Lactate production under fully aerobic conditions: the lactate shuttle during rest and exercise. Fed. Proc. 1986 45 13 2924 2929
    [Google Scholar]
  23. Zhou Y. Liu X. Huang C. Lin D. Lactate Activates AMPK Remodeling of the Cellular Metabolic Profile and Promotes the Proliferation and Differentiation of C2C12 Myoblasts. Int. J. Mol. Sci. 2022 23 22 13996 10.3390/ijms232213996
    [Google Scholar]
  24. Brooks G.A. Cell–cell and intracellular lactate shuttles. J. Physiol. 2009 587 23 5591 5600 10.1113/jphysiol.2009.178350
    [Google Scholar]
  25. Felmlee M.A. Jones R.S. Rodriguez-Cruz V. Follman K.E. Morris M.E. Monocarboxylate Transporters (SLC16): Function, Regulation, and Role in Health and Disease. Pharmacol. Rev. 2020 72 2 466 485 10.1124/pr.119.018762
    [Google Scholar]
  26. Cortés-Campos C. Elizondo R. Llanos P. Uranga R.M. Nualart F. García M.A. MCT expression and lactate influx/efflux in tanycytes involved in glia-neuron metabolic interaction. PLoS One 2011 6 1 e16411 10.1371/journal.pone.0016411
    [Google Scholar]
  27. Halestrap A.P. The SLC16 gene family – Structure, role and regulation in health and disease. Mol. Aspects Med. 2013 34 2-3 337 349 10.1016/j.mam.2012.05.003
    [Google Scholar]
  28. Hui S. Ghergurovich J.M. Morscher R.J. Jang C. Teng X. Lu W. Esparza L.A. Reya T. Le Zhan Yanxiang Guo J. White E. Rabinowitz J.D. Glucose feeds the TCA cycle via circulating lactate. Nature 2017 551 7678 115 118 10.1038/nature24057
    [Google Scholar]
  29. Faubert B. Li K.Y. Cai L. Hensley C.T. Kim J. Zacharias L.G. Yang C. Do Q.N. Doucette S. Burguete D. Li H. Huet G. Yuan Q. Wigal T. Butt Y. Ni M. Torrealba J. Oliver D. Lenkinski R.E. Malloy C.R. Wachsmann J.W. Young J.D. Kernstine K. DeBerardinis R.J. Lactate Metabolism in Human Lung Tumors. Cell 2017 171 2 358 371.e9 10.1016/j.cell.2017.09.019
    [Google Scholar]
  30. Lu J. Tan M. Cai Q. The Warburg effect in tumor progression: Mitochondrial oxidative metabolism as an anti-metastasis mechanism. Cancer Lett. 2015 356 2 2 Pt A 156 164 10.1016/j.canlet.2014.04.001
    [Google Scholar]
  31. Shen Y. Dinh H.V. Cruz E.R. Chen Z. Bartman C.R. Xiao T. Call C.M. Ryseck R.P. Pratas J. Weilandt D. Baron H. Subramanian A. Fatma Z. Wu Z.Y. Dwaraknath S. Hendry J.I. Tran V.G. Yang L. Yoshikuni Y. Zhao H. Maranas C.D. Wühr M. Rabinowitz J.D. Mitochondrial ATP generation is more proteome efficient than glycolysis. Nat. Chem. Biol. 2024 20 9 1123 1132 10.1038/s41589‑024‑01571‑y
    [Google Scholar]
  32. Gómez-Valadés A.G. Pozo M. Varela L. Boudjadja M.B. Ramírez S. Chivite I. Eyre E. Haddad-Tóvolli R. Obri A. Milà-Guasch M. Altirriba J. Schneeberger M. Imbernón M. Garcia-Rendueles A.R. Gama-Perez P. Rojo-Ruiz J. Rácz B. Alonso M.T. Gomis R. Zorzano A. D’Agostino G. Alvarez C.V. Nogueiras R. Garcia-Roves P.M. Horvath T.L. Claret M. Mitochondrial cristae-remodeling protein OPA1 in POMC neurons couples Ca2+ homeostasis with adipose tissue lipolysis. Cell Metab. 2021 33 9 1820 1835.e9 10.1016/j.cmet.2021.07.008
    [Google Scholar]
  33. Takado Y. Cheng T. Bastiaansen J.A.M. Yoshihara H.A.I. Lanz B. Mishkovsky M. Lengacher S. Comment A. Hyperpolarized 13 C Magnetic Resonance Spectroscopy Reveals the Rate-Limiting Role of the Blood–Brain Barrier in the Cerebral Uptake and Metabolism of l -Lactate in Vivo. ACS Chem. Neurosci. 2018 9 11 2554 2562 10.1021/acschemneuro.8b00066
    [Google Scholar]
  34. Muñoz Maniega S. Cvoro V. Chappell F.M. Armitage P.A. Marshall I. Bastin M.E. Wardlaw J.M. Changes in NAA and lactate following ischemic stroke. Neurology 2008 71 24 1993 1999 10.1212/01.wnl.0000336970.85817.4a
    [Google Scholar]
  35. Li Y. Wang T. Zhang T. Lin Z. Li Y. Guo R. Zhao Y. Meng Z. Liu J. Yu X. Liang Z.P. Nachev P. Fast high-resolution metabolic imaging of acute stroke with 3D magnetic resonance spectroscopy. Brain 2020 143 11 3225 3233 10.1093/brain/awaa264
    [Google Scholar]
  36. Kann O. Lactate as a supplemental fuel for synaptic transmission and neuronal network oscillations: Potentials and limitations. J. Neurochem. 2023 ••• Epub ahead of print 10.1111/jnc.15867
    [Google Scholar]
  37. Medel V. Crossley N. Gajardo I. Muller E. Barros L.F. Shine J.M. Sierralta J. Whole-brain neuronal MCT2 lactate transporter expression links metabolism to human brain structure and function. Proc. Natl. Acad. Sci. USA 2022 119 33 e2204619119 10.1073/pnas.2204619119
    [Google Scholar]
  38. Bergersen L.H. Is lactate food for neurons? Comparison of monocarboxylate transporter subtypes in brain and muscle. Neuroscience 2007 145 1 11 19 10.1016/j.neuroscience.2006.11.062
    [Google Scholar]
  39. Lauritzen F. Eid T. Bergersen L.H. Monocarboxylate transporters in temporal lobe epilepsy: roles of lactate and ketogenic diet. Brain Struct. Funct. 2015 220 1 1 12 10.1007/s00429‑013‑0672‑x
    [Google Scholar]
  40. Zhang M. Wang Y. Bai Y. Dai L. Guo H. Monocarboxylate Transporter 1 May Benefit Cerebral Ischemia via Facilitating Lactate Transport From Glial Cells to Neurons. Front. Neurol. 2022 13 781063 10.3389/fneur.2022.781063
    [Google Scholar]
  41. Ramljak S. Schmitz M. Repond C. Zerr I. Pellerin L. Altered mRNA and Protein Expression of Monocarboxylate Transporter MCT1 in the Cerebral Cortex and Cerebellum of Prion Protein Knockout Mice. Int. J. Mol. Sci. 2021 22 4 1566 10.3390/ijms22041566
    [Google Scholar]
  42. Pellerin L Magistretti PJ Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci U S A. 1994 91 22 10625 9 10.1073/pnas.91.22.10625
    [Google Scholar]
  43. Ardanaz C.G. Ramírez M.J. Solas M. Brain Metabolic Alterations in Alzheimer’s Disease. Int. J. Mol. Sci. 2022 23 7 3785 10.3390/ijms23073785
    [Google Scholar]
  44. Debernardi R. Pierre K. Lengacher S. Magistretti P.J. Pellerin L. Cell‐specific expression pattern of monocarboxylate transporters in astrocytes and neurons observed in different mouse brain cortical cell cultures. J. Neurosci. Res. 2003 73 2 141 155 10.1002/jnr.10660
    [Google Scholar]
  45. Dienel G.A. The metabolic trinity, glucose–glycogen–lactate, links astrocytes and neurons in brain energetics, signaling, memory, and gene expression. Neurosci. Lett. 2017 637 18 25 10.1016/j.neulet.2015.02.052
    [Google Scholar]
  46. Karagiannis A. Sylantyev S. Hadjihambi A. Hosford P.S. Kasparov S. Gourine A.V. Hemichannel-mediated release of lactate. J. Cereb. Blood Flow Metab. 2016 36 7 1202 1211 10.1177/0271678X15611912
    [Google Scholar]
  47. Veloz Castillo M.F. Magistretti P.J. Calì C. l-Lactate: Food for Thoughts, Memory and Behavior. Metabolites 2021 11 8 548 10.3390/metabo11080548
    [Google Scholar]
  48. Mason S. Lactate Shuttles in Neuroenergetics—Homeostasis, Allostasis and Beyond. Front. Neurosci. 2017 11 43 10.3389/fnins.2017.00043
    [Google Scholar]
  49. Mahmoud S. Gharagozloo M. Simard C. Gris D. Astrocytes Maintain Glutamate Homeostasis in the CNS by Controlling the Balance between Glutamate Uptake and Release. Cells 2019 8 2 184 10.3390/cells8020184
    [Google Scholar]
  50. Hansson E. Rönnbäck L. Astrocytes in glutamate neurotransmission. FASEB J. 1995 9 5 343 350 10.1096/fasebj.9.5.7534736
    [Google Scholar]
  51. Sotelo-Hitschfeld T. Niemeyer M.I. Mächler P. Ruminot I. Lerchundi R. Wyss M.T. Stobart J. Fernández-Moncada I. Valdebenito R. Garrido-Gerter P. Contreras-Baeza Y. Schneider B.L. Aebischer P. Lengacher S. San Martín A. Le Douce J. Bonvento G. Magistretti P.J. Sepúlveda F.V. Weber B. Barros L.F. Channel-mediated lactate release by K+-stimulated astrocytes. J. Neurosci. 2015 35 10 4168 4178 10.1523/JNEUROSCI.5036‑14.2015
    [Google Scholar]
  52. Rouach N. Koulakoff A. Abudara V. Willecke K. Giaume C. Astroglial metabolic networks sustain hippocampal synaptic transmission. Science 2008 322 5907 1551 1555 10.1126/science.1164022
    [Google Scholar]
  53. Prichard J Rothman D Novotny E Lactate rise detected by 1H NMR in human visual cortex during physiologic stimulation. Proc Natl Acad Sci 1991 88 13 5829 31 10.1073/pnas.88.13.5829
    [Google Scholar]
  54. Hu Y Wilson GS A temporary local energy pool coupled to neuronal activity: fluctuations of extracellular lactate levels in rat brain monitored with rapid-response enzyme-based sensor. J Neurochem. 1997 69 4 1484 90
    [Google Scholar]
  55. Ros J. Pecinska N. Alessandri B. Landolt H. Fillenz M. Lactate reduces glutamate‐induced neurotoxicity in rat cortex. J. Neurosci. Res. 2001 66 5 790 794 10.1002/jnr.10043
    [Google Scholar]
  56. Jourdain P. Allaman I. Rothenfusser K. Fiumelli H. Marquet P. Magistretti P.J. L-Lactate protects neurons against excitotoxicity: implication of an ATP-mediated signaling cascade. Sci. Rep. 2016 6 1 21250 10.1038/srep21250
    [Google Scholar]
  57. Magistretti P.J. Allaman I. Lactate in the brain: from metabolic end-product to signalling molecule. Nat. Rev. Neurosci. 2018 19 4 235 249 10.1038/nrn.2018.19
    [Google Scholar]
  58. Bonvento G. Bolaños J.P. Astrocyte-neuron metabolic cooperation shapes brain activity. Cell Metab. 2021 33 8 1546 1564 10.1016/j.cmet.2021.07.006
    [Google Scholar]
  59. Magistretti P.J. Pellerin L. Astrocytes Couple Synaptic Activity to Glucose Utilization in the Brain. Physiology (Bethesda) 1999 14 5 177 182 10.1152/physiologyonline.1999.14.5.177
    [Google Scholar]
  60. Zhou J. Zhang L. Peng J. Zhang X. Zhang F. Wu Y. Huang A. Du F. Liao Y. He Y. Xie Y. Gu L. Kuang C. Ou W. Xie M. Tu T. Pang J. Zhang D. Guo K. Feng Y. Yin S. Cao Y. Li T. Jiang Y. Astrocytic LRP1 enables mitochondria transfer to neurons and mitigates brain ischemic stroke by suppressing ARF1 lactylation. Cell Metab. 2024 36 9 2054 2068.e14 10.1016/j.cmet.2024.05.016
    [Google Scholar]
  61. Yao Z.M. Sun X.R. Huang J. Chen L. Dong S.Y. Astrocyte-Neuronal Communication and Its Role in Stroke. Neurochem. Res. 2023 48 10 2996 3006 10.1007/s11064‑023‑03966‑0
    [Google Scholar]
  62. Xue X. Liu B. Hu J. Bian X. Lou S. The potential mechanisms of lactate in mediating exercise-enhanced cognitive function: a dual role as an energy supply substrate and a signaling molecule. Nutr. Metab. (Lond.) 2022 19 1 52 10.1186/s12986‑022‑00687‑z
    [Google Scholar]
  63. Patching S.G. Glucose Transporters at the Blood-Brain Barrier: Function, Regulation and Gateways for Drug Delivery. Mol. Neurobiol. 2017 54 2 1046 1077 10.1007/s12035‑015‑9672‑6
    [Google Scholar]
  64. Shi C. Xu J. Ding Y. Chen X. Yuan F. Zhu F. Duan C. Hu J. Lu H. Wu T. Jiang L. MCT1-mediated endothelial cell lactate shuttle as a target for promoting axon regeneration after spinal cord injury. Theranostics 2024 14 14 5662 5681 10.7150/thno.96374
    [Google Scholar]
  65. Roumes H Pellerin L Bouzier-Sore AK [Neuroprotective role of lactate in neonatal hypoxia-ischemia]. Med Sci 2020 36 11 973 976 10.1051/medsci/2020179
    [Google Scholar]
  66. Wang J. Cui Y. Yu Z. Wang W. Cheng X. Ji W. Guo S. Zhou Q. Wu N. Chen Y. Chen Y. Song X. Jiang H. Wang Y. Lan Y. Zhou B. Mao L. Li J. Yang H. Guo W. Yang X. Brain Endothelial Cells Maintain Lactate Homeostasis and Control Adult Hippocampal Neurogenesis. Cell Stem Cell 2019 25 6 754 767.e9 10.1016/j.stem.2019.09.009
    [Google Scholar]
  67. Tseng M.T. Chan S.A. Schurr A. Ischemia-induced changes in monocarboxylate transporter 1 reactive cells in rat hippocampus. Neurol. Res. 2003 25 1 83 86 10.1179/016164103101200978
    [Google Scholar]
  68. Pucino V. Bombardieri M. Pitzalis C. Mauro C. Lactate at the crossroads of metabolism, inflammation, and autoimmunity. Eur. J. Immunol. 2017 47 1 14 21 10.1002/eji.201646477
    [Google Scholar]
  69. Sofroniew M.V. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci. 2009 32 12 638 647 10.1016/j.tins.2009.08.002
    [Google Scholar]
  70. Zhang G. Qin Q. Zhang C. Sun X. Kazama K. Yi B. Cheng F. Guo Z.F. Sun J. NDRG1 Signaling Is Essential for Endothelial Inflammation and Vascular Remodeling. Circ. Res. 2023 132 3 306 319 10.1161/CIRCRESAHA.122.321837
    [Google Scholar]
  71. Flügge G. Araya-Callis C. Garea-Rodriguez E. Stadelmann-Nessler C. Fuchs E. NDRG2 as a marker protein for brain astrocytes. Cell Tissue Res. 2014 357 1 31 41 10.1007/s00441‑014‑1837‑5
    [Google Scholar]
  72. Zhang Z. Ma Z. Zou W. Zhang L. Li Y. Zhang J. Liu M. Hou W. Ma Y. N‐myc downstream‐regulated gene 2 controls astrocyte morphology via Rho‐GTPase signaling. J. Cell. Physiol. 2019 234 11 20847 20858 10.1002/jcp.28689
    [Google Scholar]
  73. Takarada-Iemata M. Yoshikawa A. Ta H.M. Okitani N. Nishiuchi T. Aida Y. Kamide T. Hattori T. Ishii H. Tamatani T. Le T.M. Roboon J. Kitao Y. Matsuyama T. Nakada M. Hori O. N‐myc downstream‐regulated gene 2 protects blood–brain barrier integrity following cerebral ischemia. Glia 2018 66 7 1432 1446 10.1002/glia.23315
    [Google Scholar]
  74. Yin A. Guo H. Tao L. Cai G. Wang Y. Yao L. Xiong L. Zhang J. Li Y. NDRG2 protects the brain from excitotoxicity by facilitating interstitial glutamate uptake. Transl. Stroke Res. 2020 11 2 214 227 10.1007/s12975‑019‑00708‑9
    [Google Scholar]
  75. Xu J. Ji T. Li G. Zhang H. Zheng Y. Li M. Ma J. Li Y. Chi G. Lactate attenuates astrocytic inflammation by inhibiting ubiquitination and degradation of NDRG2 under oxygen–glucose deprivation conditions. J. Neuroinflammation 2022 19 1 314 10.1186/s12974‑022‑02678‑6
    [Google Scholar]
  76. Kwon H.S. Koh S.H. Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Transl. Neurodegener. 2020 9 1 42 10.1186/s40035‑020‑00221‑2
    [Google Scholar]
  77. Anderson M.A. Burda J.E. Ren Y. Ao Y. O’Shea T.M. Kawaguchi R. Coppola G. Khakh B.S. Deming T.J. Sofroniew M.V. Astrocyte scar formation aids central nervous system axon regeneration. Nature 2016 532 7598 195 200 10.1038/nature17623
    [Google Scholar]
  78. Swanson R. Ying W. Kauppinen T. Astrocyte influences on ischemic neuronal death. Curr. Mol. Med. 2004 4 2 193 205 10.2174/1566524043479185
    [Google Scholar]
  79. Wu X. Chen P.S. Dallas S. Wilson B. Block M.L. Wang C.C. Kinyamu H. Lu N. Gao X. Leng Y. Chuang D.M. Zhang W. Lu R.B. Hong J.S. Histone deacetylase inhibitors up-regulate astrocyte GDNF and BDNF gene transcription and protect dopaminergic neurons. Int. J. Neuropsychopharmacol. 2008 11 8 1123 1134 10.1017/S1461145708009024
    [Google Scholar]
  80. Rosenberg P.A. Aizenman E. Hundred-fold increase in neuronal vulnerability to glutamate toxicity in astrocyte-poor cultures of rat cerebral cortex. Neurosci. Lett. 1989 103 2 162 168 [Erratum in: Neurosci Lett 1990 Aug 24;116]. [3]. [:399. PMID: 2570387]. 10.1016/0304‑3940(89)90569‑7
    [Google Scholar]
  81. Chen Y. Vartiainen N.E. Ying W. Chan P.H. Koistinaho J. Swanson R.A. Astrocytes protect neurons from nitric oxide toxicity by a glutathione‐dependent mechanism. J. Neurochem. 2001 77 6 1601 1610 10.1046/j.1471‑4159.2001.00374.x
    [Google Scholar]
  82. de Pablo Y. Nilsson M. Pekna M. Pekny M. Intermediate filaments are important for astrocyte response to oxidative stress induced by oxygen–glucose deprivation and reperfusion. Histochem. Cell Biol. 2013 140 1 81 91 10.1007/s00418‑013‑1110‑0
    [Google Scholar]
  83. Dringen R. Brandmann M. Hohnholt M.C. Blumrich E.M. Glutathione-Dependent Detoxification Processes in Astrocytes. Neurochem. Res. 2015 40 12 2570 2582 10.1007/s11064‑014‑1481‑1
    [Google Scholar]
  84. Liu J.H. Zhang M. Wang Q. Wu D.Y. Jie W. Hu N.Y. Lan J.Z. Zeng K. Li S.J. Li X.W. Yang J.M. Gao T.M. Distinct roles of astroglia and neurons in synaptic plasticity and memory. Mol. Psychiatry 2022 27 2 873 885 10.1038/s41380‑021‑01332‑6
    [Google Scholar]
  85. Saba J. Turati J. Ramírez D. Carniglia L. Durand D. Lasaga M. Caruso C. Astrocyte truncated tropomyosin receptor kinase B mediates brain‐derived neurotrophic factor anti‐apoptotic effect leading to neuroprotection. J. Neurochem. 2018 146 6 686 702 10.1111/jnc.14476
    [Google Scholar]
  86. Coco M. Caggia S. Musumeci G. Perciavalle V. Graziano A.C.E. Pannuzzo G. Cardile V. Sodium L‐lactate differently affects brain‐derived neurothrophic factor, inducible nitric oxide synthase, and heat shock protein 70 kDa production in human astrocytes and SH‐SY5Y cultures. J. Neurosci. Res. 2013 91 2 313 320 10.1002/jnr.23154
    [Google Scholar]
  87. Tufekci K.U. Civi Bayin E. Genc S. Genc K. The Nrf2/ARE Pathway: A Promising Target to Counteract Mitochondrial Dysfunction in Parkinson’s Disease. Parkinsons Dis. 2011 2011 1 14 10.4061/2011/314082
    [Google Scholar]
  88. Song H. Stevens C.F. Gage F.H. Astroglia induce neurogenesis from adult neural stem cells. Nature 2002 417 6884 39 44 10.1038/417039a
    [Google Scholar]
  89. Mauch D.H. Nägler K. Schumacher S. Göritz C. Müller E.C. Otto A. Pfrieger F.W. CNS synaptogenesis promoted by glia-derived cholesterol. Science 2001 294 5545 1354 1357 10.1126/science.294.5545.1354
    [Google Scholar]
  90. Christopherson K.S. Ullian E.M. Stokes C.C.A. Mullowney C.E. Hell J.W. Agah A. Lawler J. Mosher D.F. Bornstein P. Barres B.A. Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 2005 120 3 421 433 10.1016/j.cell.2004.12.020
    [Google Scholar]
  91. Lin T.N. Kim G.M. Chen J.J. Cheung W.M. He Y.Y. Hsu C.Y. Differential regulation of thrombospondin-1 and thrombospondin-2 after focal cerebral ischemia/reperfusion. Stroke 2003 34 1 177 86
    [Google Scholar]
  92. Beard E. Lengacher S. Dias S. Magistretti P.J. Finsterwald C. Astrocytes as Key Regulators of Brain Energy Metabolism: New Therapeutic Perspectives. Front. Physiol. 2022 12 825816 [Erratum in: Front Physiol. 2022 Feb 25; 13:867827. PMID: 35087428; PMCID: PMC8787066]. 10.3389/fphys.2021.825816
    [Google Scholar]
  93. Almeida A. Moncada S. Bolaños J.P. Nitric oxide switches on glycolysis through the AMP protein kinase and 6-phosphofructo-2-kinase pathway. Nat. Cell Biol. 2004 6 1 45 51 10.1038/ncb1080
    [Google Scholar]
  94. Xu J. Zheng Y. Lv S. Kang J. Yu Y. Hou K. Li Y. Chi G. Lactate Promotes Reactive Astrogliosis and Confers Axon Guidance Potential to Astrocytes under Oxygen-Glucose Deprivation. Neuroscience 2020 442 54 68 10.1016/j.neuroscience.2020.06.041
    [Google Scholar]
  95. Schurr A. West C.A. Rigor B.M. Lactate-supported synaptic function in the rat hippocampal slice preparation. Science 1988 240 4857 1326 1328 10.1126/science.3375817
    [Google Scholar]
  96. Shetty P.K. Galeffi F. Turner D.A. Cellular Links between Neuronal Activity and Energy Homeostasis. Front. Pharmacol. 2012 3 43 10.3389/fphar.2012.00043
    [Google Scholar]
  97. Zhou X. Moon C. Zheng F. Luo Y. Soellner D. Nuñez J.L. Wang H. N‐methyl‐D‐aspartate‐stimulated ERK1/2 signaling and the transcriptional up‐regulation of plasticity‐related genes are developmentally regulated following in vitro neuronal maturation. J. Neurosci. Res. 2009 87 12 2632 2644 10.1002/jnr.22103
    [Google Scholar]
  98. Magistretti P.J. Allaman I. A cellular perspective on brain energy metabolism and functional imaging. Neuron 2015 86 4 883 901 10.1016/j.neuron.2015.03.035
    [Google Scholar]
  99. Yang J. Ruchti E. Petit J.M. Jourdain P. Grenningloh G. Allaman I. Magistretti P.J. Lactate promotes plasticity gene expression by potentiating NMDA signaling in neurons. Proc. Natl. Acad. Sci. USA 2014 111 33 12228 12233 10.1073/pnas.1322912111
    [Google Scholar]
  100. Jourdain P. Rothenfusser K. Ben-Adiba C. Allaman I. Marquet P. Magistretti P.J. Dual action of L-Lactate on the activity of NR2B-containing NMDA receptors: from potentiation to neuroprotection. Sci. Rep. 2018 8 1 13472 10.1038/s41598‑018‑31534‑y
    [Google Scholar]
  101. Margineanu M.B. Mahmood H. Fiumelli H. Magistretti P.J. L-Lactate Regulates the Expression of Synaptic Plasticity and Neuroprotection Genes in Cortical Neurons: A Transcriptome Analysis. Front. Mol. Neurosci. 2018 11 375 10.3389/fnmol.2018.00375
    [Google Scholar]
  102. Bélanger M. Allaman I. Magistretti P.J. Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab. 2011 14 6 724 738 10.1016/j.cmet.2011.08.016
    [Google Scholar]
  103. Bergersen L.H. Lactate transport and signaling in the brain: potential therapeutic targets and roles in body-brain interaction. J. Cereb. Blood Flow Metab. 2015 35 2 176 185 10.1038/jcbfm.2014.206
    [Google Scholar]
  104. Barros L.F. Metabolic signaling by lactate in the brain. Trends Neurosci. 2013 36 7 396 404 10.1016/j.tins.2013.04.002
    [Google Scholar]
  105. Liu C. Wu J. Zhu J. Kuei C. Yu J. Shelton J. Sutton S.W. Li X. Yun S.J. Mirzadegan T. Mazur C. Kamme F. Lovenberg T.W. Lactate inhibits lipolysis in fat cells through activation of an orphan G-protein-coupled receptor, GPR81. J. Biol. Chem. 2009 284 5 2811 2822 10.1074/jbc.M806409200
    [Google Scholar]
  106. Vardjan N. Chowdhury H.H. Horvat A. Velebit J. Malnar M. Muhič M. Kreft M. Krivec Š.G. Bobnar S.T. Miš K. Pirkmajer S. Offermanns S. Henriksen G. Storm-Mathisen J. Bergersen L.H. Zorec R. Enhancement of Astroglial Aerobic Glycolysis by Extracellular Lactate-Mediated Increase in cAMP. Front. Mol. Neurosci. 2018 11 148 10.3389/fnmol.2018.00148
    [Google Scholar]
  107. Cauli B. Dusart I. Li D. Lactate as a determinant of neuronal excitability, neuroenergetics and beyond. Neurobiol. Dis. 2023 184 106207 10.1016/j.nbd.2023.106207
    [Google Scholar]
  108. Andersson AK Rönnbäck L Hansson E Lactate induces tumour necrosis factor-alpha, interleukin-6 and interleukin-1beta release in microglial- and astroglial-enriched primary cultures. J Neurochem. 2005 93 5 1327 33
    [Google Scholar]
  109. Liu J. Zhao F. Qu Y. Lactylation: A Novel Post-Translational Modification with Clinical Implications in CNS Diseases. Biomolecules 2024 14 9 1175 10.3390/biom14091175
    [Google Scholar]
  110. Zhang D. Tang Z. Huang H. Zhou G. Cui C. Weng Y. Liu W. Kim S. Lee S. Perez-Neut M. Ding J. Czyz D. Hu R. Ye Z. He M. Zheng Y.G. Shuman H.A. Dai L. Ren B. Roeder R.G. Becker L. Zhao Y. Metabolic regulation of gene expression by histone lactylation. Nature 2019 574 7779 575 580 10.1038/s41586‑019‑1678‑1
    [Google Scholar]
  111. Pan R.Y. He L. Zhang J. Liu X. Liao Y. Gao J. Liao Y. Yan Y. Li Q. Zhou X. Cheng J. Xing Q. Guan F. Zhang J. Sun L. Yuan Z. Positive feedback regulation of microglial glucose metabolism by histone H4 lysine 12 lactylation in Alzheimer’s disease. Cell Metab. 2022 34 4 634 648.e6 10.1016/j.cmet.2022.02.013
    [Google Scholar]
  112. Hagihara H. Shoji H. Otabi H. Toyoda A. Katoh K. Namihira M. Miyakawa T. Protein lactylation induced by neural excitation. Cell Rep. 2021 37 2 109820 10.1016/j.celrep.2021.109820
    [Google Scholar]
  113. Wu Y. Hu H. Liu W. Zhao Y. Xie F. Sun Z. Zhang L. Dong H. Wang X. Qian L. Hippocampal Lactate-Infusion Enhances Spatial Memory Correlated with Monocarboxylate Transporter 2 and Lactylation. Brain Sci. 2024 14 4 327 10.3390/brainsci14040327
    [Google Scholar]
  114. Liu Y.F. Chen H. Wu C.L. Kuo Y.M. Yu L. Huang A.M. Wu F.S. Chuang J.I. Jen C.J. Differential effects of treadmill running and wheel running on spatial or aversive learning and memory: roles of amygdalar brain‐derived neurotrophic factor and synaptotagmin I. J. Physiol. 2009 587 13 3221 3231 10.1113/jphysiol.2009.173088
    [Google Scholar]
  115. Xu J. Chen E. Lu C. He C. Recombinant ciliary neurotrophic factor promotes nerve regeneration and induces gene expression in silicon tube-bridged transected sciatic nerves in adult rats. J. Clin. Neurosci. 2009 16 6 812 817 10.1016/j.jocn.2008.08.035
    [Google Scholar]
  116. Dmitrieva V.G. Povarova O.V. Skvortsova V.I. Limborska S.A. Myasoedov N.F. Dergunova L.V. Semax and Pro-Gly-Pro activate the transcription of neurotrophins and their receptor genes after cerebral ischemia. Cell. Mol. Neurobiol. 2010 30 1 71 79 10.1007/s10571‑009‑9432‑0
    [Google Scholar]
  117. El Hayek L. Khalifeh M. Zibara V. Abi Assaad R. Emmanuel N. Karnib N. El-Ghandour R. Nasrallah P. Bilen M. Ibrahim P. Younes J. Abou Haidar E. Barmo N. Jabre V. Stephan J.S. Sleiman S.F. Lactate mediates the effects of exercise on learning and memory through SIRT1-dependent activation of hippocampal brain-derived neurotrophic factor (BDNF). J. Neurosci. 2019 39 13 1661-18 10.1523/JNEUROSCI.1661‑18.2019
    [Google Scholar]
  118. Kowiański P. Lietzau G. Czuba E. Waśkow M. Steliga A. Moryś J. BDNF: A Key Factor with Multipotent Impact on Brain Signaling and Synaptic Plasticity. Cell. Mol. Neurobiol. 2018 38 3 579 593 10.1007/s10571‑017‑0510‑4
    [Google Scholar]
  119. Chen X. Zhang M. Chen L. Zhou Z. Chen B. Wang C. Xie Y. Zhang Y. Roxarsone promotes glycolysis and angiogenesis by inducing hypoxia-inducible factor-1α in vitro and in vivo. ACS Omega 2021 6 14 9559 9566 10.1021/acsomega.1c00072
    [Google Scholar]
  120. Porporato P.E. Payen V.L. De Saedeleer C.J. Préat V. Thissen J.P. Feron O. Sonveaux P. Lactate stimulates angiogenesis and accelerates the healing of superficial and ischemic wounds in mice. Angiogenesis 2012 15 4 581 592 10.1007/s10456‑012‑9282‑0
    [Google Scholar]
  121. Hunt T.K. Aslam R. Hussain Z. Beckert S. Lactate, with oxygen, incites angiogenesis. Adv. Exp. Med. Biol. 2008 614 73 80 10.1007/978‑0‑387‑74911‑2_9
    [Google Scholar]
  122. Morland C. Andersson K.A. Haugen Ø.P. Hadzic A. Kleppa L. Gille A. Rinholm J.E. Palibrk V. Diget E.H. Kennedy L.H. Stølen T. Hennestad E. Moldestad O. Cai Y. Puchades M. Offermanns S. Vervaeke K. Bjørås M. Wisløff U. Storm-Mathisen J. Bergersen L.H. Exercise induces cerebral VEGF and angiogenesis via the lactate receptor HCAR1. Nat. Commun. 2017 8 1 15557 10.1038/ncomms15557
    [Google Scholar]
  123. Zhang S. Wu F. Zhan L. Lin W. Liang C. Pang Y. Zhang J. Mu Z. Exercise Regulates the Lactate Receptor HCAR1 and ERK1/2-PI3K/Akt Pathways to Promote Cerebral Angiogenesis. Iran. J. Public Health 2022 51 10 2298 2307 10.18502/ijph.v51i10.10988
    [Google Scholar]
  124. Zhou J. Liu T. Guo H. Cui H. Li P. Feng D. Hu E. Huang Q. Yang A. Zhou J. Luo J. Tang T. Wang Y. Lactate potentiates angiogenesis and neurogenesis in experimental intracerebral hemorrhage. Exp. Mol. Med. 2018 50 7 1 12 10.1038/s12276‑018‑0113‑2
    [Google Scholar]
  125. Yetkin-Arik B. Vogels I.M.C. Nowak-Sliwinska P. Weiss A. Houtkooper R.H. Van Noorden C.J.F. Klaassen I. Schlingemann R.O. The role of glycolysis and mitochondrial respiration in the formation and functioning of endothelial tip cells during angiogenesis. Sci. Rep. 2019 9 1 12608 10.1038/s41598‑019‑48676‑2
    [Google Scholar]
  126. Lemmon M.A. Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell 2010 141 7 1117 1134 10.1016/j.cell.2010.06.011
    [Google Scholar]
  127. Mustonen T. Alitalo K. Endothelial receptor tyrosine kinases involved in angiogenesis. J. Cell Biol. 1995 129 4 895 898 10.1083/jcb.129.4.895
    [Google Scholar]
  128. Shiojima I. Walsh K. Role of Akt signaling in vascular homeostasis and angiogenesis. Circ. Res. 2002 90 12 1243 1250 10.1161/01.RES.0000022200.71892.9F
    [Google Scholar]
  129. Ruan G.X. Kazlauskas A. Lactate engages receptor tyrosine kinases Axl, Tie2, and vascular endothelial growth factor receptor 2 to activate phosphoinositide 3-kinase/Akt and promote angiogenesis. J. Biol. Chem. 2013 288 29 21161 21172 10.1074/jbc.M113.474619
    [Google Scholar]
  130. Lee D.C. Sohn H.A. Park Z.Y. Oh S. Kang Y.K. Lee K. Kang M. Jang Y.J. Yang S.J. Hong Y.K. Noh H. Kim J.A. Kim D.J. Bae K.H. Kim D.M. Chung S.J. Yoo H.S. Yu D.Y. Park K.C. Yeom Y.I. A lactate-induced response to hypoxia. Cell 2015 161 3 595 609 10.1016/j.cell.2015.03.011
    [Google Scholar]
  131. Park K.C. Lee D.C. Yeom Y.I. NDRG3-mediated lactate signaling in hypoxia. BMB Rep. 2015 48 6 301 302 10.5483/BMBRep.2015.48.6.080
    [Google Scholar]
  132. Afonina I.S. Zhong Z. Karin M. Beyaert R. Limiting inflammation—the negative regulation of NF-κB and the NLRP3 inflammasome. Nat. Immunol. 2017 18 8 861 869 10.1038/ni.3772
    [Google Scholar]
  133. Végran F. Boidot R. Michiels C. Sonveaux P. Feron O. Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-κB/IL-8 pathway that drives tumor angiogenesis. Cancer Res. 2011 71 7 2550 2560 10.1158/0008‑5472.CAN‑10‑2828
    [Google Scholar]
  134. Takada Y. Kobayashi Y. Aggarwal B.B. Evodiamine abolishes constitutive and inducible NF-kappaB activation by inhibiting IkappaBalpha kinase activation, thereby suppressing NF-kappaB-regulated antiapoptotic and metastatic gene expression, up-regulating apoptosis, and inhibiting invasion. J. Biol. Chem. 2005 280 17 17203 17212 10.1074/jbc.M500077200
    [Google Scholar]
  135. Gloire G. Legrand-Poels S. Piette J. NF-κB activation by reactive oxygen species: Fifteen years later. Biochem. Pharmacol. 2006 72 11 1493 1505 10.1016/j.bcp.2006.04.011
    [Google Scholar]
  136. Bernier L.P. York E.M. MacVicar B.A. Immunometabolism in the Brain: How Metabolism Shapes Microglial Function. Trends Neurosci. 2020 43 11 854 869 10.1016/j.tins.2020.08.008
    [Google Scholar]
  137. Ghosh S. Castillo E. Frias E.S. Swanson R.A. Bioenergetic regulation of microglia. Glia 2018 66 6 1200 1212 10.1002/glia.23271
    [Google Scholar]
  138. Fodelianaki G. Lansing F. Bhattarai P. Troullinaki M. Zeballos M.A. Charalampopoulos I. Gravanis A. Mirtschink P. Chavakis T. Alexaki V.I. Nerve Growth Factor modulates LPS - induced microglial glycolysis and inflammatory responses. Exp. Cell Res. 2019 377 1-2 10 16 10.1016/j.yexcr.2019.02.023
    [Google Scholar]
  139. Immunometabolism. 2019 10.20900/immunometab20190002
    [Google Scholar]
  140. Arango Duque G. Descoteaux A. Macrophage cytokines: involvement in immunity and infectious diseases. Front. Immunol. 2014 5 491 10.3389/fimmu.2014.00491
    [Google Scholar]
  141. Galván-Peña S. O’Neill L.A. Metabolic reprograming in macrophage polarization. Front. Immunol. 2014 5 420 10.3389/fimmu.2014.00420
    [Google Scholar]
  142. Li X. Yang Y. Zhang B. Lin X. Fu X. An Y. Zou Y. Wang J.X. Wang Z. Yu T. Lactate metabolism in human health and disease. Signal Transduct. Target. Ther. 2022 7 1 305 [Erratum in: Signal Transduct Target Ther. 2022 Oct 31;7]. [1]. [:372. doi: 10.1038/s41392-022-01206-5. PMID: 36050306; PMCID: PMC9434547]. 10.1038/s41392‑022‑01151‑3
    [Google Scholar]
  143. Gharib S.A. McMahan R.S. Eddy W.E. Long M.E. Parks W.C. Aitken M.L. Manicone A.M. Transcriptional and functional diversity of human macrophage repolarization. J. Allergy Clin. Immunol. 2019 143 4 1536 1548 10.1016/j.jaci.2018.10.046
    [Google Scholar]
  144. Bohn T. Rapp S. Luther N. Klein M. Bruehl T.J. Kojima N. Aranda Lopez P. Hahlbrock J. Muth S. Endo S. Pektor S. Brand A. Renner K. Popp V. Gerlach K. Vogel D. Lueckel C. Arnold-Schild D. Pouyssegur J. Kreutz M. Huber M. Koenig J. Weigmann B. Probst H.C. von Stebut E. Becker C. Schild H. Schmitt E. Bopp T. Tumor immunoevasion via acidosis-dependent induction of regulatory tumor-associated macrophages. Nat. Immunol. 2018 19 12 1319 1329 10.1038/s41590‑018‑0226‑8
    [Google Scholar]
  145. Liu N. Luo J. Kuang D. Xu S. Duan Y. Xia Y. Wei Z. Xie X. Yin B. Chen F. Luo S. Liu H. Wang J. Jiang K. Gong F. Tang Z. Cheng X. Li H. Li Z. Laurence A. Wang G. Yang X.P. Lactate inhibits ATP6V0d2 expression in tumor-associated macrophages to promote HIF-2α–mediated tumor progression. J. Clin. Invest. 2019 129 2 631 646 10.1172/JCI123027
    [Google Scholar]
  146. Costa Leite T. Da Silva D. Guimarães Coelho R. Zancan P. Sola-Penna M. Lactate favours the dissociation of skeletal muscle 6-phosphofructo-1-kinase tetramers down-regulating the enzyme and muscle glycolysis. Biochem. J. 2007 408 1 123 130 10.1042/BJ20070687
    [Google Scholar]
  147. Zhang J. Muri J. Fitzgerald G. Gorski T. Gianni-Barrera R. Masschelein E. D’Hulst G. Gilardoni P. Turiel G. Fan Z. Wang T. Planque M. Carmeliet P. Pellerin L. Wolfrum C. Fendt S.M. Banfi A. Stockmann C. Soro-Arnáiz I. Kopf M. De Bock K. Endothelial Lactate Controls Muscle Regeneration from Ischemia by Inducing M2-like Macrophage Polarization. Cell Metab. 2020 31 6 1136 1153.e7 10.1016/j.cmet.2020.05.004
    [Google Scholar]
  148. Abebayehu D. Spence A.J. Caslin H. Taruselli M. Haque T.T. Kiwanuka K.N. Kolawole E.M. Chumanevich A.P. Sell S.A. Oskeritzian C.A. Ryan J. Kee S.A. Lactic acid suppresses IgE-mediated mast cell function in vitro and in vivo. Cell. Immunol. 2019 341 103918 10.1016/j.cellimm.2019.04.006
    [Google Scholar]
  149. Zhai X. Li J. Li L. Sun Y. Zhang X. Xue Y. lv J. Gao Y. Li S. Yan W. Yin S. Xiao Z. L-lactate preconditioning promotes plasticity-related proteins expression and reduces neurological deficits by potentiating GPR81 signaling in rat traumatic brain injury model. Brain Res. 2020 1746 146945 10.1016/j.brainres.2020.146945
    [Google Scholar]
  150. Peter K. Rehli M. Singer K. Renner-Sattler K. Kreutz M. Lactic acid delays the inflammatory response of human monocytes. Biochem. Biophys. Res. Commun. 2015 457 3 412 418 10.1016/j.bbrc.2015.01.005
    [Google Scholar]
  151. Yang K. Xu J. Fan M. Tu F. Wang X. Ha T. Williams D.L. Li C. Lactate Suppresses Macrophage Pro-Inflammatory Response to LPS Stimulation by Inhibition of YAP and NF-κB Activation via GPR81-Mediated Signaling. Front. Immunol. 2020 11 587913 10.3389/fimmu.2020.587913
    [Google Scholar]
  152. Hoque R. Farooq A. Ghani A. Gorelick F. Mehal W.Z. Lactate reduces liver and pancreatic injury in Toll-like receptor- and inflammasome-mediated inflammation via GPR81-mediated suppression of innate immunity. Gastroenterology 2014 146 7 1763 1774 10.1053/j.gastro.2014.03.014
    [Google Scholar]
  153. Bisri T. Utomo B. Fuadi I. Exogenous lactate infusion improved neurocognitive function of patients with mild traumatic brain injury. Asian J. Neurosurg. 2016 11 2 151 159 10.4103/1793‑5482.145375
    [Google Scholar]
  154. Horn T. Klein J. Neuroprotective effects of lactate in brain ischemia: Dependence on anesthetic drugs. Neurochem. Int. 2013 62 3 251 257 10.1016/j.neuint.2012.12.017
    [Google Scholar]
  155. Mahan V.L. Effects of lactate and carbon monoxide interactions on neuroprotection and neuropreservation. Med. Gas Res. 2021 11 4 158 173 10.4103/2045‑9912.318862
    [Google Scholar]
  156. Brooks G.A. The Science and Translation of Lactate Shuttle Theory. Cell Metab. 2018 27 4 757 785 10.1016/j.cmet.2018.03.008
    [Google Scholar]
  157. Mölström S. Nielsen T.H. Nordström C.H. Forsse A. Möller S. Venö S. Mamaev D. Tencer T. Schmidt H. Toft P. Bedside microdialysis for detection of early brain injury after out-of-hospital cardiac arrest. Sci. Rep. 2021 11 1 15871 10.1038/s41598‑021‑95405‑9
    [Google Scholar]
  158. Berthet C. Lei H. Thevenet J. Gruetter R. Magistretti P.J. Hirt L. Neuroprotective role of lactate after cerebral ischemia. J. Cereb. Blood Flow Metab. 2009 29 11 1780 1789 10.1038/jcbfm.2009.97
    [Google Scholar]
  159. Berthet C. Castillo X. Magistretti P.J. Hirt L. New evidence of neuroprotection by lactate after transient focal cerebral ischaemia: extended benefit after intracerebroventricular injection and efficacy of intravenous administration. Cerebrovasc. Dis. 2012 34 5-6 329 335 10.1159/000343657
    [Google Scholar]
  160. Alberini C.M. Cruz E. Descalzi G. Bessières B. Gao V. Astrocyte glycogen and lactate: New insights into learning and memory mechanisms. Glia 2018 66 6 1244 1262 10.1002/glia.23250
    [Google Scholar]
  161. Briquet M. Rocher A.B. Alessandri M. Rosenberg N. de Castro Abrantes H. Wellbourne-Wood J. Schmuziger C. Ginet V. Puyal J. Pralong E. Daniel R.T. Offermanns S. Chatton J.Y. Activation of lactate receptor HCAR1 down-modulates neuronal activity in rodent and human brain tissue. J. Cereb. Blood Flow Metab. 2022 42 9 1650 1665 10.1177/0271678X221080324
    [Google Scholar]
  162. Schurr A. Payne R.S. Miller J.J. Tseng M.T. Rigor B.M. Blockade of lactate transport exacerbates delayed neuronal damage in a rat model of cerebral ischemia. Brain Res. 2001 895 1-2 268 272 10.1016/S0006‑8993(01)02082‑0
    [Google Scholar]
  163. e L. Swerdlow R.H. Lactate's effect on human neuroblastoma cell bioenergetic fluxes. Biochem. Pharmacol. 2016 99 88 100 10.1016/j.bcp.2015.11.002
    [Google Scholar]
  164. Kang B.S. Choi B.Y. Kho A.R. Lee S.H. Hong D.K. Park M.K. Lee S.H. Lee C.J. Yang H.W. Woo S.Y. Park S.W. Kim D.Y. Park J.B. Chung W.S. Suh S.W. Effects of Pyruvate Kinase M2 (PKM2) Gene Deletion on Astrocyte-Specific Glycolysis and Global Cerebral Ischemia-Induced Neuronal Death. Antioxidants 2023 12 2 491 10.3390/antiox12020491
    [Google Scholar]
  165. Pellerin L. Connes P. Bisbal C. Lambert K. Editorial: Lactate as a Major Signaling Molecule for Homeostasis. Front. Physiol. 2022 13 910567 10.3389/fphys.2022.910567
    [Google Scholar]
  166. Cerina M. Levers M. Keller J.M. Frega M. Neuroprotective role of lactate in a human in vitro model of the ischemic penumbra. Sci. Rep. 2024 14 1 7973 10.1038/s41598‑024‑58669‑5
    [Google Scholar]
  167. Roumes H. Dumont U. Sanchez S. Mazuel L. Blanc J. Raffard G. Chateil J.F. Pellerin L. Bouzier-Sore A.K. Neuroprotective role of lactate in rat neonatal hypoxia-ischemia. J. Cereb. Blood Flow Metab. 2021 41 2 342 358 10.1177/0271678X20908355
    [Google Scholar]
  168. Carrard A. Elsayed M. Margineanu M. Boury-Jamot B. Fragnière L. Meylan E.M. Petit J-M. Fiumelli H. Magistretti P.J. Martin J-L. Peripheral administration of lactate produces antidepressant-like effects. Mol. Psychiatry 2018 23 2 392 399 [Erratum in: Mol Psychiatry. 2018 Feb;23 ]. [2]. [:488. PMID: 27752076; PMCID: PMC5794893]. 10.1038/mp.2016.179
    [Google Scholar]
  169. Doherty J.R. Cleveland J.L. Targeting lactate metabolism for cancer therapeutics. J. Clin. Invest. 2013 123 9 3685 3692 10.1172/JCI69741
    [Google Scholar]
  170. Reuss A.M. Groos D. Buchfelder M. Savaskan N. The Acidic Brain—Glycolytic Switch in the Microenvironment of Malignant Glioma. Int. J. Mol. Sci. 2021 22 11 5518 10.3390/ijms22115518
    [Google Scholar]
  171. Watson M.J. Vignali P.D.A. Mullett S.J. Overacre-Delgoffe A.E. Peralta R.M. Grebinoski S. Menk A.V. Rittenhouse N.L. DePeaux K. Whetstone R.D. Vignali D.A.A. Hand T.W. Poholek A.C. Morrison B.M. Rothstein J.D. Wendell S.G. Delgoffe G.M. Metabolic support of tumour-infiltrating regulatory T cells by lactic acid. Nature 2021 591 7851 645 651 10.1038/s41586‑020‑03045‑2
    [Google Scholar]
  172. Liu R. Wu J. Guo H. Yao W. Li S. Lu Y. Jia Y. Liang X. Tang J. Zhang H. Post-translational modifications of histones: Mechanisms, biological functions, and therapeutic targets. MedComm 2020 4 3 e292 10.1002/mco2.292
    [Google Scholar]
  173. Marin E. Bouchet-Delbos L. Renoult O. Louvet C. Nerriere-Daguin V. Managh A.J. Even A. Giraud M. Vu Manh T.P. Aguesse A. Bériou G. Chiffoleau E. Alliot-Licht B. Prieur X. Croyal M. Hutchinson J.A. Obermajer N. Geissler E.K. Vanhove B. Blancho G. Dalod M. Josien R. Pecqueur C. Cuturi M.C. Moreau A. Human Tolerogenic Dendritic Cells Regulate Immune Responses through Lactate Synthesis. Cell Metab. 2019 30 6 1075 1090.e8 10.1016/j.cmet.2019.11.011
    [Google Scholar]
  174. Xu K. Yin N. Peng M. Stamatiades E.G. Shyu A. Li P. Zhang X. Do M.H. Wang Z. Capistrano K.J. Chou C. Levine A.G. Rudensky A.Y. Li M.O. Glycolysis fuels phosphoinositide 3-kinase signaling to bolster T cell immunity. Science 2021 371 6527 405 410 10.1126/science.abb2683
    [Google Scholar]
  175. Fang Y. Li Z. Yang L. Li W. Wang Y. Kong Z. Miao J. Chen Y. Bian Y. Zeng L. Emerging roles of lactate in acute and chronic inflammation. Cell Commun. Signal. 2024 22 1 276 10.1186/s12964‑024‑01624‑8
    [Google Scholar]
  176. Ivashkiv L.B. The hypoxia–lactate axis tempers inflammation. Nat. Rev. Immunol. 2020 20 2 85 86 10.1038/s41577‑019‑0259‑8
    [Google Scholar]
  177. Faulhaber M. Gröbner K. Rausch L. Gatterer H. Menz V. Effects of Acute Hypoxia on Lactate Thresholds and High-Intensity Endurance Performance—A Pilot Study. Int. J. Environ. Res. Public Health 2021 18 14 7573 10.3390/ijerph18147573
    [Google Scholar]
  178. Suzuki A. Stern S.A. Bozdagi O. Huntley G.W. Walker R.H. Magistretti P.J. Alberini C.M. Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 2011 144 5 810 823 10.1016/j.cell.2011.02.018
    [Google Scholar]
  179. Velentzas P.D. Zhang L. Das G. Chang T.K. Nelson C. Kobertz W.R. Baehrecke E.H. The Proton-Coupled Monocarboxylate Transporter Hermes Is Necessary for Autophagy during Cell Death. Dev. Cell 2018 47 3 281 293.e4 10.1016/j.devcel.2018.09.015
    [Google Scholar]
  180. Yu J. Chai P. Xie M. Ge S. Ruan J. Fan X. Jia R. Histone lactylation drives oncogenesis by facilitating m6A reader protein YTHDF2 expression in ocular melanoma. Genome Biol. 2021 22 1 85 10.1186/s13059‑021‑02308‑z
    [Google Scholar]
  181. Wang T. Ye Z. Li Z. Jing D. Fan G. Liu M. Zhuo Q. Ji S. Yu X. Xu X. Qin Y. Lactate‐induced protein lactylation: A bridge between epigenetics and metabolic reprogramming in cancer. Cell Prolif. 2023 56 10 e13478 10.1111/cpr.13478
    [Google Scholar]
  182. Scheiman J. Luber J.M. Chavkin T.A. MacDonald T. Tung A. Pham L.D. Wibowo M.C. Wurth R.C. Punthambaker S. Tierney B.T. Yang Z. Hattab M.W. Avila-Pacheco J. Clish C.B. Lessard S. Church G.M. Kostic A.D. Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism. Nat. Med. 2019 25 7 1104 1109 10.1038/s41591‑019‑0485‑4
    [Google Scholar]
  183. Brooks G.A. Lactate as a fulcrum of metabolism. Redox Biol. 2020 35 101454 10.1016/j.redox.2020.101454
    [Google Scholar]
  184. Haller H.L. Sander F. Popp D. Rapp M. Hartmann B. Demircan M. Nischwitz S.P. Kamolz L.P. Oxygen, pH, Lactate, and Metabolism—How Old Knowledge and New Insights Might Be Combined for New Wound Treatment. Medicina (Kaunas) 2021 57 11 1190 10.3390/medicina57111190
    [Google Scholar]
  185. Deng Q. Wu C. Liu T.C.Y. Duan R. Yang L. Exogenous lactate administration: A potential novel therapeutic approach for neonatal hypoxia-ischemia. Exp. Neurol. 2023 367 114450 10.1016/j.expneurol.2023.114450
    [Google Scholar]
  186. Paul S. Candelario-Jalil E. Emerging neuroprotective strategies for the treatment of ischemic stroke: An overview of clinical and preclinical studies. Exp. Neurol. 2021 335 113518 10.1016/j.expneurol.2020.113518
    [Google Scholar]
  187. Phillis J.W. O’Regan M.H. Evidence for swelling-induced adenosine and adenine nucleotide release in rat cerebral cortex exposed to monocarboxylate-containing or hypotonic artificial cerebrospinal fluids. Neurochem. Int. 2002 40 7 629 635 10.1016/S0197‑0186(01)00113‑9
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037335945241029111720
Loading
/content/journals/cpps/10.2174/0113892037335945241029111720
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Ischemic stroke ; glycolysis ; neuroprotection ; angiogenesis ; anti-inflammation ; lactate
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test